Abstract

We report on a theoretical study of a refractive-index-change- (Δn-) induced phase shift enhanced by the low group velocity in an air-bridge-type AlGaAs two-dimensional (2-D) photonic crystal (PC) slab waveguide. The calculation was based on a three-dimensional finite-difference time-domain method for the design of a phase-shift arm of the 2-D PC-based symmetric Mach–Zehnder- (SMZ-) type all-optical switch. Δn was assumed to be induced by an optical nonlinearity of InAs quantum dots embedded selectively in the phase-shift arm in the PC SMZ. By changing Δn from 0 to -0.01 and -0.1 for an even guided mode in the triangular-lattice single-line-defect waveguide in the PC SMZ, we calculated a group-velocity-dependent phase shift as well as a band diagram and a transmission spectrum. The result showed that the phase shift is almost inversely proportional to the group velocity. Taking into account Δn of approximately -0.001 predicted for actual InAs quantum dots, we evaluated the length of the phase-shift arm, necessary for the π phase shift in the PC SMZ, to be ∼100 µm for a group velocity of 0.031c and a lattice constant of 0.36 µm at a wavelength of ∼1.3 µm, where c is the light velocity in the vacuum. The length of the phase-shift arm was significantly reduced because of the low group velocity in spite of the small Δn. As a result, it was found that the phase-shift arm can be designed short enough to achieve a compact ultrafast all-optical switch.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription