Abstract

We have generated multiple micrometer-sized optical dipole traps for neutral atoms using holographic techniques with a programmable liquid-crystal spatial light modulator. The setup allows storing of a single atom per trap and addressing and manipulation of individual trapping sites.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschr. Phys. 48, 771–783 (2000).
    [CrossRef]
  2. I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier, “Operation of a quantum phase gate using neutral atoms in microscopic dipole traps,” Phys. Rev. A 65, 052301 (2002).
    [CrossRef]
  3. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côtè, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2011 (2000).
    [CrossRef] [PubMed]
  4. G. K. Brennen, I. H. Deutsch, and P. S. Jessen, “Entangling dipole–dipole interactions for quantum logic with neutral atoms,” Phys. Rev. A 61, 062309 (2000).
    [CrossRef]
  5. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060–1063 (1999).
    [CrossRef]
  6. T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
    [CrossRef]
  7. D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
    [CrossRef]
  8. J. Mompart, K. Eckert, W. Ertmer, G. Birkl, and M. Lewenstein, “Quantum computing with spatially delocalized qubits,” Phys. Rev. Lett. 90, 147901 (2003).
    [CrossRef] [PubMed]
  9. K. Eckert, J. Mompart, X. X. Yi, J. Schliemann, D. Bruss, G. Birkl, and M. Lewenstein, “Quantum computing in optical microtraps based on the motional states of neutral atoms,” Phys. Rev. A 66, 042317 (2002).
    [CrossRef]
  10. O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature (London) 425, 937–940 (2003).
    [CrossRef]
  11. N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 23005 (2002).
    [CrossRef]
  12. G. Reymond, N. Schlosser, I. Protsenko, and P. Grangier, “Single-atom manipulations in a microscopic dipole trap,” Philos. Trans. R. Soc. London, Ser. A 361, 1527–1536 (2003).
    [CrossRef]
  13. N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1026 (2001).
    [CrossRef]
  14. D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
    [CrossRef] [PubMed]
  15. S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
    [CrossRef] [PubMed]
  16. R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
    [CrossRef] [PubMed]
  17. D. G. Grier, “A revolution in optical manipulation,” Nature (London) 424, 810–816 (2003).
    [CrossRef]
  18. V. A. Soifer, V. V. Kotlyar, and L. L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, London, 1997).
  19. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
    [CrossRef]
  20. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [CrossRef]
  21. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express 11, 3562–3567 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  22. W. J. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, “High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay,” Opt. Express 11, 2053–2059 (2003), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  23. J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature (London) 404, 579–580 (2000).
    [CrossRef]

2003 (7)

J. Mompart, K. Eckert, W. Ertmer, G. Birkl, and M. Lewenstein, “Quantum computing with spatially delocalized qubits,” Phys. Rev. Lett. 90, 147901 (2003).
[CrossRef] [PubMed]

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature (London) 425, 937–940 (2003).
[CrossRef]

G. Reymond, N. Schlosser, I. Protsenko, and P. Grangier, “Single-atom manipulations in a microscopic dipole trap,” Philos. Trans. R. Soc. London, Ser. A 361, 1527–1536 (2003).
[CrossRef]

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature (London) 424, 810–816 (2003).
[CrossRef]

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express 11, 3562–3567 (2003), http://www.opticsexpress.org.
[CrossRef] [PubMed]

W. J. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, “High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay,” Opt. Express 11, 2053–2059 (2003), http://www.opticsexpress.org.
[CrossRef] [PubMed]

2002 (5)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 23005 (2002).
[CrossRef]

K. Eckert, J. Mompart, X. X. Yi, J. Schliemann, D. Bruss, G. Birkl, and M. Lewenstein, “Quantum computing in optical microtraps based on the motional states of neutral atoms,” Phys. Rev. A 66, 042317 (2002).
[CrossRef]

I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier, “Operation of a quantum phase gate using neutral atoms in microscopic dipole traps,” Phys. Rev. A 65, 052301 (2002).
[CrossRef]

2001 (2)

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1026 (2001).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

2000 (6)

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côtè, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2011 (2000).
[CrossRef] [PubMed]

G. K. Brennen, I. H. Deutsch, and P. S. Jessen, “Entangling dipole–dipole interactions for quantum logic with neutral atoms,” Phys. Rev. A 61, 062309 (2000).
[CrossRef]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[CrossRef]

D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschr. Phys. 48, 771–783 (2000).
[CrossRef]

J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature (London) 404, 579–580 (2000).
[CrossRef]

1999 (2)

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[CrossRef]

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060–1063 (1999).
[CrossRef]

Alt, W.

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
[CrossRef] [PubMed]

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

Birch, M.

Birkl, G.

