Abstract

We report the analysis of ultrawideband supercontinuum generation in a highly nonlinear dispersion-shifted fiber. A >1000-nm-spanning white-light continuum is generated by pumping the femtosecond fiber laser pulse at λ=1.56 µm into the extreme vicinity of the zero-dispersion wavelength of the fiber. The supercontinuum pulses are characterized with the experimentally observed sonogram traces. The numerical calculation based on the nonlinear Schrödinger equation is used to investigate the mechanism of the supercontinuum generation, and these results are in good agreement with experiment. We show that there are two stages with different spectral-broadening processes in the propagation evolution. Self-phase modulation and group-velocity dispersion play an important role in the first spectral broadening. Through an increase the propagation distance, further spectral broadening occurs due to the soliton self-frequency shift and the trapping effect by the redshifted soliton pulse through cross-phase modulation. Additionally, we show that the temporal and spectral interferences between the generated supercontinuum components cause the oscillating fine structure on the temporal waveform and the spectrum.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
    [CrossRef]
  2. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
    [CrossRef] [PubMed]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]
  4. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [CrossRef] [PubMed]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  6. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
    [CrossRef]
  7. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  8. J. M. Harbold, F. Ö. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, “Long-wavelength continuum generation about the second dispersion zero of a tapered fiber,” Opt. Lett. 27, 1558–1560 (2002).
    [CrossRef]
  9. I. N. Duling, “Subpicosecond all-fiber erbium laser,” Electron. Lett. 27, 544–545 (1991).
    [CrossRef]
  10. D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fiber laser,” Electron. Lett. 27, 730–732 (1991).
    [CrossRef]
  11. M. Nakazawa, E. Yoshida, and Y. Kimura, “Generation of 98 fs optical pulses directly from an erbium-doped fiber ring laser at 1.57 μm,” Electron. Lett. 29, 63–65 (1993).
    [CrossRef]
  12. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
    [CrossRef] [PubMed]
  13. W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “All-solid-state subpicosecond passively mode locked erbium-doped fiber laser,” Appl. Phys. Lett. 63, 4–6 (1993).
    [CrossRef]
  14. M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, “Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses,” Opt. Lett. 19, 43–45 (1994).
    [CrossRef] [PubMed]
  15. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
    [CrossRef]
  16. N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. App. Phys. 40, L365–L367 (2001).
    [CrossRef]
  17. J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum based on fiber laser system,” IEEE Photon. Technol. Lett. (to be published).
  18. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28, 643–645 (2003).
    [CrossRef] [PubMed]
  19. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
    [CrossRef]
  20. A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002).
    [CrossRef]
  21. A. Orgigosa-Blanch, J. C. Knight, and P. St. J. Russell, “Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 2567–2572 (2002).
    [CrossRef]
  22. B. R. Washburn, S. E. Ralph, and R. S. Windeler, “Ultrashort pulse propagation in air–silica microstructure fiber,” Opt. Express 10, 575–580 (2002), http://www. opticsexpress.org.
    [CrossRef] [PubMed]
  23. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express 10, 1083–1098 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  24. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [CrossRef]
  25. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
    [CrossRef]
  26. X. Fang, N. Karasawa, R. Morita, R. S. Windelaer, and M. Yamashita, “Nonlinear propagation of a-few-optical-cycle pulses in a photonic crystal fiber—experimental and theoretical studies beyond the slowly varying-envelope approximation,” IEEE Photon. Technol. Lett. 15, 233–235 (2003).
    [CrossRef]
  27. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fibers: simulations and experiments,” Opt. Express 10, 1215–1221 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  28. N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152–154 (2002).
    [CrossRef]
  29. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength,” Opt. Express 10, 1151–1159 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  30. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and non-mechanical sonogram measurement by use of electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J. Opt. Soc. Am. B 20, 2410–2417 (2003).
    [CrossRef]
  31. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
    [CrossRef]
  32. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef] [PubMed]
  33. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
    [CrossRef]
  34. T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
    [CrossRef]
  35. T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
    [CrossRef]
  36. V. Wong and I. A. Walmsley, “Ultrashort-pulse characterization from dynamic spectrograms by iterative phase retrieval,” J. Opt. Soc. Am. B 14, 944–949 (1997).
    [CrossRef]
  37. D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1589 (1999).
    [CrossRef]
  38. K. Taira and K. Kikuchi, “Optical sampling system at 1.55 μm for the measurement of pulse waveform and phase employing sonogram characterization,” IEEE Photon. Technol. Lett. 13, 505–507 (2001).
    [CrossRef]
  39. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, 2001).
  40. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
    [CrossRef]
  41. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
    [CrossRef]

