Abstract

We have performed a first characterization of the diffraction efficiency of gratings written in liquid-crystalline composite materials by the interference pattern of two curing beams. The grating fringes consist of polymer slices separated by films of continuous nematic phase. The dependence of the diffraction efficiency on temperature reveals a nonmonotonic behavior, with several maxima and minima. The shapes of curves are dependent on slight changes in the initial concentration of the nematic component of the mixture; the number of extrema increases with an increase of this concentration. The dependence of the diffraction efficiency on an applied external voltage also appears to be nonmonotonic: The shape depends on the sample’s temperature. Both switch-on and switch-off responses have been observed. The behavior of our gratings can be explained in the framework of the conventional Kogelnik theory for the diffraction efficiency of Bragg gratings.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Margerum, A. M. Lackner, E. Ramos, G. W. Smith, N. A. Vaz, J. L. Kohler, and C. R. Allison, “Polymer dispersed liquid crystal film devices, and method of forming the same,” U.S. patent 4, 938, 568 (July 3, 1990).
  2. J. D. Margerum, A. M. Lackner, E. Ramos, G. W. Smith, N. A. Vaz, J. L. Kohler, and C. R. Allison, “Polymer dispersed liquid crystal film devices,” U.S. patent 5, 096, 282 (March 17, 1992).
  3. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
    [CrossRef]
  4. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
    [CrossRef]
  5. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electro-optical switching characteristics of volume holograms in polymer dispersed liquid crystals,” J. Nonlinear Opt. Phys. Mater. 5, 89–98 (1996).
    [CrossRef]
  6. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
    [CrossRef] [PubMed]
  7. K. Tanaka, K. Kato, M. Date, and S. Sakai, “Optimization of holographic PDLC for reflective color display applications,” Dig. Tech. Papers SID 26, 267 (1995).
  8. K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys., Part 2 38, L277–L278 (1999).
    [CrossRef]
  9. M. De Sarkar, J. Qi, and G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002).
    [CrossRef]
  10. K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81, 4736–4738 (2002).
    [CrossRef]
  11. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
    [CrossRef]
  12. P. A. Kossyrev and G. P. Crawford, “Formation dynamics of diffraction gratings in reactive liquid crystals,” Appl. Phys. Lett. 79, 296–298 (2001).
    [CrossRef]
  13. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
    [CrossRef]
  14. D. Nwabunma, H. W. Chiu, and T. Kyu, “Theoretical investigation on dynamics of photopolymerization-induced phase separation and morphology development in nematic liquid crystal/polymer mixtures,” J. Chem. Phys. 113, 6429–6436 (2000).
    [CrossRef]
  15. T. Kyu, D. Nwabunma, and H. W. Chiu, “Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation,” Phys. Rev. E 63, 061802 (2001).
    [CrossRef]
  16. D. Nwabunma and T. Kyu, “Photopolymerization and morphology development in mixtures of eutectic nematic liquid crystal and photocurable monomer,” Polymer 42, 801–806 (2001).
    [CrossRef]
  17. A. Y. G. Fuh, C. R. Lee, C. C. Liao, K. J. Shyu, P. M. Liu, and K. Y. Lo, “Dynamic studies of two-beam coupling on the holographic gratings based on liquid crystal-polymer composite films,” Opt. Commun. 187, 193–198 (2001).
    [CrossRef]
  18. C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (H-PDLC) formation,” Mol. Cryst. Liq. Cryst. 358, 185–198 (2001).
    [CrossRef]
  19. M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
    [CrossRef]
  20. M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Electro-optical properties of polymer dispersed liquid crystal transmission gratings,” Mol. Cryst. Liq. Cryst. 375, 455–465 (2002).
    [CrossRef]
  21. D. Duca, A. V. Sukhov, and C. Umeton, “Detailed experimental investigation on recording of switchable diffraction gratings in polymer dispersed liquid crystal films by UV laser curing,” Liq. Cryst. 26, 931–937 (1999).
    [CrossRef]
  22. A. Y. G. Fuh, C. R. Lee, and Y. H. Ho, “Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films,” Appl. Opt. 41, 4585–4589 (2002).
    [CrossRef] [PubMed]
  23. C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, “Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs),” Mol. Cryst. Liq. Cryst. 359, 647–659 (2001).
    [CrossRef]
  24. D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
    [CrossRef]
  25. C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
    [CrossRef]
  26. T. Karasawa and Y. Taketomi, “Elliptically-deformed spherulitic crystallization observed in the formation of μm-sized periodic grating structures in photopolymerized prepolymer/liquid crystal material systems,” J. Appl. Phys. 88, 5071–5078 (2000).
    [CrossRef]
  27. T. Karasawa and Y. Taketomi, “Effects of material systems on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys., Part 1 36, 6388–6392 (1997).
    [CrossRef]
  28. R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Dynamics of mass transfer caused by the photoinduced spatially inhomogeneous modulation of mobility in a multicomponent medium,” J. Exp. Theor. Phys. 92, 28–36 (2001).
    [CrossRef]
  29. R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
    [CrossRef]
  30. R. Caputo, C. Umeton, A. Veltri, A. Sukhov, and N. Tabiryan, “Realization of regular layered structures made of thin liquid crystal films separated by slices of polymeric materials (POLICRYPS),” Italian patent request TO2003A000530 (July 9, 2003).
  31. R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, “Realization of a new kind of switchable holographic grating made of liquid crystal films separated by slices of polymeric material (POLICRYPS),” Opt. Lett. 29, 1261–1263 (2004).
    [CrossRef] [PubMed]
  32. R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “A new kind of photopolymerisation induced diffraction gratings in liquid crystalline composite materials,” Mol. Cryst. Liq. Cryst. 372, 263–274 (2001).
    [CrossRef]
  33. Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).
  34. B. T. Hallam, C. V. Brown, and J. R. Sambles, “Quantification of the surface- and bulk-order parameters of a homogeneously aligned nematic liquid crystal using fully leaky guided modes,” J. Appl. Phys. 86, 6682–6689 (1999).
    [CrossRef]
  35. P. J. de Gennes, Physics of Liquid Crystals (Oxford U. Press, Oxford, 1974).
  36. G. Abbate, A. d’Alessandro, and C. Umeton, “New composite liquid-crystalline materials for opto-electronic devices,” Italian project PRIN 2003 #2003024923.

