Abstract

Europium-doped yttrium oxide (Y2O3:Eu3+) nanophosphors were synthesized by wet chemical routes with both combustion and coprecipitation techniques. We explicitly illustrate the dynamics of Y2O3:Eu3+ nanophosphors with a particle size that is influenced by extrinsic stress and revealed by x rays and Raman scattering. The influence of Eu3+ activation on Raman spectra is illustrated. We demonstrate the significant enhancement of emission characteristics of ceramics synthesized from nanoparticles by using the combustion technique and by controlling the vacuum-sintering conditions.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. C. Mishra, J. K. Berkowitz, K. H. Johnson, and P. C. Schmidt, “Electronic structure and optical properties of europium-activated yttrium oxide phosphor,” Phys. Rev. B 45, 10902–10906 (1992).
    [CrossRef]
  2. R. C. Ropp, The Chemistry of Artificial Lighting Devices: Lamps, Phosphors, and Cathode Ray Tubes (Elsevier, New York, 1993).
  3. S. Itoh, T. Kimizuka, and T. Tonegawa, “Degradation mechanism for low-voltage cathodoluminescence of sulfide phosphors,” J. Electrochem. Soc. 136, 1819–1823 (1989).
    [CrossRef]
  4. H. C. Swart, J. S. Sebastian, T. A. Trottier, S. L. Jones, and P. H. Holloway, “Degradation of zinc sulfide phosphors under electron bombardment,” J. Vac. Sci. Technol. A 14, 1697–1703 (1996).
    [CrossRef]
  5. T. Ye, Z. Guiwen, Z. Weiping, and X. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32, 501–506 (1997).
    [CrossRef]
  6. B. Allieri, L. E. Depero, A. Marino, L. Sangaletti, L. Caparaso, A. Speghini, and M. Bettinelli, “Growth and microstructural analysis of nanosized Y2O3 doped with rare earths,” Mater. Chem. Phys. 66, 164–171 (2000).
    [CrossRef]
  7. S. L. Jones, D. Kumar, R. K. Singh, and P. H. Holloway, “Luminescence of pulsed laser deposited Eu doped yttrium oxide films,” Appl. Phys. Lett. 71, 404–406 (1997).
    [CrossRef]
  8. J. S. Bae, J. H. Jeong, S.-S. Yi, and J.-C. Park, “Improved photoluminescence of pulsed-laser-ablated Y2O3:Eu3+ thin-film phosphors by Gd substitution,” Appl. Phys. Lett. 82, 3629–3631 (2003).
    [CrossRef]
  9. K. G. Cho, D. Kumar, D. G. Lee, S. L. Jones, P. H. Holloway, and R. K. Singh, “Improved luminescence properties of pulsed laser deposited Eu:Y2O3 thin films on diamond coated silicon substrates,” Appl. Phys. Lett. 71, 3335–3337 (1997).
    [CrossRef]
  10. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, Berlin, 1994).
  11. T. Hase, T. Kano, E. Nakazawa, and H. Yamamoto, “Phosphor materials for cathode-ray tubes,” Adv. Electron. Electron Phys. 79, 271–373 (1990).
    [CrossRef]
  12. E. Zych, “On the reasons for low luminescence efficiency in combustion-made Lu2O3:Tb,” Opt. Mater. 16, 445–452 (2001).
    [CrossRef]
  13. C.-H. Lu and R. Jagannathan, “Ceriumion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,” Appl. Phys. Lett. 80, 3608–3610 (2002).
    [CrossRef]
  14. G. Tessari, M. Bettinelli, A. Speghini, D. Ajo, G. Pozza, L. E. Depero, B. Allieri, and L. Sangaletti, “Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3,” Appl. Surf. Sci. 144–145, 686–689 (1999).
    [CrossRef]
  15. E. T. Goldburt, B. Kulkarni, R. N. Bhargava, J. Taylor, and M. Libera, “Size dependent efficiency in Tb-doped Y2O3 nanocrystalline phosphor,” J. Lumin. 72–74, 190–192 (1997).
    [CrossRef]
  16. A. K. Pradhan, K. Zhang, and G. B. Loutts, “Synthesis of neodymium-doped yttrium aluminum garnet (YAG) nanocrystalline powders leading to transparent ceramics,” Mater. Res. Bull. 39, 1291–1298 (2004).
    [CrossRef]
  17. H. Natter, M. Schmelzer, M.-S. Löffler, C. E. Krill, A. Fitch, and R. Hempelmann, “Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time x-ray diffraction,” J. Phys. Chem. B 104, 2467–2476 (2000).
    [CrossRef]
  18. Y. Repelin, C. Proust, E. Husson, and J. M. Beny, “Vibra- tional spectroscopy of the C-form of yttrium sesquioxide,” J. Solid State Chem. 118, 163–169 (1995).
    [CrossRef]
  19. Ch. Beck, K. H. Ehses, R. Hempelmann, and Ch. Bruch, “Gradients in structure and dynamics of Y2O3 nanoparticles as revealed by x-ray and Raman scattering,” Scr. Mater. 44, 2127–2131 (2001).
    [CrossRef]
  20. E. Zych, D. Hreniak, and W. Strek, “Spectroscopy of Eu-doped Lu2O3-based x-ray phosphor,” J. Alloys Compd. 341, 385–390 (2002).
    [CrossRef]
  21. H. Eilers and B. M. Tissue, “Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3,” Chem. Phys. Lett. 251, 74–78 (1996).
    [CrossRef]
  22. B. M. Tissue, “Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts,” Chem. Mater. 10, 2837–2845 (1998).
    [CrossRef]