2003

2002

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fibers: simulations and experiments,” Opt. Express 10, 1215–1221 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152–154 (2002).
[CrossRef]

N. Nishizawa and T. Goto, “Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength,” Opt. Express 10, 1151–1159 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002).
[CrossRef]

A. Orgigosa-Blanch, J. C. Knight, and P. St. J. Russell, “Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 2567–2572 (2002).
[CrossRef]

B. R. Washburn, S. E. Ralph, and R. S. Windeler, “Ultrashort pulse propagation in air–silica microstructure fiber,” Opt. Express 10, 575–580 (2002), http://www. opticsexpress.org.
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express 10, 1083–1098 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
[CrossRef]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
[CrossRef]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

J. M. Harbold, F. Ö. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, “Long-wavelength continuum generation about the second dispersion zero of a tapered fiber,” Opt. Lett. 27, 1558–1560 (2002).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[CrossRef]

2001

K. Taira and K. Kikuchi, “Optical sampling system at 1.55 μm for the measurement of pulse waveform and phase employing sonogram characterization,” IEEE Photon. Technol. Lett. 13, 505–507 (2001).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. App. Phys. 40, L365–L367 (2001).
[CrossRef]

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
[CrossRef]

2000

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

1999

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1589 (1999).
[CrossRef]

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
[CrossRef]

1997

1994

1993

M. Nakazawa, E. Yoshida, and Y. Kimura, “Generation of 98 fs optical pulses directly from an erbium-doped fiber ring laser at 1.57 μm,” Electron. Lett. 29, 63–65 (1993).
[CrossRef]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[CrossRef] [PubMed]

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “All-solid-state subpicosecond passively mode locked erbium-doped fiber laser,” Appl. Phys. Lett. 63, 4–6 (1993).
[CrossRef]

1991

I. N. Duling, “Subpicosecond all-fiber erbium laser,” Electron. Lett. 27, 544–545 (1991).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fiber laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

1989

1986

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Andrejco, M. J.

Atkinson, D.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “All-solid-state subpicosecond passively mode locked erbium-doped fiber laser,” Appl. Phys. Lett. 63, 4–6 (1993).
[CrossRef]

Birks, T. A.

Broeng, J.

Chau, A. H. L.

Chen, Z.

Chudoba, C.

Coen, S.

De Silvestri, S.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

DiMarcello, F.

Dudley, J. M.

Duling, I. N.

I. N. Duling, “Subpicosecond all-fiber erbium laser,” Electron. Lett. 27, 544–545 (1991).
[CrossRef]

Eggleton, B. J.

Fang, X.

X. Fang, N. Karasawa, R. Morita, R. S. Windelaer, and M. Yamashita, “Nonlinear propagation of a-few-optical-cycle pulses in a photonic crystal fiber—experimental and theoretical studies beyond the slowly varying-envelope approximation,” IEEE Photon. Technol. Lett. 15, 233–235 (2003).
[CrossRef]

Ferencz, K.

Fermann, M. E.

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Fleming, J.

Fujimoto, J. G.

Gaeta, A. L.

Genty, G.

Ghanta, R. K.

Gordon, J. P.

Goto, T.

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and non-mechanical sonogram measurement by use of electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J. Opt. Soc. Am. B 20, 2410–2417 (2003).
[CrossRef]

N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152–154 (2002).
[CrossRef]

N. Nishizawa and T. Goto, “Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength,” Opt. Express 10, 1151–1159 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. App. Phys. 40, L365–L367 (2001).
[CrossRef]

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

Grossard, N.

Gu, X.

Hänsch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Harbold, J. M.

Hartl, I.

Harvey, J. D.

Haus, H. A.

Herrmann, J.

Holzwarth, R.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Hopkinson, M.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “All-solid-state subpicosecond passively mode locked erbium-doped fiber laser,” Appl. Phys. Lett. 63, 4–6 (1993).
[CrossRef]

Hori, T.

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and non-mechanical sonogram measurement by use of electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J. Opt. Soc. Am. B 20, 2410–2417 (2003).
[CrossRef]

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
[CrossRef]

Husakou, A. V.

Ilday, F. Ö.

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Ippen, E. P.

Ishikawa, S.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
[CrossRef]

Jørgensen, C.

Kaivola, M.

Kane, D. J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Karasawa, N.