2004 (1)

2002 (5)

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
[CrossRef]

M. De Sarkar, J. Qi, and G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002).
[CrossRef]

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81, 4736–4738 (2002).
[CrossRef]

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Electro-optical properties of polymer dispersed liquid crystal transmission gratings,” Mol. Cryst. Liq. Cryst. 375, 455–465 (2002).
[CrossRef]

A. Y. G. Fuh, C. R. Lee, and Y. H. Ho, “Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films,” Appl. Opt. 41, 4585–4589 (2002).
[CrossRef] [PubMed]

2001 (12)

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, “Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs),” Mol. Cryst. Liq. Cryst. 359, 647–659 (2001).
[CrossRef]

T. Kyu, D. Nwabunma, and H. W. Chiu, “Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation,” Phys. Rev. E 63, 061802 (2001).
[CrossRef]

D. Nwabunma and T. Kyu, “Photopolymerization and morphology development in mixtures of eutectic nematic liquid crystal and photocurable monomer,” Polymer 42, 801–806 (2001).
[CrossRef]

A. Y. G. Fuh, C. R. Lee, C. C. Liao, K. J. Shyu, P. M. Liu, and K. Y. Lo, “Dynamic studies of two-beam coupling on the holographic gratings based on liquid crystal-polymer composite films,” Opt. Commun. 187, 193–198 (2001).
[CrossRef]

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (H-PDLC) formation,” Mol. Cryst. Liq. Cryst. 358, 185–198 (2001).
[CrossRef]

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

P. A. Kossyrev and G. P. Crawford, “Formation dynamics of diffraction gratings in reactive liquid crystals,” Appl. Phys. Lett. 79, 296–298 (2001).
[CrossRef]

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
[CrossRef]

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “A new kind of photopolymerisation induced diffraction gratings in liquid crystalline composite materials,” Mol. Cryst. Liq. Cryst. 372, 263–274 (2001).
[CrossRef]

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Dynamics of mass transfer caused by the photoinduced spatially inhomogeneous modulation of mobility in a multicomponent medium,” J. Exp. Theor. Phys. 92, 28–36 (2001).
[CrossRef]

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

2000 (3)

T. Karasawa and Y. Taketomi, “Elliptically-deformed spherulitic crystallization observed in the formation of μm-sized periodic grating structures in photopolymerized prepolymer/liquid crystal material systems,” J. Appl. Phys. 88, 5071–5078 (2000).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