J. Mompart, K. Eckert, W. Ertmer, G. Birkl, and M. Lewenstein, “Quantum computing with spatially delocalized qubits,” Phys. Rev. Lett. 90, 147901 (2003).
[CrossRef] [PubMed]

K. Eckert, J. Mompart, X. X. Yi, J. Schliemann, D. Bruss, G. Birkl, and M. Lewenstein, “Quantum computing in optical microtraps based on the motional states of neutral atoms,” Phys. Rev. A 66, 042317 (2002).
[CrossRef]

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Bloch, I.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature (London) 425, 937–940 (2003).
[CrossRef]

Brennen, G. K.

G. K. Brennen, I. H. Deutsch, and P. S. Jessen, “Entangling dipole–dipole interactions for quantum logic with neutral atoms,” Phys. Rev. A 61, 062309 (2000).
[CrossRef]

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060–1063 (1999).
[CrossRef]

Briegel, H.-J.

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[CrossRef]

Bruss, D.

K. Eckert, J. Mompart, X. X. Yi, J. Schliemann, D. Bruss, G. Birkl, and M. Lewenstein, “Quantum computing in optical microtraps based on the motional states of neutral atoms,” Phys. Rev. A 66, 042317 (2002).
[CrossRef]

Buchkremer, F. B. J.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Calarco, T.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[CrossRef]

Caves, C. M.

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060–1063 (1999).
[CrossRef]

Cirac, J. I.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côtè, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2011 (2000).
[CrossRef] [PubMed]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[CrossRef]

J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature (London) 404, 579–580 (2000).
[CrossRef]

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[CrossRef]

Côtè, R.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côtè, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2011 (2000).
[CrossRef] [PubMed]

Crain, J.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Deutsch, I. H.

G. K. Brennen, I. H. Deutsch, and P. S. Jessen, “Entangling dipole–dipole interactions for quantum logic with neutral atoms,” Phys. Rev. A 61, 062309 (2000).
[CrossRef]

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060–1063 (1999).
[CrossRef]

Dholakia, K.

DiVincenzo, D. P.

D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschr. Phys. 48, 771–783 (2000).
[CrossRef]

Dotsenko, I.

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
[CrossRef] [PubMed]

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Dumke, R.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Eckert, K.

J. Mompart, K. Eckert, W. Ertmer, G. Birkl, and M. Lewenstein, “Quantum computing with spatially delocalized qubits,” Phys. Rev. Lett. 90, 147901 (2003).
[CrossRef] [PubMed]

K. Eckert, J. Mompart, X. X. Yi, J. Schliemann, D. Bruss, G. Birkl, and M. Lewenstein, “Quantum computing in optical microtraps based on the motional states of neutral atoms,” Phys. Rev. A 66, 042317 (2002).
[CrossRef]

Ertmer, W.

J. Mompart, K. Eckert, W. Ertmer, G. Birkl, and M. Lewenstein, “Quantum computing with spatially delocalized qubits,” Phys. Rev. Lett. 90, 147901 (2003).
[CrossRef] [PubMed]

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Frese, D.

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

Gardiner, C. W.

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[CrossRef]

Gomer, V.

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
[CrossRef] [PubMed]

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

Grangier, P.

G. Reymond, N. Schlosser, I. Protsenko, and P. Grangier, “Single-atom manipulations in a microscopic dipole trap,” Philos. Trans. R. Soc. London, Ser. A 361, 1527–1536 (2003).
[CrossRef]

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 23005 (2002).
[CrossRef]

I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier, “Operation of a quantum phase gate using neutral atoms in microscopic dipole traps,” Phys. Rev. A 65, 052301 (2002).
[CrossRef]

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1026 (2001).
[CrossRef]

Greiner, M.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature (London) 425, 937–940 (2003).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature (London) 424, 810–816 (2003).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Hänsch, T. W.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature (London) 425, 937–940 (2003).
[CrossRef]

Heggarty, K.

Hinds, E. A.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[CrossRef]

Hossack, W. J.

Jaksch, D.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[CrossRef]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côtè, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2011 (2000).
[CrossRef] [PubMed]

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[CrossRef]

Jessen, P. S.

G. K. Brennen, I. H. Deutsch, and P. S. Jessen, “Entangling dipole–dipole interactions for quantum logic with neutral atoms,” Phys. Rev. A 61, 062309 (2000).
[CrossRef]

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060–1063 (1999).
[CrossRef]

Khudaverdyan, M.

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
[CrossRef] [PubMed]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Kuhr, S.

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
[CrossRef] [PubMed]

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

Lewenstein, M.

