Abstract

On the basis of the statistical theory of multiple scattering of waves, we offer a numerical approach to calculate coherent transmission and reflection for the three-dimensional (3-D) photonic crystals that consist of partially disordered dielectric spheres. With the proposed scheme, which we call the transfer-matrix (TM) method with quasi-crystalline approximation (QCA), we consider a quasi-regular 3-D assembly of particles as a stack of close-packed monolayers with a short-range ordering. Single-scattering characteristics are determined by Mie theory. Lateral electrodynamic coupling between the particles of a monolayer is treated in the QCA. Multibeam interference between monolayers is described in a manner analogous to the TM technique. We apply the TM-QCA calculation technique to study two revealed effects: (1) short-wavelength attenuation due to particles of finite sizes and (2) nonmonotonic dependence of the pseudogap depth on the particle size, refractive-index contrast, and intermonolayer distances.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century (Kluwer, Dordrecht, The Netherlands, 2001).
  2. T. Krauss and T. Baba, eds, “Feature section on photonic crystal structures and applications,” IEEE J. Quantum Electron. 38, 724–963 (2002).
    [Crossref]
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref] [PubMed]
  5. K. Ohtaka, “Energy-band of photons and low-energy photon diffraction,” Phys. Rev. B 19, 5057–5067 (1979).
    [Crossref]
  6. V. G. Vereshchagin and V. V. Morozov, “New type of cutting filters for the long-wave infrared spectrum region,” Zh. Prikl. Spektrosk. 49, 317–320 (1988) (in Russian).
  7. J. Martorell and N. M. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877–1880 (1990).
    [Crossref] [PubMed]
  8. J. Martorell and N. M. Lawandy, “Distributed feedback oscillation in ordered colloidal suspensions of polystyrene microspheres,” Opt. Commun. 78, 169–173 (1990).
    [Crossref]
  9. H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962–13972 (1992).
    [Crossref]
  10. A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic-wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988).
    [Crossref]
  11. P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
    [Crossref]
  12. L.-M. Li and Z.-Q. Zhang, “Multiple-scattering approach to finite-sized photonic band-gap materials,” Phys. Rev. B 58, 9587–9590 (1998).
    [Crossref]
  13. G. Tayeb and D. Mayste, “Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities,” J. Opt. Soc. Am. A 14, 3323–3332 (1997).
    [Crossref]
  14. X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic-waves,” Phys. Rev. B 47, 4161–4167 (1993).
    [Crossref]
  15. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmis- sion coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
    [Crossref]
  16. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  17. V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
    [Crossref]
  18. A. N. Ponyavina and N. I. Sil’vanovich, “Interference effects and spectral characteristics of multilayer scattering systems,” Opt. Spectrosc. 76, 581–589 (1994).
  19. M. Lax, “Multiple scattering of waves. 2. The effective field in dense systems,” Phys. Rev. 85, 621–629 (1952).
    [Crossref]
  20. K. M. Hong, “Multiple scattering of electromagnetic waves by a crowded monolayer of spheres: application to migration imaging films,” J. Opt. Soc. Am. 70, 821–826 (1980).
    [Crossref]
  21. J. Ziman, Models of Disorder (Cambridge U. Press, Cambridge, UK, 1979).
  22. S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. S. Torres, “Enhancement of the photonic gap of opal-based three-dimensional gratings,” Appl. Phys. Lett. 70, 2091–2093 (1997).
    [Crossref]
  23. H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
    [Crossref]
  24. J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martinez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
    [Crossref]
  25. S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Stop-band structure in complementary three-dimensional opal-based photonic crystals,” J. Phys.: Condens. Matter 11, 3593–3600 (1999).
  26. W. L. Vos, M. Megens, C. M. van Kats, and P. Bosecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys.: Condens. Matter 8, 9503–9507 (1996).
  27. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  28. K. Ohtaka and M. Inoue, “Light-scattering from macroscopic spherical bodies. 2. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–695 (1982).
    [Crossref]
  29. V. P. Dick, V. A. Loiko, and A. P. Ivanov, “Angular structure of radiation scattered by monolayers of particles: experimental study,” Appl. Opt. 36, 4235–4240 (1997).
    [Crossref] [PubMed]

2003 (1)

J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martinez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[Crossref]

2002 (1)

T. Krauss and T. Baba, eds, “Feature section on photonic crystal structures and applications,” IEEE J. Quantum Electron. 38, 724–963 (2002).
[Crossref]

1999 (1)

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Stop-band structure in complementary three-dimensional opal-based photonic crystals,” J. Phys.: Condens. Matter 11, 3593–3600 (1999).