D. Nwabunma, H. W. Chiu, and T. Kyu, “Theoretical investigation on dynamics of photopolymerization-induced phase separation and morphology development in nematic liquid crystal/polymer mixtures,” J. Chem. Phys. 113, 6429–6436 (2000).
[CrossRef]

1999 (3)

D. Duca, A. V. Sukhov, and C. Umeton, “Detailed experimental investigation on recording of switchable diffraction gratings in polymer dispersed liquid crystal films by UV laser curing,” Liq. Cryst. 26, 931–937 (1999).
[CrossRef]

B. T. Hallam, C. V. Brown, and J. R. Sambles, “Quantification of the surface- and bulk-order parameters of a homogeneously aligned nematic liquid crystal using fully leaky guided modes,” J. Appl. Phys. 86, 6682–6689 (1999).
[CrossRef]

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys., Part 2 38, L277–L278 (1999).
[CrossRef]

1997 (1)

T. Karasawa and Y. Taketomi, “Effects of material systems on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys., Part 1 36, 6388–6392 (1997).
[CrossRef]

1996 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electro-optical switching characteristics of volume holograms in polymer dispersed liquid crystals,” J. Nonlinear Opt. Phys. Mater. 5, 89–98 (1996).
[CrossRef]

1995 (2)

1994 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

1993 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electro-optical switching characteristics of volume holograms in polymer dispersed liquid crystals,” J. Nonlinear Opt. Phys. Mater. 5, 89–98 (1996).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
[CrossRef] [PubMed]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Bowley, C. C.

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (H-PDLC) formation,” Mol. Cryst. Liq. Cryst. 358, 185–198 (2001).
[CrossRef]

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, “Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs),” Mol. Cryst. Liq. Cryst. 359, 647–659 (2001).
[CrossRef]

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

Brown, C. V.

B. T. Hallam, C. V. Brown, and J. R. Sambles, “Quantification of the surface- and bulk-order parameters of a homogeneously aligned nematic liquid crystal using fully leaky guided modes,” J. Appl. Phys. 86, 6682–6689 (1999).
[CrossRef]

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electro-optical switching characteristics of volume holograms in polymer dispersed liquid crystals,” J. Nonlinear Opt. Phys. Mater. 5, 89–98 (1996).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
[CrossRef] [PubMed]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Caputo, R.

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, “Realization of a new kind of switchable holographic grating made of liquid crystal films separated by slices of polymeric material (POLICRYPS),” Opt. Lett. 29, 1261–1263 (2004).
[CrossRef] [PubMed]

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Dynamics of mass transfer caused by the photoinduced spatially inhomogeneous modulation of mobility in a multicomponent medium,” J. Exp. Theor. Phys. 92, 28–36 (2001).
[CrossRef]

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “A new kind of photopolymerisation induced diffraction gratings in liquid crystalline composite materials,” Mol. Cryst. Liq. Cryst. 372, 263–274 (2001).
[CrossRef]

Chiu, H. W.

T. Kyu, D. Nwabunma, and H. W. Chiu, “Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation,” Phys. Rev. E 63, 061802 (2001).
[CrossRef]

D. Nwabunma, H. W. Chiu, and T. Kyu, “Theoretical investigation on dynamics of photopolymerization-induced phase separation and morphology development in nematic liquid crystal/polymer mixtures,” J. Chem. Phys. 113, 6429–6436 (2000).
[CrossRef]

Colegrove, J.

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, “Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs),” Mol. Cryst. Liq. Cryst. 359, 647–659 (2001).
[CrossRef]

Crawford, G. P.

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Electro-optical properties of polymer dispersed liquid crystal transmission gratings,” Mol. Cryst. Liq. Cryst. 375, 455–465 (2002).
[CrossRef]

M. De Sarkar, J. Qi, and G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002).
[CrossRef]

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81, 4736–4738 (2002).
[CrossRef]

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (H-PDLC) formation,” Mol. Cryst. Liq. Cryst. 358, 185–198 (2001).
[CrossRef]

P. A. Kossyrev and G. P. Crawford, “Formation dynamics of diffraction gratings in reactive liquid crystals,” Appl. Phys. Lett. 79, 296–298 (2001).
[CrossRef]

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, “Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs),” Mol. Cryst. Liq. Cryst. 359, 647–659 (2001).
[CrossRef]

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

Danworaphong, S.

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, “Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs),” Mol. Cryst. Liq. Cryst. 359, 647–659 (2001).
[CrossRef]

Date, M.