X. Fang, N. Karasawa, R. Morita, R. S. Windelaer, and M. Yamashita, “Nonlinear propagation of a-few-optical-cycle pulses in a photonic crystal fiber—experimental and theoretical studies beyond the slowly varying-envelope approximation,” IEEE Photon. Technol. Lett. 15, 233–235 (2003).
[CrossRef]

Kashiwada, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
[CrossRef]

Kikuchi, K.

K. Taira and K. Kikuchi, “Optical sampling system at 1.55 μm for the measurement of pulse waveform and phase employing sonogram characterization,” IEEE Photon. Technol. Lett. 13, 505–507 (2001).
[CrossRef]

Kimmel, M.

Kimura, Y.

M. Nakazawa, E. Yoshida, and Y. Kimura, “Generation of 98 fs optical pulses directly from an erbium-doped fiber ring laser at 1.57 μm,” Electron. Lett. 29, 63–65 (1993).
[CrossRef]

Knight, J. C.

Ko, T. H.

Krausz, F.

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fiber laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

Lehtonen, M.

Leonhardt, R.

Li, X. D.

Loh, W. H.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “All-solid-state subpicosecond passively mode locked erbium-doped fiber laser,” Appl. Phys. Lett. 63, 4–6 (1993).
[CrossRef]

Ludvigsen, H.

Maillotte, H.

Matsas, V. J.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fiber laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

Mitschke, F. M.

Mollenauer, L. F.

Monberg, E.

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Morita, R.

X. Fang, N. Karasawa, R. Morita, R. S. Windelaer, and M. Yamashita, “Nonlinear propagation of a-few-optical-cycle pulses in a photonic crystal fiber—experimental and theoretical studies beyond the slowly varying-envelope approximation,” IEEE Photon. Technol. Lett. 15, 233–235 (2003).
[CrossRef]

Morkel, P. R.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “All-solid-state subpicosecond passively mode locked erbium-doped fiber laser,” Appl. Phys. Lett. 63, 4–6 (1993).
[CrossRef]

Nagai, H.

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

Nakazawa, M.

M. Nakazawa, E. Yoshida, and Y. Kimura, “Generation of 98 fs optical pulses directly from an erbium-doped fiber ring laser at 1.57 μm,” Electron. Lett. 29, 63–65 (1993).
[CrossRef]

Nelson, L. E.

Nicholson, J. W.

Nishimura, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
[CrossRef]

Nishizawa, N.

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and non-mechanical sonogram measurement by use of electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J. Opt. Soc. Am. B 20, 2410–2417 (2003).
[CrossRef]

N. Nishizawa and T. Goto, “Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength,” Opt. Express 10, 1151–1159 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152–154 (2002).
[CrossRef]

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. App. Phys. 40, L365–L367 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

Nisoli, M.

O’Shea, P.

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Okuno, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
[CrossRef]

Onishi, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
[CrossRef]

Orgigosa-Blanch, A.

Payne, D. N.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “All-solid-state subpicosecond passively mode locked erbium-doped fiber laser,” Appl. Phys. Lett. 63, 4–6 (1993).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fiber laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

Phillips, M. W.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fiber laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

Provino, L.

Ralph, S. E.

Ranka, J. K.

Reid, D. T.

D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1589 (1999).
[CrossRef]

Richardson, D. J.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fiber laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Rivers, A.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “All-solid-state subpicosecond passively mode locked erbium-doped fiber laser,” Appl. Phys. Lett. 63, 4–6 (1993).
[CrossRef]

Russell, P. St. J.

Sartania, S.

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Sato, K.-I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Seeds, A. J.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “All-solid-state subpicosecond passively mode locked erbium-doped fiber laser,” Appl. Phys. Lett. 63, 4–6 (1993).
[CrossRef]

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Shreenath, A. P.

Spielmann, Ch.

Stentz, A. J.

Stock, M. L.

Stolen, R. H.

Svelto, O.

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Szipöcs, R.

Taira, K.

K. Taira and K. Kikuchi, “Optical sampling system at 1.55 μm for the measurement of pulse waveform and phase employing sonogram characterization,” IEEE Photon. Technol. Lett. 13, 505–507 (2001).
[CrossRef]

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Tamura, K.

Tomlinson, W. J.

Trebino, R.

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Veng, T.

Wadsworth, W. J.

Walmsley, I. A.

Washburn, B. R.

Windelaer, R. S.

X. Fang, N. Karasawa, R. Morita, R. S. Windelaer, and M. Yamashita, “Nonlinear propagation of a-few-optical-cycle pulses in a photonic crystal fiber—experimental and theoretical studies beyond the slowly varying-envelope approximation,” IEEE Photon. Technol. Lett. 15, 233–235 (2003).
[CrossRef]

Windeler, R. S.