1998 (2)

L.-M. Li and Z.-Q. Zhang, “Multiple-scattering approach to finite-sized photonic band-gap materials,” Phys. Rev. B 58, 9587–9590 (1998).
[Crossref]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmis- sion coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[Crossref]

1997 (5)

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[Crossref]

G. Tayeb and D. Mayste, “Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities,” J. Opt. Soc. Am. A 14, 3323–3332 (1997).
[Crossref]

S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. S. Torres, “Enhancement of the photonic gap of opal-based three-dimensional gratings,” Appl. Phys. Lett. 70, 2091–2093 (1997).
[Crossref]

H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

V. P. Dick, V. A. Loiko, and A. P. Ivanov, “Angular structure of radiation scattered by monolayers of particles: experimental study,” Appl. Opt. 36, 4235–4240 (1997).
[Crossref] [PubMed]

1996 (1)

W. L. Vos, M. Megens, C. M. van Kats, and P. Bosecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys.: Condens. Matter 8, 9503–9507 (1996).

1995 (1)

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
[Crossref]

1994 (1)

A. N. Ponyavina and N. I. Sil’vanovich, “Interference effects and spectral characteristics of multilayer scattering systems,” Opt. Spectrosc. 76, 581–589 (1994).

1993 (1)

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic-waves,” Phys. Rev. B 47, 4161–4167 (1993).
[Crossref]

1992 (1)

H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962–13972 (1992).
[Crossref]

1990 (2)

J. Martorell and N. M. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877–1880 (1990).
[Crossref] [PubMed]

J. Martorell and N. M. Lawandy, “Distributed feedback oscillation in ordered colloidal suspensions of polystyrene microspheres,” Opt. Commun. 78, 169–173 (1990).
[Crossref]

1988 (2)

A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic-wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988).
[Crossref]

V. G. Vereshchagin and V. V. Morozov, “New type of cutting filters for the long-wave infrared spectrum region,” Zh. Prikl. Spektrosk. 49, 317–320 (1988) (in Russian).

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

1982 (1)

K. Ohtaka and M. Inoue, “Light-scattering from macroscopic spherical bodies. 2. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–695 (1982).
[Crossref]

1980 (1)

1979 (1)

K. Ohtaka, “Energy-band of photons and low-energy photon diffraction,” Phys. Rev. B 19, 5057–5067 (1979).
[Crossref]

1952 (1)

M. Lax, “Multiple scattering of waves. 2. The effective field in dense systems,” Phys. Rev. 85, 621–629 (1952).
[Crossref]

Baba, T.

T. Krauss and T. Baba, eds, “Feature section on photonic crystal structures and applications,” IEEE J. Quantum Electron. 38, 724–963 (2002).
[Crossref]

Bell, P. M.

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
[Crossref]

Blanco, A.

H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Bogomolov, V. N.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[Crossref]

Bosecke, P.

W. L. Vos, M. Megens, C. M. van Kats, and P. Bosecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys.: Condens. Matter 8, 9503–9507 (1996).

Butko, V. Y.

S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. S. Torres, “Enhancement of the photonic gap of opal-based three-dimensional gratings,” Appl. Phys. Lett. 70, 2091–2093 (1997).
[Crossref]

Castillo-Martinez, E.

J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martinez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[Crossref]

De La Rue, R. M.

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Stop-band structure in complementary three-dimensional opal-based photonic crystals,” J. Phys.: Condens. Matter 11, 3593–3600 (1999).

Dick, V. P.

Fokin, A. V.

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Stop-band structure in complementary three-dimensional opal-based photonic crystals,” J. Phys.: Condens. Matter 11, 3593–3600 (1999).

S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. S. Torres, “Enhancement of the photonic gap of opal-based three-dimensional gratings,” Appl. Phys. Lett. 70, 2091–2093 (1997).
[Crossref]

Fornes, V.

H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Galisteo-Lopez, J. F.

J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martinez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[Crossref]

Gaponenko, N. V.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[Crossref]

Gaponenko, S. V.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[Crossref]

Germanenko, I. N.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[Crossref]

Harmon, B. N.

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic-waves,” Phys. Rev. B 47, 4161–4167 (1993).
[Crossref]

Haus, J. W.

H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962–13972 (1992).
[Crossref]

Hong, K. M.

Inguva, R.

H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962–13972 (1992).
[Crossref]

Inoue, M.