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys., Part 2 38, L277–L278 (1999).
[CrossRef]

K. Tanaka, K. Kato, M. Date, and S. Sakai, “Optimization of holographic PDLC for reflective color display applications,” Dig. Tech. Papers SID 26, 267 (1995).

De Sarkar, M.

M. De Sarkar, J. Qi, and G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002).
[CrossRef]

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81, 4736–4738 (2002).
[CrossRef]

De Sio, L.

Duca, D.

D. Duca, A. V. Sukhov, and C. Umeton, “Detailed experimental investigation on recording of switchable diffraction gratings in polymer dispersed liquid crystal films by UV laser curing,” Liq. Cryst. 26, 931–937 (1999).
[CrossRef]

Eakin, J. N.

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81, 4736–4738 (2002).
[CrossRef]

Faris, S.

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
[CrossRef]

Fiske, T.

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, “Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs),” Mol. Cryst. Liq. Cryst. 359, 647–659 (2001).
[CrossRef]

Fontecchio, A. K.

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Electro-optical properties of polymer dispersed liquid crystal transmission gratings,” Mol. Cryst. Liq. Cryst. 375, 455–465 (2002).
[CrossRef]

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

Fuh, A. Y. G.

A. Y. G. Fuh, C. R. Lee, and Y. H. Ho, “Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films,” Appl. Opt. 41, 4585–4589 (2002).
[CrossRef] [PubMed]

A. Y. G. Fuh, C. R. Lee, C. C. Liao, K. J. Shyu, P. M. Liu, and K. Y. Lo, “Dynamic studies of two-beam coupling on the holographic gratings based on liquid crystal-polymer composite films,” Opt. Commun. 187, 193–198 (2001).
[CrossRef]

Hallam, B. T.

B. T. Hallam, C. V. Brown, and J. R. Sambles, “Quantification of the surface- and bulk-order parameters of a homogeneously aligned nematic liquid crystal using fully leaky guided modes,” J. Appl. Phys. 86, 6682–6689 (1999).
[CrossRef]

Ho, Y. H.

Jazbinsek, M.

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Electro-optical properties of polymer dispersed liquid crystal transmission gratings,” Mol. Cryst. Liq. Cryst. 375, 455–465 (2002).
[CrossRef]

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

Karapinar, R.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
[CrossRef]

Karasawa, T.

T. Karasawa and Y. Taketomi, “Elliptically-deformed spherulitic crystallization observed in the formation of μm-sized periodic grating structures in photopolymerized prepolymer/liquid crystal material systems,” J. Appl. Phys. 88, 5071–5078 (2000).
[CrossRef]

T. Karasawa and Y. Taketomi, “Effects of material systems on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys., Part 1 36, 6388–6392 (1997).
[CrossRef]

Kato, K.

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys., Part 2 38, L277–L278 (1999).
[CrossRef]

K. Tanaka, K. Kato, M. Date, and S. Sakai, “Optimization of holographic PDLC for reflective color display applications,” Dig. Tech. Papers SID 26, 267 (1995).

Kelly, J.

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, “Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs),” Mol. Cryst. Liq. Cryst. 359, 647–659 (2001).
[CrossRef]

Kossyrev, P.

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, “Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs),” Mol. Cryst. Liq. Cryst. 359, 647–659 (2001).
[CrossRef]

Kossyrev, P. A.

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
[CrossRef]

P. A. Kossyrev and G. P. Crawford, “Formation dynamics of diffraction gratings in reactive liquid crystals,” Appl. Phys. Lett. 79, 296–298 (2001).
[CrossRef]

Kyu, T.

D. Nwabunma and T. Kyu, “Photopolymerization and morphology development in mixtures of eutectic nematic liquid crystal and photocurable monomer,” Polymer 42, 801–806 (2001).
[CrossRef]

T. Kyu, D. Nwabunma, and H. W. Chiu, “Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation,” Phys. Rev. E 63, 061802 (2001).
[CrossRef]

D. Nwabunma, H. W. Chiu, and T. Kyu, “Theoretical investigation on dynamics of photopolymerization-induced phase separation and morphology development in nematic liquid crystal/polymer mixtures,” J. Chem. Phys. 113, 6429–6436 (2000).
[CrossRef]

Lawandy, N. M.

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (H-PDLC) formation,” Mol. Cryst. Liq. Cryst. 358, 185–198 (2001).
[CrossRef]

Lee, C. R.