J. Mompart, K. Eckert, W. Ertmer, G. Birkl, and M. Lewenstein, “Quantum computing with spatially delocalized qubits,” Phys. Rev. Lett. 90, 147901 (2003).
[CrossRef] [PubMed]

K. Eckert, J. Mompart, X. X. Yi, J. Schliemann, D. Bruss, G. Birkl, and M. Lewenstein, “Quantum computing in optical microtraps based on the motional states of neutral atoms,” Phys. Rev. A 66, 042317 (2002).
[CrossRef]

Lukin, M. D.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côtè, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2011 (2000).
[CrossRef] [PubMed]

Mandel, O.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature (London) 425, 937–940 (2003).
[CrossRef]

McGloin, D.

Melville, H.

Meschede, D.

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
[CrossRef] [PubMed]

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

Milne, G. F.

Miroshnychenko, Y.

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
[CrossRef] [PubMed]

Mompart, J.

J. Mompart, K. Eckert, W. Ertmer, G. Birkl, and M. Lewenstein, “Quantum computing with spatially delocalized qubits,” Phys. Rev. Lett. 90, 147901 (2003).
[CrossRef] [PubMed]

K. Eckert, J. Mompart, X. X. Yi, J. Schliemann, D. Bruss, G. Birkl, and M. Lewenstein, “Quantum computing in optical microtraps based on the motional states of neutral atoms,” Phys. Rev. A 66, 042317 (2002).
[CrossRef]

Müther, T.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Protsenko, I.

G. Reymond, N. Schlosser, I. Protsenko, and P. Grangier, “Single-atom manipulations in a microscopic dipole trap,” Philos. Trans. R. Soc. London, Ser. A 361, 1527–1536 (2003).
[CrossRef]

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1026 (2001).
[CrossRef]

Protsenko, I. E.

I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier, “Operation of a quantum phase gate using neutral atoms in microscopic dipole traps,” Phys. Rev. A 65, 052301 (2002).
[CrossRef]

Rauschenbeutel, A.

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
[CrossRef] [PubMed]

Reymond, G.

G. Reymond, N. Schlosser, I. Protsenko, and P. Grangier, “Single-atom manipulations in a microscopic dipole trap,” Philos. Trans. R. Soc. London, Ser. A 361, 1527–1536 (2003).
[CrossRef]

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 23005 (2002).
[CrossRef]

I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier, “Operation of a quantum phase gate using neutral atoms in microscopic dipole traps,” Phys. Rev. A 65, 052301 (2002).
[CrossRef]

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1026 (2001).
[CrossRef]

Rolston, S. L.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côtè, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2011 (2000).
[CrossRef] [PubMed]

Rom, T.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature (London) 425, 937–940 (2003).
[CrossRef]

Rosenfeld, W.

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
[CrossRef] [PubMed]

Schliemann, J.

K. Eckert, J. Mompart, X. X. Yi, J. Schliemann, D. Bruss, G. Birkl, and M. Lewenstein, “Quantum computing in optical microtraps based on the motional states of neutral atoms,” Phys. Rev. A 66, 042317 (2002).
[CrossRef]

Schlosser, N.

G. Reymond, N. Schlosser, I. Protsenko, and P. Grangier, “Single-atom manipulations in a microscopic dipole trap,” Philos. Trans. R. Soc. London, Ser. A 361, 1527–1536 (2003).
[CrossRef]

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 23005 (2002).
[CrossRef]

I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier, “Operation of a quantum phase gate using neutral atoms in microscopic dipole traps,” Phys. Rev. A 65, 052301 (2002).
[CrossRef]

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1026 (2001).
[CrossRef]

Schmiedmayer, J.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[CrossRef]

Schrader, D.

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
[CrossRef] [PubMed]

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Sibbett, W.

Spalding, G. C.

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express 11, 3562–3567 (2003), http://www.opticsexpress.org.
[CrossRef] [PubMed]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Theofanidou, E.

Ueberholz, B.

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

Volk, M.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Widera, A.

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature (London) 425, 937–940 (2003).
[CrossRef]

Yi, X. X.

K. Eckert, J. Mompart, X. X. Yi, J. Schliemann, D. Bruss, G. Birkl, and M. Lewenstein, “Quantum computing in optical microtraps based on the motional states of neutral atoms,” Phys. Rev. A 66, 042317 (2002).
[CrossRef]

Zoller, P.