2004 (1)

A. K. Pradhan, K. Zhang, and G. B. Loutts, “Synthesis of neodymium-doped yttrium aluminum garnet (YAG) nanocrystalline powders leading to transparent ceramics,” Mater. Res. Bull. 39, 1291–1298 (2004).
[CrossRef]

2003 (1)

J. S. Bae, J. H. Jeong, S.-S. Yi, and J.-C. Park, “Improved photoluminescence of pulsed-laser-ablated Y2O3:Eu3+ thin-film phosphors by Gd substitution,” Appl. Phys. Lett. 82, 3629–3631 (2003).
[CrossRef]

2002 (2)

C.-H. Lu and R. Jagannathan, “Ceriumion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,” Appl. Phys. Lett. 80, 3608–3610 (2002).
[CrossRef]

E. Zych, D. Hreniak, and W. Strek, “Spectroscopy of Eu-doped Lu2O3-based x-ray phosphor,” J. Alloys Compd. 341, 385–390 (2002).
[CrossRef]

2001 (2)

E. Zych, “On the reasons for low luminescence efficiency in combustion-made Lu2O3:Tb,” Opt. Mater. 16, 445–452 (2001).
[CrossRef]

Ch. Beck, K. H. Ehses, R. Hempelmann, and Ch. Bruch, “Gradients in structure and dynamics of Y2O3 nanoparticles as revealed by x-ray and Raman scattering,” Scr. Mater. 44, 2127–2131 (2001).
[CrossRef]

2000 (2)

H. Natter, M. Schmelzer, M.-S. Löffler, C. E. Krill, A. Fitch, and R. Hempelmann, “Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time x-ray diffraction,” J. Phys. Chem. B 104, 2467–2476 (2000).
[CrossRef]

B. Allieri, L. E. Depero, A. Marino, L. Sangaletti, L. Caparaso, A. Speghini, and M. Bettinelli, “Growth and microstructural analysis of nanosized Y2O3 doped with rare earths,” Mater. Chem. Phys. 66, 164–171 (2000).
[CrossRef]

1999 (1)

G. Tessari, M. Bettinelli, A. Speghini, D. Ajo, G. Pozza, L. E. Depero, B. Allieri, and L. Sangaletti, “Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3,” Appl. Surf. Sci. 144–145, 686–689 (1999).
[CrossRef]

1998 (1)

B. M. Tissue, “Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts,” Chem. Mater. 10, 2837–2845 (1998).
[CrossRef]

1997 (4)

E. T. Goldburt, B. Kulkarni, R. N. Bhargava, J. Taylor, and M. Libera, “Size dependent efficiency in Tb-doped Y2O3 nanocrystalline phosphor,” J. Lumin. 72–74, 190–192 (1997).
[CrossRef]

S. L. Jones, D. Kumar, R. K. Singh, and P. H. Holloway, “Luminescence of pulsed laser deposited Eu doped yttrium oxide films,” Appl. Phys. Lett. 71, 404–406 (1997).
[CrossRef]

K. G. Cho, D. Kumar, D. G. Lee, S. L. Jones, P. H. Holloway, and R. K. Singh, “Improved luminescence properties of pulsed laser deposited Eu:Y2O3 thin films on diamond coated silicon substrates,” Appl. Phys. Lett. 71, 3335–3337 (1997).
[CrossRef]

T. Ye, Z. Guiwen, Z. Weiping, and X. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32, 501–506 (1997).
[CrossRef]

1996 (2)

H. C. Swart, J. S. Sebastian, T. A. Trottier, S. L. Jones, and P. H. Holloway, “Degradation of zinc sulfide phosphors under electron bombardment,” J. Vac. Sci. Technol. A 14, 1697–1703 (1996).
[CrossRef]

H. Eilers and B. M. Tissue, “Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3,” Chem. Phys. Lett. 251, 74–78 (1996).
[CrossRef]

1995 (1)

Y. Repelin, C. Proust, E. Husson, and J. M. Beny, “Vibra- tional spectroscopy of the C-form of yttrium sesquioxide,” J. Solid State Chem. 118, 163–169 (1995).
[CrossRef]