K. Ohtaka and M. Inoue, “Light-scattering from macroscopic spherical bodies. 2. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–695 (1982).
[Crossref]

Ivanov, A. P.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Johnson, N. P.

S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. S. Torres, “Enhancement of the photonic gap of opal-based three-dimensional gratings,” Appl. Phys. Lett. 70, 2091–2093 (1997).
[Crossref]

Kapitonov, A. M.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[Crossref]

Krauss, T.

T. Krauss and T. Baba, eds, “Feature section on photonic crystal structures and applications,” IEEE J. Quantum Electron. 38, 724–963 (2002).
[Crossref]

Lawandy, N. M.

J. Martorell and N. M. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877–1880 (1990).
[Crossref] [PubMed]

J. Martorell and N. M. Lawandy, “Distributed feedback oscillation in ordered colloidal suspensions of polystyrene microspheres,” Opt. Commun. 78, 169–173 (1990).
[Crossref]

Lax, M.

M. Lax, “Multiple scattering of waves. 2. The effective field in dense systems,” Phys. Rev. 85, 621–629 (1952).
[Crossref]

Li, L.-M.

L.-M. Li and Z.-Q. Zhang, “Multiple-scattering approach to finite-sized photonic band-gap materials,” Phys. Rev. B 58, 9587–9590 (1998).
[Crossref]

Loiko, V. A.

Lopez, C.

J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martinez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[Crossref]

H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Martorell, J.

J. Martorell and N. M. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877–1880 (1990).
[Crossref] [PubMed]

J. Martorell and N. M. Lawandy, “Distributed feedback oscillation in ordered colloidal suspensions of polystyrene microspheres,” Opt. Commun. 78, 169–173 (1990).
[Crossref]

Mayoral, R.

H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Mayste, D.

Megens, M.

W. L. Vos, M. Megens, C. M. van Kats, and P. Bosecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys.: Condens. Matter 8, 9503–9507 (1996).

Meseguer, F.

H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Mifsud, A.

H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Miguez, H.

H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Modinos, A.

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmis- sion coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[Crossref]

Moreno, L. M.

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
[Crossref]

Morozov, V. V.

V. G. Vereshchagin and V. V. Morozov, “New type of cutting filters for the long-wave infrared spectrum region,” Zh. Prikl. Spektrosk. 49, 317–320 (1988) (in Russian).

Ocana, M.

H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Ohtaka, K.

K. Ohtaka and M. Inoue, “Light-scattering from macroscopic spherical bodies. 2. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–695 (1982).
[Crossref]

K. Ohtaka, “Energy-band of photons and low-energy photon diffraction,” Phys. Rev. B 19, 5057–5067 (1979).
[Crossref]

Palacios-Lidon, E.

J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martinez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[Crossref]

Pemble, M. E.

S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. S. Torres, “Enhancement of the photonic gap of opal-based three-dimensional gratings,” Appl. Phys. Lett. 70, 2091–2093 (1997).
[Crossref]

Pendry, J. B.

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
[Crossref]

Petrov, E. P.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[Crossref]

Ponyavina, A. N.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[Crossref]

A. N. Ponyavina and N. I. Sil’vanovich, “Interference effects and spectral characteristics of multilayer scattering systems,” Opt. Spectrosc. 76, 581–589 (1994).

Prokofiev, A. V.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[Crossref]

Romanov, S. G.

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Stop-band structure in complementary three-dimensional opal-based photonic crystals,” J. Phys.: Condens. Matter 11, 3593–3600 (1999).

S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. S. Torres, “Enhancement of the photonic gap of opal-based three-dimensional gratings,” Appl. Phys. Lett. 70, 2091–2093 (1997).
[Crossref]

Samoilovich, S. M.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[Crossref]

Sil’vanovich, N. I.

A. N. Ponyavina and N. I. Sil’vanovich, “Interference effects and spectral characteristics of multilayer scattering systems,” Opt. Spectrosc. 76, 581–589 (1994).

Silvanovich, N. I.

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[Crossref]

Sozuer, H. S.

H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962–13972 (1992).
[Crossref]

Stefanou, N.

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmis- sion coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[Crossref]

Taflove, A.

A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic-wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988).
[Crossref]

Tayeb, G.

Torres, C. M. S.

S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. S. Torres, “Enhancement of the photonic gap of opal-based three-dimensional gratings,” Appl. Phys. Lett. 70, 2091–2093 (1997).
[Crossref]

van Kats, C. M.

W. L. Vos, M. Megens, C. M. van Kats, and P. Bosecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys.: Condens. Matter 8, 9503–9507 (1996).