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[CrossRef]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côtè, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2011 (2000).
[CrossRef] [PubMed]

J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature (London) 404, 579–580 (2000).
[CrossRef]

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[CrossRef]

Fortschr. Phys. (1)

D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschr. Phys. 48, 771–783 (2000).
[CrossRef]

Nature (London) (4)

O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch, “Controlled collisions for multi-particle entanglement of optically trapped atoms,” Nature (London) 425, 937–940 (2003).
[CrossRef]

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature (London) 411, 1024–1026 (2001).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature (London) 424, 810–816 (2003).
[CrossRef]

J. I. Cirac and P. Zoller, “A scalable quantum computer with ions in an array of microtraps,” Nature (London) 404, 579–580 (2000).
[CrossRef]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Opt. Express (2)

Philos. Trans. R. Soc. London, Ser. A (1)

G. Reymond, N. Schlosser, I. Protsenko, and P. Grangier, “Single-atom manipulations in a microscopic dipole trap,” Philos. Trans. R. Soc. London, Ser. A 361, 1527–1536 (2003).
[CrossRef]

Phys. Rev. A (4)

K. Eckert, J. Mompart, X. X. Yi, J. Schliemann, D. Bruss, G. Birkl, and M. Lewenstein, “Quantum computing in optical microtraps based on the motional states of neutral atoms,” Phys. Rev. A 66, 042317 (2002).
[CrossRef]

T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000).
[CrossRef]

I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier, “Operation of a quantum phase gate using neutral atoms in microscopic dipole traps,” Phys. Rev. A 65, 052301 (2002).
[CrossRef]

G. K. Brennen, I. H. Deutsch, and P. S. Jessen, “Entangling dipole–dipole interactions for quantum logic with neutral atoms,” Phys. Rev. A 61, 062309 (2000).
[CrossRef]

Phys. Rev. Lett. (8)

G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060–1063 (1999).
[CrossRef]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côtè, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2011 (2000).
[CrossRef] [PubMed]

D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[CrossRef]

J. Mompart, K. Eckert, W. Ertmer, G. Birkl, and M. Lewenstein, “Quantum computing with spatially delocalized qubits,” Phys. Rev. Lett. 90, 147901 (2003).
[CrossRef] [PubMed]

N. Schlosser, G. Reymond, and P. Grangier, “Collisional blockade in microscopic optical dipole traps,” Phys. Rev. Lett. 89, 23005 (2002).
[CrossRef]

D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777–3780 (2000).
[CrossRef] [PubMed]

S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld, M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, “Coherence properties and quantum state transportation in an optical conveyor belt,” Phys. Rev. Lett. 91, 213002 (2003).
[CrossRef] [PubMed]

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Other (1)

V. A. Soifer, V. V. Kotlyar, and L. L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, London, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Scheme of the SLM module X7550. The surface of the PAL SLM is 20 mm×20 mm. The LCD is composed of 480×480 pixels and is controlled by a VGA signal.

Fig. 2
Fig. 2

Examples of two holograms calculated to generate an array of three dipole traps (left) and five traps in a cross configuration (right). The different gray levels correspond to different phase shifts, with black and white giving a phase shift of -π to +π. For both holograms the separation between the traps in the focal plane of the objective is 5 µm and the pupil size is 5 mm.

Fig. 3
Fig. 3

Experimental setup (without the SLM device). The focusing objective (inside the vacuum chamber) generates the dipole trap at the MOT position. An imaging system collects the fluorescent light from the trapped atoms and sends it to a CCD camera.

Fig. 4
Fig. 4

Experimental setup for phase modulation of the dipole trap beam. The removable mirror placed in the beam path is used to send light to an imaging camera that records the geometry and shape of the generated pattern.

Fig. 5
Fig. 5

Two-dimensional and three-dimensional plots of the intensity profile generated by a three-spot hologram. The image was captured by focusing the diffracted beams onto a CCD camera by use of an auxiliary lens with 160-mm focal length.

Fig. 6
Fig. 6

MOT-induced fluorescence of trapped atoms in dipole trap arrays. The integration time of the CCD was set to 200 ms. The snapshots show the different geometries tested for a total laser power of 40 mW.

Fig. 7
Fig. 7

Fluorescent images for two-trap and three-trap arrays, showing control of the zeroth order. The two traps in the top figures were generated symmetrically with respect to the zeroth-order diffraction spot; the middle trap in the bottom figure was generated from the zeroth order.

Fig. 8
Fig. 8

MOT-induced fluorescence of trapped atoms in two dipole traps. The integration time of the CCD is 200 ms. The figures show how the distance could be varied with micrometer accuracy by sending a modified signal to the SLM.

Fig. 9
Fig. 9

MOT-induced fluorescence of single atoms confined in distinct dipole traps of a three-trap array, where the traps are separated by a few micrometers. The two figures show one atom captured in one of the traps and two atoms being simultaneously trapped in two traps of a three-trap array. The integration time of the CCD was set to 200 ms.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ef(ρ)=E0f(ρ)exp[iϕf(ρ)],
Ein(r)=E0in(r)exp[iϕin(r)],
E0in(r)exp[iϕin(r)]=F-1{Ef(ρ)}.
δ=(λf/p),

Metrics