A. Y. G. Fuh, C. R. Lee, and Y. H. Ho, “Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films,” Appl. Opt. 41, 4585–4589 (2002).
[CrossRef] [PubMed]

A. Y. G. Fuh, C. R. Lee, C. C. Liao, K. J. Shyu, P. M. Liu, and K. Y. Lo, “Dynamic studies of two-beam coupling on the holographic gratings based on liquid crystal-polymer composite films,” Opt. Commun. 187, 193–198 (2001).
[CrossRef]

Liao, C. C.

A. Y. G. Fuh, C. R. Lee, C. C. Liao, K. J. Shyu, P. M. Liu, and K. Y. Lo, “Dynamic studies of two-beam coupling on the holographic gratings based on liquid crystal-polymer composite films,” Opt. Commun. 187, 193–198 (2001).
[CrossRef]

Liu, P. M.

A. Y. G. Fuh, C. R. Lee, C. C. Liao, K. J. Shyu, P. M. Liu, and K. Y. Lo, “Dynamic studies of two-beam coupling on the holographic gratings based on liquid crystal-polymer composite films,” Opt. Commun. 187, 193–198 (2001).
[CrossRef]

Lo, K. Y.

A. Y. G. Fuh, C. R. Lee, C. C. Liao, K. J. Shyu, P. M. Liu, and K. Y. Lo, “Dynamic studies of two-beam coupling on the holographic gratings based on liquid crystal-polymer composite films,” Opt. Commun. 187, 193–198 (2001).
[CrossRef]

Lucchetta, D. E.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
[CrossRef]

Manni, A.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
[CrossRef]

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electro-optical switching characteristics of volume holograms in polymer dispersed liquid crystals,” J. Nonlinear Opt. Phys. Mater. 5, 89–98 (1996).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
[CrossRef] [PubMed]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Nwabunma, D.

T. Kyu, D. Nwabunma, and H. W. Chiu, “Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation,” Phys. Rev. E 63, 061802 (2001).
[CrossRef]

D. Nwabunma and T. Kyu, “Photopolymerization and morphology development in mixtures of eutectic nematic liquid crystal and photocurable monomer,” Polymer 42, 801–806 (2001).
[CrossRef]

D. Nwabunma, H. W. Chiu, and T. Kyu, “Theoretical investigation on dynamics of photopolymerization-induced phase separation and morphology development in nematic liquid crystal/polymer mixtures,” J. Chem. Phys. 113, 6429–6436 (2000).
[CrossRef]

Olenik, I. D.

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Electro-optical properties of polymer dispersed liquid crystal transmission gratings,” Mol. Cryst. Liq. Cryst. 375, 455–465 (2002).
[CrossRef]

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

Qi, J.

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81, 4736–4738 (2002).
[CrossRef]

M. De Sarkar, J. Qi, and G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002).
[CrossRef]

Sakai, S.

K. Tanaka, K. Kato, M. Date, and S. Sakai, “Optimization of holographic PDLC for reflective color display applications,” Dig. Tech. Papers SID 26, 267 (1995).

Sambles, J. R.

B. T. Hallam, C. V. Brown, and J. R. Sambles, “Quantification of the surface- and bulk-order parameters of a homogeneously aligned nematic liquid crystal using fully leaky guided modes,” J. Appl. Phys. 86, 6682–6689 (1999).
[CrossRef]

Shyu, K. J.

A. Y. G. Fuh, C. R. Lee, C. C. Liao, K. J. Shyu, P. M. Liu, and K. Y. Lo, “Dynamic studies of two-beam coupling on the holographic gratings based on liquid crystal-polymer composite films,” Opt. Commun. 187, 193–198 (2001).
[CrossRef]

Simoni, F.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
[CrossRef]

Smuk, A.

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (H-PDLC) formation,” Mol. Cryst. Liq. Cryst. 358, 185–198 (2001).
[CrossRef]

Sukhov, A. V.