Vazquez, L.

H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Vereshchagin, V. G.

V. G. Vereshchagin and V. V. Morozov, “New type of cutting filters for the long-wave infrared spectrum region,” Zh. Prikl. Spektrosk. 49, 317–320 (1988) (in Russian).

Vos, W. L.

W. L. Vos, M. Megens, C. M. van Kats, and P. Bosecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys.: Condens. Matter 8, 9503–9507 (1996).

Wang, X. D.

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic-waves,” Phys. Rev. B 47, 4161–4167 (1993).
[Crossref]

Ward, A. J.

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yannopapas, V.

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmis- sion coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[Crossref]

Yates, H. M.

S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. S. Torres, “Enhancement of the photonic gap of opal-based three-dimensional gratings,” Appl. Phys. Lett. 70, 2091–2093 (1997).
[Crossref]

Yu, Q. L.

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic-waves,” Phys. Rev. B 47, 4161–4167 (1993).
[Crossref]

Zhang, X. G.

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic-waves,” Phys. Rev. B 47, 4161–4167 (1993).
[Crossref]

Zhang, Z.-Q.

L.-M. Li and Z.-Q. Zhang, “Multiple-scattering approach to finite-sized photonic band-gap materials,” Phys. Rev. B 58, 9587–9590 (1998).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. G. Romanov, N. P. Johnson, A. V. Fokin, V. Y. Butko, H. M. Yates, M. E. Pemble, and C. M. S. Torres, “Enhancement of the photonic gap of opal-based three-dimensional gratings,” Appl. Phys. Lett. 70, 2091–2093 (1997).
[Crossref]

H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocana, V. Fornes, and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett. 71, 1148–1150 (1997).
[Crossref]

Comput. Phys. Commun. (2)

P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
[Crossref]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmis- sion coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Krauss and T. Baba, eds, “Feature section on photonic crystal structures and applications,” IEEE J. Quantum Electron. 38, 724–963 (2002).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys.: Condens. Matter (2)

S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Stop-band structure in complementary three-dimensional opal-based photonic crystals,” J. Phys.: Condens. Matter 11, 3593–3600 (1999).

W. L. Vos, M. Megens, C. M. van Kats, and P. Bosecke, “Transmission and diffraction by photonic colloidal crystals,” J. Phys.: Condens. Matter 8, 9503–9507 (1996).

Opt. Commun. (1)

J. Martorell and N. M. Lawandy, “Distributed feedback oscillation in ordered colloidal suspensions of polystyrene microspheres,” Opt. Commun. 78, 169–173 (1990).
[Crossref]

Opt. Spectrosc. (1)

A. N. Ponyavina and N. I. Sil’vanovich, “Interference effects and spectral characteristics of multilayer scattering systems,” Opt. Spectrosc. 76, 581–589 (1994).

Phys. Rev. (1)

M. Lax, “Multiple scattering of waves. 2. The effective field in dense systems,” Phys. Rev. 85, 621–629 (1952).
[Crossref]

Phys. Rev. B (6)

X. D. Wang, X. G. Zhang, Q. L. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic-waves,” Phys. Rev. B 47, 4161–4167 (1993).
[Crossref]

L.-M. Li and Z.-Q. Zhang, “Multiple-scattering approach to finite-sized photonic band-gap materials,” Phys. Rev. B 58, 9587–9590 (1998).
[Crossref]

H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962–13972 (1992).
[Crossref]

K. Ohtaka, “Energy-band of photons and low-energy photon diffraction,” Phys. Rev. B 19, 5057–5067 (1979).
[Crossref]

K. Ohtaka and M. Inoue, “Light-scattering from macroscopic spherical bodies. 2. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–695 (1982).
[Crossref]

J. F. Galisteo-Lopez, E. Palacios-Lidon, E. Castillo-Martinez, and C. Lopez, “Optical study of the pseudogap in thickness and orientation controlled artificial opals,” Phys. Rev. B 68, 115109 (2003).
[Crossref]

Phys. Rev. E (1)

V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic band gap phenomenon and optical properties of artificial opals,” Phys. Rev. E 55, 7619–7625 (1997).
[Crossref]

Phys. Rev. Lett. (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

J. Martorell and N. M. Lawandy, “Observation of inhibited spontaneous emission in a periodic dielectric structure,” Phys. Rev. Lett. 65, 1877–1880 (1990).
[Crossref] [PubMed]

Wave Motion (1)

A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic-wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988).
[Crossref]

Zh. Prikl. Spektrosk. (1)

V. G. Vereshchagin and V. V. Morozov, “New type of cutting filters for the long-wave infrared spectrum region,” Zh. Prikl. Spektrosk. 49, 317–320 (1988) (in Russian).