1992 (1)

K. C. Mishra, J. K. Berkowitz, K. H. Johnson, and P. C. Schmidt, “Electronic structure and optical properties of europium-activated yttrium oxide phosphor,” Phys. Rev. B 45, 10902–10906 (1992).
[CrossRef]

1990 (1)

T. Hase, T. Kano, E. Nakazawa, and H. Yamamoto, “Phosphor materials for cathode-ray tubes,” Adv. Electron. Electron Phys. 79, 271–373 (1990).
[CrossRef]

1989 (1)

S. Itoh, T. Kimizuka, and T. Tonegawa, “Degradation mechanism for low-voltage cathodoluminescence of sulfide phosphors,” J. Electrochem. Soc. 136, 1819–1823 (1989).
[CrossRef]

Ajo, D.

G. Tessari, M. Bettinelli, A. Speghini, D. Ajo, G. Pozza, L. E. Depero, B. Allieri, and L. Sangaletti, “Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3,” Appl. Surf. Sci. 144–145, 686–689 (1999).
[CrossRef]

Allieri, B.

B. Allieri, L. E. Depero, A. Marino, L. Sangaletti, L. Caparaso, A. Speghini, and M. Bettinelli, “Growth and microstructural analysis of nanosized Y2O3 doped with rare earths,” Mater. Chem. Phys. 66, 164–171 (2000).
[CrossRef]

G. Tessari, M. Bettinelli, A. Speghini, D. Ajo, G. Pozza, L. E. Depero, B. Allieri, and L. Sangaletti, “Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3,” Appl. Surf. Sci. 144–145, 686–689 (1999).
[CrossRef]

Bae, J. S.

J. S. Bae, J. H. Jeong, S.-S. Yi, and J.-C. Park, “Improved photoluminescence of pulsed-laser-ablated Y2O3:Eu3+ thin-film phosphors by Gd substitution,” Appl. Phys. Lett. 82, 3629–3631 (2003).
[CrossRef]

Beck, Ch.

Ch. Beck, K. H. Ehses, R. Hempelmann, and Ch. Bruch, “Gradients in structure and dynamics of Y2O3 nanoparticles as revealed by x-ray and Raman scattering,” Scr. Mater. 44, 2127–2131 (2001).
[CrossRef]

Beny, J. M.

Y. Repelin, C. Proust, E. Husson, and J. M. Beny, “Vibra- tional spectroscopy of the C-form of yttrium sesquioxide,” J. Solid State Chem. 118, 163–169 (1995).
[CrossRef]

Berkowitz, J. K.

K. C. Mishra, J. K. Berkowitz, K. H. Johnson, and P. C. Schmidt, “Electronic structure and optical properties of europium-activated yttrium oxide phosphor,” Phys. Rev. B 45, 10902–10906 (1992).
[CrossRef]

Bettinelli, M.

B. Allieri, L. E. Depero, A. Marino, L. Sangaletti, L. Caparaso, A. Speghini, and M. Bettinelli, “Growth and microstructural analysis of nanosized Y2O3 doped with rare earths,” Mater. Chem. Phys. 66, 164–171 (2000).
[CrossRef]

G. Tessari, M. Bettinelli, A. Speghini, D. Ajo, G. Pozza, L. E. Depero, B. Allieri, and L. Sangaletti, “Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3,” Appl. Surf. Sci. 144–145, 686–689 (1999).
[CrossRef]

Bhargava, R. N.

E. T. Goldburt, B. Kulkarni, R. N. Bhargava, J. Taylor, and M. Libera, “Size dependent efficiency in Tb-doped Y2O3 nanocrystalline phosphor,” J. Lumin. 72–74, 190–192 (1997).
[CrossRef]

Bruch, Ch.

Ch. Beck, K. H. Ehses, R. Hempelmann, and Ch. Bruch, “Gradients in structure and dynamics of Y2O3 nanoparticles as revealed by x-ray and Raman scattering,” Scr. Mater. 44, 2127–2131 (2001).
[CrossRef]

Caparaso, L.

B. Allieri, L. E. Depero, A. Marino, L. Sangaletti, L. Caparaso, A. Speghini, and M. Bettinelli, “Growth and microstructural analysis of nanosized Y2O3 doped with rare earths,” Mater. Chem. Phys. 66, 164–171 (2000).
[CrossRef]

Cho, K. G.

K. G. Cho, D. Kumar, D. G. Lee, S. L. Jones, P. H. Holloway, and R. K. Singh, “Improved luminescence properties of pulsed laser deposited Eu:Y2O3 thin films on diamond coated silicon substrates,” Appl. Phys. Lett. 71, 3335–3337 (1997).
[CrossRef]

Depero, L. E.

B. Allieri, L. E. Depero, A. Marino, L. Sangaletti, L. Caparaso, A. Speghini, and M. Bettinelli, “Growth and microstructural analysis of nanosized Y2O3 doped with rare earths,” Mater. Chem. Phys. 66, 164–171 (2000).
[CrossRef]

G. Tessari, M. Bettinelli, A. Speghini, D. Ajo, G. Pozza, L. E. Depero, B. Allieri, and L. Sangaletti, “Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3,” Appl. Surf. Sci. 144–145, 686–689 (1999).
[CrossRef]

Ehses, K. H.

Ch. Beck, K. H. Ehses, R. Hempelmann, and Ch. Bruch, “Gradients in structure and dynamics of Y2O3 nanoparticles as revealed by x-ray and Raman scattering,” Scr. Mater. 44, 2127–2131 (2001).
[CrossRef]

Eilers, H.

H. Eilers and B. M. Tissue, “Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3,” Chem. Phys. Lett. 251, 74–78 (1996).
[CrossRef]

Fitch, A.

H. Natter, M. Schmelzer, M.-S. Löffler, C. E. Krill, A. Fitch, and R. Hempelmann, “Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time x-ray diffraction,” J. Phys. Chem. B 104, 2467–2476 (2000).
[CrossRef]

Goldburt, E. T.

E. T. Goldburt, B. Kulkarni, R. N. Bhargava, J. Taylor, and M. Libera, “Size dependent efficiency in Tb-doped Y2O3 nanocrystalline phosphor,” J. Lumin. 72–74, 190–192 (1997).
[CrossRef]

Guiwen, Z.

T. Ye, Z. Guiwen, Z. Weiping, and X. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32, 501–506 (1997).
[CrossRef]

Hase, T.

T. Hase, T. Kano, E. Nakazawa, and H. Yamamoto, “Phosphor materials for cathode-ray tubes,” Adv. Electron. Electron Phys. 79, 271–373 (1990).
[CrossRef]

Hempelmann, R.

Ch. Beck, K. H. Ehses, R. Hempelmann, and Ch. Bruch, “Gradients in structure and dynamics of Y2O3 nanoparticles as revealed by x-ray and Raman scattering,” Scr. Mater. 44, 2127–2131 (2001).
[CrossRef]

H. Natter, M. Schmelzer, M.-S. Löffler, C. E. Krill, A. Fitch, and R. Hempelmann, “Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time x-ray diffraction,” J. Phys. Chem. B 104, 2467–2476 (2000).
[CrossRef]

Holloway, P. H.

K. G. Cho, D. Kumar, D. G. Lee, S. L. Jones, P. H. Holloway, and R. K. Singh, “Improved luminescence properties of pulsed laser deposited Eu:Y2O3 thin films on diamond coated silicon substrates,” Appl. Phys. Lett. 71, 3335–3337 (1997).
[CrossRef]

S. L. Jones, D. Kumar, R. K. Singh, and P. H. Holloway, “Luminescence of pulsed laser deposited Eu doped yttrium oxide films,” Appl. Phys. Lett. 71, 404–406 (1997).
[CrossRef]

H. C. Swart, J. S. Sebastian, T. A. Trottier, S. L. Jones, and P. H. Holloway, “Degradation of zinc sulfide phosphors under electron bombardment,” J. Vac. Sci. Technol. A 14, 1697–1703 (1996).
[CrossRef]

Hreniak, D.

E. Zych, D. Hreniak, and W. Strek, “Spectroscopy of Eu-doped Lu2O3-based x-ray phosphor,” J. Alloys Compd. 341, 385–390 (2002).
[CrossRef]

Husson, E.

Y. Repelin, C. Proust, E. Husson, and J. M. Beny, “Vibra- tional spectroscopy of the C-form of yttrium sesquioxide,” J. Solid State Chem. 118, 163–169 (1995).
[CrossRef]

Itoh, S.

S. Itoh, T. Kimizuka, and T. Tonegawa, “Degradation mechanism for low-voltage cathodoluminescence of sulfide phosphors,” J. Electrochem. Soc. 136, 1819–1823 (1989).
[CrossRef]

Jagannathan, R.

C.-H. Lu and R. Jagannathan, “Ceriumion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,” Appl. Phys. Lett. 80, 3608–3610 (2002).
[CrossRef]

Jeong, J. H.

J. S. Bae, J. H. Jeong, S.-S. Yi, and J.-C. Park, “Improved photoluminescence of pulsed-laser-ablated Y2O3:Eu3+ thin-film phosphors by Gd substitution,” Appl. Phys. Lett. 82, 3629–3631 (2003).
[CrossRef]

Johnson, K. H.

K. C. Mishra, J. K. Berkowitz, K. H. Johnson, and P. C. Schmidt, “Electronic structure and optical properties of europium-activated yttrium oxide phosphor,” Phys. Rev. B 45, 10902–10906 (1992).
[CrossRef]

Jones, S. L.

S. L. Jones, D. Kumar, R. K. Singh, and P. H. Holloway, “Luminescence of pulsed laser deposited Eu doped yttrium oxide films,” Appl. Phys. Lett. 71, 404–406 (1997).
[CrossRef]

K. G. Cho, D. Kumar, D. G. Lee, S. L. Jones, P. H. Holloway, and R. K. Singh, “Improved luminescence properties of pulsed laser deposited Eu:Y2O3 thin films on diamond coated silicon substrates,” Appl. Phys. Lett. 71, 3335–3337 (1997).
[CrossRef]

H. C. Swart, J. S. Sebastian, T. A. Trottier, S. L. Jones, and P. H. Holloway, “Degradation of zinc sulfide phosphors under electron bombardment,” J. Vac. Sci. Technol. A 14, 1697–1703 (1996).
[CrossRef]

Kano, T.

T. Hase, T. Kano, E. Nakazawa, and H. Yamamoto, “Phosphor materials for cathode-ray tubes,” Adv. Electron. Electron Phys. 79, 271–373 (1990).
[CrossRef]

Kimizuka, T.

S. Itoh, T. Kimizuka, and T. Tonegawa, “Degradation mechanism for low-voltage cathodoluminescence of sulfide phosphors,” J. Electrochem. Soc. 136, 1819–1823 (1989).
[CrossRef]

Krill, C. E.

H. Natter, M. Schmelzer, M.-S. Löffler, C. E. Krill, A. Fitch, and R. Hempelmann, “Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time x-ray diffraction,” J. Phys. Chem. B 104, 2467–2476 (2000).
[CrossRef]

Kulkarni, B.

E. T. Goldburt, B. Kulkarni, R. N. Bhargava, J. Taylor, and M. Libera, “Size dependent efficiency in Tb-doped Y2O3 nanocrystalline phosphor,” J. Lumin. 72–74, 190–192 (1997).
[CrossRef]

Kumar, D.

S. L. Jones, D. Kumar, R. K. Singh, and P. H. Holloway, “Luminescence of pulsed laser deposited Eu doped yttrium oxide films,” Appl. Phys. Lett. 71, 404–406 (1997).
[CrossRef]

K. G. Cho, D. Kumar, D. G. Lee, S. L. Jones, P. H. Holloway, and R. K. Singh, “Improved luminescence properties of pulsed laser deposited Eu:Y2O3 thin films on diamond coated silicon substrates,” Appl. Phys. Lett. 71, 3335–3337 (1997).
[CrossRef]

Lee, D. G.

K. G. Cho, D. Kumar, D. G. Lee, S. L. Jones, P. H. Holloway, and R. K. Singh, “Improved luminescence properties of pulsed laser deposited Eu:Y2O3 thin films on diamond coated silicon substrates,” Appl. Phys. Lett. 71, 3335–3337 (1997).
[CrossRef]

Libera, M.

E. T. Goldburt, B. Kulkarni, R. N. Bhargava, J. Taylor, and M. Libera, “Size dependent efficiency in Tb-doped Y2O3 nanocrystalline phosphor,” J. Lumin. 72–74, 190–192 (1997).
[CrossRef]

Löffler, M.-S.

H. Natter, M. Schmelzer, M.-S. Löffler, C. E. Krill, A. Fitch, and R. Hempelmann, “Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time x-ray diffraction,” J. Phys. Chem. B 104, 2467–2476 (2000).
[CrossRef]

Loutts, G. B.

A. K. Pradhan, K. Zhang, and G. B. Loutts, “Synthesis of neodymium-doped yttrium aluminum garnet (YAG) nanocrystalline powders leading to transparent ceramics,” Mater. Res. Bull. 39, 1291–1298 (2004).
[CrossRef]

Lu, C.-H.

C.-H. Lu and R. Jagannathan, “Ceriumion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,” Appl. Phys. Lett. 80, 3608–3610 (2002).
[CrossRef]

Marino, A.

B. Allieri, L. E. Depero, A. Marino, L. Sangaletti, L. Caparaso, A. Speghini, and M. Bettinelli, “Growth and microstructural analysis of nanosized Y2O3 doped with rare earths,” Mater. Chem. Phys. 66, 164–171 (2000).
[CrossRef]

Mishra, K. C.

K. C. Mishra, J. K. Berkowitz, K. H. Johnson, and P. C. Schmidt, “Electronic structure and optical properties of europium-activated yttrium oxide phosphor,” Phys. Rev. B 45, 10902–10906 (1992).
[CrossRef]

Nakazawa, E.

T. Hase, T. Kano, E. Nakazawa, and H. Yamamoto, “Phosphor materials for cathode-ray tubes,” Adv. Electron. Electron Phys. 79, 271–373 (1990).
[CrossRef]

Natter, H.

H. Natter, M. Schmelzer, M.-S. Löffler, C. E. Krill, A. Fitch, and R. Hempelmann, “Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time x-ray diffraction,” J. Phys. Chem. B 104, 2467–2476 (2000).
[CrossRef]

Park, J.-C.

J. S. Bae, J. H. Jeong, S.-S. Yi, and J.-C. Park, “Improved photoluminescence of pulsed-laser-ablated Y2O3:Eu3+ thin-film phosphors by Gd substitution,” Appl. Phys. Lett. 82, 3629–3631 (2003).
[CrossRef]

Pozza, G.

G. Tessari, M. Bettinelli, A. Speghini, D. Ajo, G. Pozza, L. E. Depero, B. Allieri, and L. Sangaletti, “Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3,” Appl. Surf. Sci. 144–145, 686–689 (1999).
[CrossRef]

Pradhan, A. K.

A. K. Pradhan, K. Zhang, and G. B. Loutts, “Synthesis of neodymium-doped yttrium aluminum garnet (YAG) nanocrystalline powders leading to transparent ceramics,” Mater. Res. Bull. 39, 1291–1298 (2004).
[CrossRef]

Proust, C.

Y. Repelin, C. Proust, E. Husson, and J. M. Beny, “Vibra- tional spectroscopy of the C-form of yttrium sesquioxide,” J. Solid State Chem. 118, 163–169 (1995).
[CrossRef]

Repelin, Y.

Y. Repelin, C. Proust, E. Husson, and J. M. Beny, “Vibra- tional spectroscopy of the C-form of yttrium sesquioxide,” J. Solid State Chem. 118, 163–169 (1995).
[CrossRef]

Sangaletti, L.

B. Allieri, L. E. Depero, A. Marino, L. Sangaletti, L. Caparaso, A. Speghini, and M. Bettinelli, “Growth and microstructural analysis of nanosized Y2O3 doped with rare earths,” Mater. Chem. Phys. 66, 164–171 (2000).
[CrossRef]

G. Tessari, M. Bettinelli, A. Speghini, D. Ajo, G. Pozza, L. E. Depero, B. Allieri, and L. Sangaletti, “Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3,” Appl. Surf. Sci. 144–145, 686–689 (1999).
[CrossRef]

Schmelzer, M.

H. Natter, M. Schmelzer, M.-S. Löffler, C. E. Krill, A. Fitch, and R. Hempelmann, “Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time x-ray diffraction,” J. Phys. Chem. B 104, 2467–2476 (2000).
[CrossRef]

Schmidt, P. C.

K. C. Mishra, J. K. Berkowitz, K. H. Johnson, and P. C. Schmidt, “Electronic structure and optical properties of europium-activated yttrium oxide phosphor,” Phys. Rev. B 45, 10902–10906 (1992).
[CrossRef]

Sebastian, J. S.

H. C. Swart, J. S. Sebastian, T. A. Trottier, S. L. Jones, and P. H. Holloway, “Degradation of zinc sulfide phosphors under electron bombardment,” J. Vac. Sci. Technol. A 14, 1697–1703 (1996).
[CrossRef]

Shangda, X.

T. Ye, Z. Guiwen, Z. Weiping, and X. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32, 501–506 (1997).
[CrossRef]

Singh, R. K.

S. L. Jones, D. Kumar, R. K. Singh, and P. H. Holloway, “Luminescence of pulsed laser deposited Eu doped yttrium oxide films,” Appl. Phys. Lett. 71, 404–406 (1997).
[CrossRef]

K. G. Cho, D. Kumar, D. G. Lee, S. L. Jones, P. H. Holloway, and R. K. Singh, “Improved luminescence properties of pulsed laser deposited Eu:Y2O3 thin films on diamond coated silicon substrates,” Appl. Phys. Lett. 71, 3335–3337 (1997).
[CrossRef]

Speghini, A.

B. Allieri, L. E. Depero, A. Marino, L. Sangaletti, L. Caparaso, A. Speghini, and M. Bettinelli, “Growth and microstructural analysis of nanosized Y2O3 doped with rare earths,” Mater. Chem. Phys. 66, 164–171 (2000).
[CrossRef]

G. Tessari, M. Bettinelli, A. Speghini, D. Ajo, G. Pozza, L. E. Depero, B. Allieri, and L. Sangaletti, “Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3,” Appl. Surf. Sci. 144–145, 686–689 (1999).
[CrossRef]

Strek, W.

E. Zych, D. Hreniak, and W. Strek, “Spectroscopy of Eu-doped Lu2O3-based x-ray phosphor,” J. Alloys Compd. 341, 385–390 (2002).
[CrossRef]

Swart, H. C.

H. C. Swart, J. S. Sebastian, T. A. Trottier, S. L. Jones, and P. H. Holloway, “Degradation of zinc sulfide phosphors under electron bombardment,” J. Vac. Sci. Technol. A 14, 1697–1703 (1996).
[CrossRef]

Taylor, J.

E. T. Goldburt, B. Kulkarni, R. N. Bhargava, J. Taylor, and M. Libera, “Size dependent efficiency in Tb-doped Y2O3 nanocrystalline phosphor,” J. Lumin. 72–74, 190–192 (1997).
[CrossRef]

Tessari, G.

G. Tessari, M. Bettinelli, A. Speghini, D. Ajo, G. Pozza, L. E. Depero, B. Allieri, and L. Sangaletti, “Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3,” Appl. Surf. Sci. 144–145, 686–689 (1999).
[CrossRef]

Tissue, B. M.

B. M. Tissue, “Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts,” Chem. Mater. 10, 2837–2845 (1998).
[CrossRef]

H. Eilers and B. M. Tissue, “Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3,” Chem. Phys. Lett. 251, 74–78 (1996).
[CrossRef]

Tonegawa, T.

S. Itoh, T. Kimizuka, and T. Tonegawa, “Degradation mechanism for low-voltage cathodoluminescence of sulfide phosphors,” J. Electrochem. Soc. 136, 1819–1823 (1989).
[CrossRef]

Trottier, T. A.

H. C. Swart, J. S. Sebastian, T. A. Trottier, S. L. Jones, and P. H. Holloway, “Degradation of zinc sulfide phosphors under electron bombardment,” J. Vac. Sci. Technol. A 14, 1697–1703 (1996).
[CrossRef]

Weiping, Z.

T. Ye, Z. Guiwen, Z. Weiping, and X. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32, 501–506 (1997).
[CrossRef]

Yamamoto, H.

T. Hase, T. Kano, E. Nakazawa, and H. Yamamoto, “Phosphor materials for cathode-ray tubes,” Adv. Electron. Electron Phys. 79, 271–373 (1990).
[CrossRef]

Ye, T.

T. Ye, Z. Guiwen, Z. Weiping, and X. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32, 501–506 (1997).
[CrossRef]

Yi, S.-S.

J. S. Bae, J. H. Jeong, S.-S. Yi, and J.-C. Park, “Improved photoluminescence of pulsed-laser-ablated Y2O3:Eu3+ thin-film phosphors by Gd substitution,” Appl. Phys. Lett. 82, 3629–3631 (2003).
[CrossRef]

Zhang, K.

A. K. Pradhan, K. Zhang, and G. B. Loutts, “Synthesis of neodymium-doped yttrium aluminum garnet (YAG) nanocrystalline powders leading to transparent ceramics,” Mater. Res. Bull. 39, 1291–1298 (2004).
[CrossRef]

Zych, E.

E. Zych, D. Hreniak, and W. Strek, “Spectroscopy of Eu-doped Lu2O3-based x-ray phosphor,” J. Alloys Compd. 341, 385–390 (2002).
[CrossRef]

E. Zych, “On the reasons for low luminescence efficiency in combustion-made Lu2O3:Tb,” Opt. Mater. 16, 445–452 (2001).
[CrossRef]

Adv. Electron. Electron Phys. (1)

T. Hase, T. Kano, E. Nakazawa, and H. Yamamoto, “Phosphor materials for cathode-ray tubes,” Adv. Electron. Electron Phys. 79, 271–373 (1990).
[CrossRef]

Appl. Phys. Lett. (4)

C.-H. Lu and R. Jagannathan, “Ceriumion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,” Appl. Phys. Lett. 80, 3608–3610 (2002).
[CrossRef]

S. L. Jones, D. Kumar, R. K. Singh, and P. H. Holloway, “Luminescence of pulsed laser deposited Eu doped yttrium oxide films,” Appl. Phys. Lett. 71, 404–406 (1997).
[CrossRef]

J. S. Bae, J. H. Jeong, S.-S. Yi, and J.-C. Park, “Improved photoluminescence of pulsed-laser-ablated Y2O3:Eu3+ thin-film phosphors by Gd substitution,” Appl. Phys. Lett. 82, 3629–3631 (2003).
[CrossRef]

K. G. Cho, D. Kumar, D. G. Lee, S. L. Jones, P. H. Holloway, and R. K. Singh, “Improved luminescence properties of pulsed laser deposited Eu:Y2O3 thin films on diamond coated silicon substrates,” Appl. Phys. Lett. 71, 3335–3337 (1997).
[CrossRef]

Appl. Surf. Sci. (1)

G. Tessari, M. Bettinelli, A. Speghini, D. Ajo, G. Pozza, L. E. Depero, B. Allieri, and L. Sangaletti, “Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3,” Appl. Surf. Sci. 144–145, 686–689 (1999).
[CrossRef]

Chem. Mater. (1)

B. M. Tissue, “Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts,” Chem. Mater. 10, 2837–2845 (1998).
[CrossRef]

Chem. Phys. Lett. (1)

H. Eilers and B. M. Tissue, “Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3,” Chem. Phys. Lett. 251, 74–78 (1996).
[CrossRef]