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, “Realization of a new kind of switchable holographic grating made of liquid crystal films separated by slices of polymeric material (POLICRYPS),” Opt. Lett. 29, 1261–1263 (2004).
[CrossRef] [PubMed]

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Dynamics of mass transfer caused by the photoinduced spatially inhomogeneous modulation of mobility in a multicomponent medium,” J. Exp. Theor. Phys. 92, 28–36 (2001).
[CrossRef]

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “A new kind of photopolymerisation induced diffraction gratings in liquid crystalline composite materials,” Mol. Cryst. Liq. Cryst. 372, 263–274 (2001).
[CrossRef]

D. Duca, A. V. Sukhov, and C. Umeton, “Detailed experimental investigation on recording of switchable diffraction gratings in polymer dispersed liquid crystal films by UV laser curing,” Liq. Cryst. 26, 931–937 (1999).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electro-optical switching characteristics of volume holograms in polymer dispersed liquid crystals,” J. Nonlinear Opt. Phys. Mater. 5, 89–98 (1996).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
[CrossRef] [PubMed]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Tabiryan, N. V.

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “A new kind of photopolymerisation induced diffraction gratings in liquid crystalline composite materials,” Mol. Cryst. Liq. Cryst. 372, 263–274 (2001).
[CrossRef]

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

Taketomi, Y.

T. Karasawa and Y. Taketomi, “Elliptically-deformed spherulitic crystallization observed in the formation of μm-sized periodic grating structures in photopolymerized prepolymer/liquid crystal material systems,” J. Appl. Phys. 88, 5071–5078 (2000).
[CrossRef]

T. Karasawa and Y. Taketomi, “Effects of material systems on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys., Part 1 36, 6388–6392 (1997).
[CrossRef]

Tanaka, K.

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys., Part 2 38, L277–L278 (1999).
[CrossRef]

K. Tanaka, K. Kato, M. Date, and S. Sakai, “Optimization of holographic PDLC for reflective color display applications,” Dig. Tech. Papers SID 26, 267 (1995).

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electro-optical switching characteristics of volume holograms in polymer dispersed liquid crystals,” J. Nonlinear Opt. Phys. Mater. 5, 89–98 (1996).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
[CrossRef] [PubMed]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Umeton, C.

R. Caputo, L. De Sio, A. V. Sukhov, A. Veltri, and C. Umeton, “Realization of a new kind of switchable holographic grating made of liquid crystal films separated by slices of polymeric material (POLICRYPS),” Opt. Lett. 29, 1261–1263 (2004).
[CrossRef] [PubMed]

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “A new kind of photopolymerisation induced diffraction gratings in liquid crystalline composite materials,” Mol. Cryst. Liq. Cryst. 372, 263–274 (2001).
[CrossRef]

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Dynamics of mass transfer caused by the photoinduced spatially inhomogeneous modulation of mobility in a multicomponent medium,” J. Exp. Theor. Phys. 92, 28–36 (2001).
[CrossRef]

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

D. Duca, A. V. Sukhov, and C. Umeton, “Detailed experimental investigation on recording of switchable diffraction gratings in polymer dispersed liquid crystal films by UV laser curing,” Liq. Cryst. 26, 931–937 (1999).
[CrossRef]

Ushakov, R. F.

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Dynamics of mass transfer caused by the photoinduced spatially inhomogeneous modulation of mobility in a multicomponent medium,” J. Exp. Theor. Phys. 92, 28–36 (2001).
[CrossRef]

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “A new kind of photopolymerisation induced diffraction gratings in liquid crystalline composite materials,” Mol. Cryst. Liq. Cryst. 372, 263–274 (2001).
[CrossRef]

Vardanyan, K. K.

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81, 4736–4738 (2002).
[CrossRef]

Veltri, A.

Yuan, H. J.

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, “Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs),” Mol. Cryst. Liq. Cryst. 359, 647–659 (2001).
[CrossRef]

Zgonik, M.

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Electro-optical properties of polymer dispersed liquid crystal transmission gratings,” Mol. Cryst. Liq. Cryst. 375, 455–465 (2002).
[CrossRef]

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

C. C. Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris, “Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 9–11 (2001).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid-crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81, 4736–4738 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

P. A. Kossyrev and G. P. Crawford, “Formation dynamics of diffraction gratings in reactive liquid crystals,” Appl. Phys. Lett. 79, 296–298 (2001).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

Chem. Mater. (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Chem. Phys. (1)

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “Mass transfer processes induced by inhomogeneous photo-polymerisation in a multicomponent medium,” Chem. Phys. 271, 323–335 (2001).
[CrossRef]

Dig. Tech. Papers SID (1)

K. Tanaka, K. Kato, M. Date, and S. Sakai, “Optimization of holographic PDLC for reflective color display applications,” Dig. Tech. Papers SID 26, 267 (1995).

J. Appl. Phys. (4)

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90, 3831–3837 (2001).
[CrossRef]

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
[CrossRef]

T. Karasawa and Y. Taketomi, “Elliptically-deformed spherulitic crystallization observed in the formation of μm-sized periodic grating structures in photopolymerized prepolymer/liquid crystal material systems,” J. Appl. Phys. 88, 5071–5078 (2000).
[CrossRef]

B. T. Hallam, C. V. Brown, and J. R. Sambles, “Quantification of the surface- and bulk-order parameters of a homogeneously aligned nematic liquid crystal using fully leaky guided modes,” J. Appl. Phys. 86, 6682–6689 (1999).
[CrossRef]

J. Chem. Phys. (1)

D. Nwabunma, H. W. Chiu, and T. Kyu, “Theoretical investigation on dynamics of photopolymerization-induced phase separation and morphology development in nematic liquid crystal/polymer mixtures,” J. Chem. Phys. 113, 6429–6436 (2000).
[CrossRef]

J. Exp. Theor. Phys. (1)

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Dynamics of mass transfer caused by the photoinduced spatially inhomogeneous modulation of mobility in a multicomponent medium,” J. Exp. Theor. Phys. 92, 28–36 (2001).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electro-optical switching characteristics of volume holograms in polymer dispersed liquid crystals,” J. Nonlinear Opt. Phys. Mater. 5, 89–98 (1996).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

T. Karasawa and Y. Taketomi, “Effects of material systems on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys., Part 1 36, 6388–6392 (1997).
[CrossRef]

Jpn. J. Appl. Phys., Part 2 (1)

K. Tanaka, K. Kato, and M. Date, “Fabrication of holographic polymer dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys., Part 2 38, L277–L278 (1999).
[CrossRef]

Liq. Cryst. (1)

D. Duca, A. V. Sukhov, and C. Umeton, “Detailed experimental investigation on recording of switchable diffraction gratings in polymer dispersed liquid crystal films by UV laser curing,” Liq. Cryst. 26, 931–937 (1999).
[CrossRef]

Mol. Cryst. Liq. Cryst. (4)

C. C. Bowley, A. Smuk, G. P. Crawford, and N. M. Lawandy, “Two wave mixing in holographic polymer dispersed liquid crystal (H-PDLC) formation,” Mol. Cryst. Liq. Cryst. 358, 185–198 (2001).
[CrossRef]

M. Jazbinsek, I. D. Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Electro-optical properties of polymer dispersed liquid crystal transmission gratings,” Mol. Cryst. Liq. Cryst. 375, 455–465 (2002).
[CrossRef]

C. C. Bowley, P. Kossyrev, S. Danworaphong, J. Colegrove, J. Kelly, T. Fiske, H. J. Yuan, and G. P. Crawford, “Improving the voltage response of holographically formed polymer dispersed liquid crystals (H-PDLCs),” Mol. Cryst. Liq. Cryst. 359, 647–659 (2001).
[CrossRef]

R. Caputo, A. V. Sukhov, N. V. Tabiryan, C. Umeton, and R. F. Ushakov, “A new kind of photopolymerisation induced diffraction gratings in liquid crystalline composite materials,” Mol. Cryst. Liq. Cryst. 372, 263–274 (2001).
[CrossRef]

Opt. Commun. (1)

A. Y. G. Fuh, C. R. Lee, C. C. Liao, K. J. Shyu, P. M. Liu, and K. Y. Lo, “Dynamic studies of two-beam coupling on the holographic gratings based on liquid crystal-polymer composite films,” Opt. Commun. 187, 193–198 (2001).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. E (1)

T. Kyu, D. Nwabunma, and H. W. Chiu, “Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation,” Phys. Rev. E 63, 061802 (2001).
[CrossRef]

Polymer (2)

D. Nwabunma and T. Kyu, “Photopolymerization and morphology development in mixtures of eutectic nematic liquid crystal and photocurable monomer,” Polymer 42, 801–806 (2001).
[CrossRef]

M. De Sarkar, J. Qi, and G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002).
[CrossRef]

Other (6)

J. D. Margerum, A. M. Lackner, E. Ramos, G. W. Smith, N. A. Vaz, J. L. Kohler, and C. R. Allison, “Polymer dispersed liquid crystal film devices, and method of forming the same,” U.S. patent 4, 938, 568 (July 3, 1990).