Other (4)

C. M. Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century (Kluwer, Dordrecht, The Netherlands, 2001).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

J. Ziman, Models of Disorder (Cambridge U. Press, Cambridge, UK, 1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scheme of light interaction with the stratified system of particle monolayers.

Fig. 2
Fig. 2

Coherent transmission spectra of the multilayer system of dielectric spheres (N=8, η=0.6, n˜=1.26, lm=1.23d).

Fig. 3
Fig. 3

Dependence of the pseudogap spectral position λ0 on the refractive-index contrast for the multilayer system of close-packed dielectric spheres with the different interlayer distances lm. Calculations were performed by the QCA and the Bragg approximation (N=8, η=0.6, d=200 nm).

Fig. 4
Fig. 4

(a) Coherent transmission and (b) specular reflection spectra of the multilayer systems of close-packed monolayers with different particle sizes (N=8, η=0.6, n˜=1.6). All multilayer systems are stacked so that the pseudogap positions are coincident (for d=10 nm, lm=347.6 nm; for d=100 nm, lm=326 nm; for d=280 nm, lmd).

Fig. 5
Fig. 5

Interference scheme for light rays passing through neighboring monolayers with no reflection (1) and experiencing twofold reflection (2).

Fig. 6
Fig. 6

Spectral dependence of coherent transmission Tm, specular reflection Rm, and the function of the efficiency of interlayer interference f=1-Tm(1-Rm2) at light interacting with the close-packed (η=0.6) monolayers of spherical particles (d=200 nm) with different n˜. The dashed curves correspond to transmission coefficients for the sparse systems of the same number and type of scatterers.

Fig. 7
Fig. 7

Coherent transmission spectra of (a) the multilayer (N=8, lm=1.23d) and (b) the monolayer structures of dielectric spherical particles (d=200 nm, η=0.6, n˜=3.0). The dashed curves correspond to the sparse systems of the same number and type of scatterers.

Fig. 8
Fig. 8

Dependence of coherent transmission spectra of the multilayer system (N=8, η=0.6) of dielectric spheres (a) on the refractive-index contrast (d=200 nm, lm=1.23d); (b) on the particle diameter (n˜=1.6, lm=282 nm); (c) on the interlayer distance (d=200 nm, n˜=3.5). Arrows indicate the pseudogap spectral position.

Fig. 9
Fig. 9

Dependence of the function Tm(1-Rm2) (curves 1–3) and the relative interlayer distance lm/d (curves 4–6) on the pseudogap spectral position for the multilayer systems of close-packed (η=0.6) monolayers with different n˜.

Fig. 10
Fig. 10

Dependence of the residual transmittance T0 (a) on the refractive-index contrast (N=8, d=200 nm, η=0.6, lm=1.23d) and (b) on the number of layers in the multilayer system [d=200 nm, η=0.6, lm=d (solid curves), lm=1.23d (dashed curves)]. The two upper curves correspond to n˜=1.26 and the two lower curves correspond to n˜=2. The inset shows the logarithm of the residual transmittance T0 by the number of layers.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E(r)=E0+p0t(r, ri)E(ri)idri,
E(ri)i=E0+p0g(ri, rj)t(ri, rj) × E(rj)jidrj,
E(r)=e exp(ikz)+2πikp0f(±z)exp(ikz),
E(r+R)R=e exp(ikz)+drΓ(r+R,r+R) × E(r+R)R+p0dRg(|R-R|) × drΓ(r+R, r+R) × E(r+R)R,
f(±z)=k24π(n˜2-1)Vdr exp(±ikz)(1-zz)E(r)
F(±z)=2πikp0f(±z).
f(±z)=e i2k i=1(±1)l(2l+1)(βl±αl).
βl=bl+p0bll(Plβl+Qlαl),
αl=al+p0all(Plαl+Qlβl).
E(z)=exp(ikz)e+j=1NGj+,
E(-z)=exp(ikz)j=1NGj- exp[(j-1)2iklm].
Gj+=F++F+p=1j-1Gp++F-p=j+1NGp- × exp[(p-j)2iklm],
Gj-=F-+F-p=1j-1Gp++F+p=j+1NGp- × exp[(p-j)2iklm].
λ02lm[cnp+(1-c)nm].

Metrics