B. R. Washburn, S. E. Ralph, and R. S. Windeler, “Ultrashort pulse propagation in air–silica microstructure fiber,” Opt. Express 10, 575–580 (2002), http://www. opticsexpress.org.
[CrossRef] [PubMed]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
[CrossRef]

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fibers: simulations and experiments,” Opt. Express 10, 1215–1221 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

Wise, F. W.

Wisk, P.

Wong, V.

Xu, L.

Yablon, A.

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

Yamashita, M.

X. Fang, N. Karasawa, R. Morita, R. S. Windelaer, and M. Yamashita, “Nonlinear propagation of a-few-optical-cycle pulses in a photonic crystal fiber—experimental and theoretical studies beyond the slowly varying-envelope approximation,” IEEE Photon. Technol. Lett. 15, 233–235 (2003).
[CrossRef]

Yan, M. F.

Yang, L.-M.

Yoshida, E.

M. Nakazawa, E. Yoshida, and Y. Kimura, “Generation of 98 fs optical pulses directly from an erbium-doped fiber ring laser at 1.57 μm,” Electron. Lett. 29, 63–65 (1993).
[CrossRef]

Yoshida, M.

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and non-mechanical sonogram measurement by use of electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J. Opt. Soc. Am. B 20, 2410–2417 (2003).
[CrossRef]

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
[CrossRef]

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

Zeek, E.

Appl. Phys. Lett.

W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds, and D. N. Payne, “All-solid-state subpicosecond passively mode locked erbium-doped fiber laser,” Appl. Phys. Lett. 63, 4–6 (1993).
[CrossRef]

Electron. Lett.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36, 2089–2090 (2000).
[CrossRef]

I. N. Duling, “Subpicosecond all-fiber erbium laser,” Electron. Lett. 27, 544–545 (1991).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fiber laser,” Electron. Lett. 27, 730–732 (1991).
[CrossRef]

M. Nakazawa, E. Yoshida, and Y. Kimura, “Generation of 98 fs optical pulses directly from an erbium-doped fiber ring laser at 1.57 μm,” Electron. Lett. 29, 63–65 (1993).
[CrossRef]

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077–1078 (2001).
[CrossRef]

IEEE J. Quantum Electron.

D. T. Reid, “Algorithm for complete and rapid retrieval of ultrashort pulse amplitude and phase from a sonogram,” IEEE J. Quantum Electron. 35, 1584–1589 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325–327 (1999).
[CrossRef]

T. Hori, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Electronically controlled high-speed wavelength-tunable femtosecond soliton pulse generation using acoustooptic modulator,” IEEE Photon. Technol. Lett. 13, 13–15 (2001).
[CrossRef]

X. Fang, N. Karasawa, R. Morita, R. S. Windelaer, and M. Yamashita, “Nonlinear propagation of a-few-optical-cycle pulses in a photonic crystal fiber—experimental and theoretical studies beyond the slowly varying-envelope approximation,” IEEE Photon. Technol. Lett. 15, 233–235 (2003).
[CrossRef]

K. Taira and K. Kikuchi, “Optical sampling system at 1.55 μm for the measurement of pulse waveform and phase employing sonogram characterization,” IEEE Photon. Technol. Lett. 13, 505–507 (2001).
[CrossRef]

J. Opt. Soc. Am. B

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
[CrossRef]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002).
[CrossRef]

A. Orgigosa-Blanch, J. C. Knight, and P. St. J. Russell, “Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 2567–2572 (2002).
[CrossRef]

V. Wong and I. A. Walmsley, “Ultrashort-pulse characterization from dynamic spectrograms by iterative phase retrieval,” J. Opt. Soc. Am. B 14, 944–949 (1997).
[CrossRef]

T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Wideband and non-mechanical sonogram measurement by use of electronically controlled, wavelength-tunable, femtosecond soliton pulse,” J. Opt. Soc. Am. B 20, 2410–2417 (2003).
[CrossRef]

Jpn. J. App. Phys.

N. Nishizawa and T. Goto, “Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,” Jpn. J. App. Phys. 40, L365–L367 (2001).
[CrossRef]

Nature

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152–154 (2002).
[CrossRef]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001).
[CrossRef]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

J. M. Harbold, F. Ö. Ilday, F. W. Wise, T. A. Birks, W. J. Wadsworth, and Z. Chen, “Long-wavelength continuum generation about the second dispersion zero of a tapered fiber,” Opt. Lett. 27, 1558–1560 (2002).
[CrossRef]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[CrossRef] [PubMed]

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28, 643–645 (2003).
[CrossRef] [PubMed]

A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926 (2002).
[CrossRef]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, “Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses,” Opt. Lett. 19, 43–45 (1994).
[CrossRef] [PubMed]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[CrossRef]

Rev. Sci. Instrum.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Other

J. Takayanagi, N. Nishizawa, H. Nagai, M. Yoshida, and T. Goto, “Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum based on fiber laser system,” IEEE Photon. Technol. Lett. (to be published).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Experimental setup for the sonogram measurement of the SC pulse: PBS, polarization beam splitter; AOM, acousto-optic modulator; AOTF, acousto-optic tunable filter; PMF, polarization-maintaining fiber; PM-HNL-DSF, polarization-maintaining highly nonlinear dispersion-shifted fiber; APD, avalanche photodiode.

Fig. 2
Fig. 2

(a) Temporal intensity and phase and (b) spectrum and phase of the fiber laser.

Fig. 3
Fig. 3

Group delay per unit length (solid curve) and dispersion parameter (dashed curve) of the PM-HNL-DSF. The spectrum of the pump pulse is also shown.

Fig. 4
Fig. 4

(a) Temporal intensity and phase of the reference soliton pulse and (b) transfer function of the AOTF used as the bandpass filter in the sonogram measurement.

Fig. 5
Fig. 5

Experimentally measured sonogram trace of the SC pulse when the 2-m-long PM-HNL-DSF is used. The peak power of the pulse launched into the fiber is 2.5 kW.

Fig. 6
Fig. 6

(a) Reconstructed spectrum and (b) temporal waveform for the SC pulse corresponding to the sonogram trace shown in Fig. 5. The group delay and the instantaneous frequency that are calculated from the retrieved spectral and temporal phases, respectively, are also presented.

Fig. 7
Fig. 7

Measured sonogram traces and spectra in the propagation evolution of the SC generation when the injected peak power of the pulse was 2.5 kW. The nonlinear distance in this condition is LNL1.9 cm.

Fig. 8
Fig. 8

Measured band-edge wavelength of the longest- and shortest-wavelength components of the SC spectra as a function of (a) the normalized propagation distance and (b) the peak power of the pulse injected into the fiber.

Fig. 9
Fig. 9

(a) Numerically calculated sonogram trace, spectrum, and temporal waveform after a propagation of 10 m. The injected peak power of the pulse is 2.5 kW. (b), (c) Calculated sonogram traces after a propagation of 10 m when we removed the longer-wavelength components from 1510 nm and the shorter-wavelength components from 1580 nm at a propagation of 40 cm, respectively.

Fig. 10
Fig. 10

(a), (c) Numerically calculated spectra and (b), (d) temporal waveform in the propagation evolution. The group delay and instantaneous frequency are also presented (dashed curve).

Fig. 11
Fig. 11

(a) Temporal waveform of the pump pulse with the asymmetrical shape and the simulated spectrum after a propagation of 40 cm. (b) Numerically calculated spectrum at a propagation distance of z=20 cm when the sech2-shape pulse was pumped and the obtained spectrum at z=40 cm when the spectrally filtered pulse propagated in the PM-HNL-DSF again.

Fig. 12
Fig. 12

(a) Band-edge wavelength of the SC spectra against the different third-order dispersion coefficient β3 as the function of the normalized propagation distance in the numerical calculation. The solid dots show the experimental result. (b) Corresponding group-delay curves of the fiber.

Fig. 13
Fig. 13

Numerically calculated spectra when (a) all nonlinear effects are included, (b) the SRS effect is removed, and (c) SS and SRS effects are removed (the SPM effect remains only in the nonlinear effects).

Fig. 14
Fig. 14

Numerically calculated spectral evolution when the sech2-shape pulses with different temporal durations were pumped. The pulse widths of the pump pulses are (a) TFWHM=20 fs, (b) TFWHM=100 fs, and (c) TFWHM=1 ps, respectively. The injected peak power of the pulses is 2.5 kW. The group delay of the SC pulse is also presented (dashed curve).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Isonogram(t, ωc)=-A˜(ω)H˜(ω-ωc)exp(-iωt)dω2,
Az+α2-k2 ik+1βkk!kATk=iγ1+iω0TA(z, T)×-R(t)|A(z, T-t)|2dt,
γ=n2ω0cAeff,
R(t)=(1-fR)δ(t)+fRhR(t),
f(t)=f0-f0n2czI(t)t,

Metrics