J. D. Margerum, A. M. Lackner, E. Ramos, G. W. Smith, N. A. Vaz, J. L. Kohler, and C. R. Allison, “Polymer dispersed liquid crystal film devices,” U.S. patent 5, 096, 282 (March 17, 1992).

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).

P. J. de Gennes, Physics of Liquid Crystals (Oxford U. Press, Oxford, 1974).

G. Abbate, A. d’Alessandro, and C. Umeton, “New composite liquid-crystalline materials for opto-electronic devices,” Italian project PRIN 2003 #2003024923.

R. Caputo, C. Umeton, A. Veltri, A. Sukhov, and N. Tabiryan, “Realization of regular layered structures made of thin liquid crystal films separated by slices of polymeric materials (POLICRYPS),” Italian patent request TO2003A000530 (July 9, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the experimental setup: BE, beam expander; BS, beam splitter; M’s, mirrors; PPs, half-wave plates with polarizers; MOD, bipolar square-wave supplier; A, aperture; FD, first diffracted beam photodetector; TR, transmitted beam photodetector; θ, angle of interfering beams.

Fig. 2
Fig. 2

Typical morphology of POLICRYPS grating: (a) Fringe spacing, Λ=6.3 µm. Initial nematic concentration, CN=35.0%; image taken by the POM; fringes aligned at 45° with respect to polarization of light. (b) Fringe spacing, Λ=1.3 µm. Initial nematic concentration, CN=26.0%; surface image taken by SEM. Differences in relative percentage of the grating spacing occupied by LC between POM and SEM pictures are probably due to different physical mechanisms used to obtain the picture: For the POM some diffraction effect could enlarge the LC film, whereas the SEM picture shows only a surface morphology in which surface tension effects could have reduced the thickness of the LC film.

Fig. 3
Fig. 3

Schematic of the diffraction geometry: EPS, EDS, s-polarized transmitted and first diffracted probe optical fields and EPP, EDP, p-polarized transmitted and first diffracted probe optical fields, respectively; kP,D, probe and diffracted wave vectors; β, refraction angle; θ, alignment pretilt angle; n, LC director; n0, direction orientation perpendicular to polymer slices; L, sample thickness; D, thickness of the polymer coatings on ITO slabs.

Fig. 4
Fig. 4

Illustration of the diffraction geometry: k1,2, wave vector of the UV curing beam; q, grating wave vector; kR,d, probe and first-diffraction-order wave vectors; k, second-diffraction-order wave vector; Δ, second-order wave mismatch; L, sample thickness; x, z Cartesian axes.

Fig. 5
Fig. 5

Dependence of diffraction efficiency on temperature for both s and p-probe polarizations. CN=15.0%; L=20 µm. An error bar would be of the order of the size of a circle.

Fig. 6
Fig. 6

Dependence of diffraction efficiency on temperature for both probe polarizations. CN=20.1%; L=9.7 µm. The initial directions of diffraction-efficiency variation under an applied switching voltage are indicated by arrows. An error bar would be of the order of the size of a circle.

Fig. 7
Fig. 7

Dependence of diffraction efficiency on temperature for both probe polarizations. CN=26.0%; L=11.4 µm. The initial directions of diffraction-efficiency variation under an applied switching voltage are indicated by arrows. An error bar would be of the order of the size of a circle.

Fig. 8
Fig. 8

Field dependence of the p-probe diffraction efficiency for several temperature values. CN=20.1%; L=9.7 µm. An error bar would be of the order of the size of a circle.

Fig. 9
Fig. 9

Field dependence of the p-probe diffraction efficiency for several temperature values. CN=26.0%; L=11.4 µm. An error bar would be of the order of the size of a circle.

Fig. 10
Fig. 10

Dependence on temperature of the dielectric constant of the pure components of the pre-syrup: (a) for the E7 NLC; (b) for the E7 NLC; (c) for the polymer.

Fig. 11
Fig. 11

Dependence of the Fréedericksz transition threshold voltage on temperature for bend deformation in the bulk of an E7 NLC sample.

Tables (1)

Tables Icon

Table 1 Parameters of the Sample Cells

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E0z=ia-1E1,E1z=ia1E0.
η=sin2π(1-1)1/2L(0)1/2λ cos β=sin2[φ(L, λ, T)],
ETH=(1/d)UF(T),
UF(T)=2ππK3(T)Δ(T)1/2.
τoff=γ(T)K3(T)dπ2,

Metrics