J. Alloys Compd. (1)

E. Zych, D. Hreniak, and W. Strek, “Spectroscopy of Eu-doped Lu2O3-based x-ray phosphor,” J. Alloys Compd. 341, 385–390 (2002).
[CrossRef]

J. Electrochem. Soc. (1)

S. Itoh, T. Kimizuka, and T. Tonegawa, “Degradation mechanism for low-voltage cathodoluminescence of sulfide phosphors,” J. Electrochem. Soc. 136, 1819–1823 (1989).
[CrossRef]

J. Lumin. (1)

E. T. Goldburt, B. Kulkarni, R. N. Bhargava, J. Taylor, and M. Libera, “Size dependent efficiency in Tb-doped Y2O3 nanocrystalline phosphor,” J. Lumin. 72–74, 190–192 (1997).
[CrossRef]

J. Phys. Chem. B (1)

H. Natter, M. Schmelzer, M.-S. Löffler, C. E. Krill, A. Fitch, and R. Hempelmann, “Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time x-ray diffraction,” J. Phys. Chem. B 104, 2467–2476 (2000).
[CrossRef]

J. Solid State Chem. (1)

Y. Repelin, C. Proust, E. Husson, and J. M. Beny, “Vibra- tional spectroscopy of the C-form of yttrium sesquioxide,” J. Solid State Chem. 118, 163–169 (1995).
[CrossRef]

J. Vac. Sci. Technol. A (1)

H. C. Swart, J. S. Sebastian, T. A. Trottier, S. L. Jones, and P. H. Holloway, “Degradation of zinc sulfide phosphors under electron bombardment,” J. Vac. Sci. Technol. A 14, 1697–1703 (1996).
[CrossRef]

Mater. Chem. Phys. (1)

B. Allieri, L. E. Depero, A. Marino, L. Sangaletti, L. Caparaso, A. Speghini, and M. Bettinelli, “Growth and microstructural analysis of nanosized Y2O3 doped with rare earths,” Mater. Chem. Phys. 66, 164–171 (2000).
[CrossRef]

Mater. Res. Bull. (2)

T. Ye, Z. Guiwen, Z. Weiping, and X. Shangda, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors,” Mater. Res. Bull. 32, 501–506 (1997).
[CrossRef]

A. K. Pradhan, K. Zhang, and G. B. Loutts, “Synthesis of neodymium-doped yttrium aluminum garnet (YAG) nanocrystalline powders leading to transparent ceramics,” Mater. Res. Bull. 39, 1291–1298 (2004).
[CrossRef]

Opt. Mater. (1)

E. Zych, “On the reasons for low luminescence efficiency in combustion-made Lu2O3:Tb,” Opt. Mater. 16, 445–452 (2001).
[CrossRef]

Phys. Rev. B (1)

K. C. Mishra, J. K. Berkowitz, K. H. Johnson, and P. C. Schmidt, “Electronic structure and optical properties of europium-activated yttrium oxide phosphor,” Phys. Rev. B 45, 10902–10906 (1992).
[CrossRef]

Scr. Mater. (1)

Ch. Beck, K. H. Ehses, R. Hempelmann, and Ch. Bruch, “Gradients in structure and dynamics of Y2O3 nanoparticles as revealed by x-ray and Raman scattering,” Scr. Mater. 44, 2127–2131 (2001).
[CrossRef]

Other (2)

R. C. Ropp, The Chemistry of Artificial Lighting Devices: Lamps, Phosphors, and Cathode Ray Tubes (Elsevier, New York, 1993).

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, Berlin, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Crystallite size dependence of the XRD patterns of Y2O3:Eu3+ powders: solid curves, combustion; dotted curves, coprecipitation (coppt.) techniques. The inset shows the particle size versus calcination temperature.

Fig. 2
Fig. 2

Scanning electron micrographs of Y2O3:Eu3+ powders calcined at (a) combustion, 1100 °C, (b) coprecipitation, 1100 °C, (c) ceramic (combustion) 1750 °C, (d) ceramic (coprecipitation) 1750 °C.

Fig. 3
Fig. 3

Experimental size dependence of the Raman shifts of Y2O3:Eu3+ powders and ceramics. The inset shows the shift of the mean Raman frequency as a function of inverse particle diameter. The solid curve represents the theoretical line from the gradient model.

Fig. 4
Fig. 4

Emission spectra of (a) Y2O3:Eu3+ nanopowders and ceramics sintered at 1700 and 1750 °C for 4 h and (b) Y2O3:Eu3+ ceramics sintered at 1750 °C for 16 h with an intermediate heating of 2 h at 1100 °C in vacuum. The inset in (b) shows the scanning rate dependence of the emission spectra.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω(D)=ω0[1-3γ(χ)(2ds/D)arctan(D/2ds)].

Metrics