Abstract

We describe an electrically controllable diffuser made from a randomly depoled lithium niobate wafer. The level of scattering produced by this diffuser can be varied continuously from a negligible amount (equal to or less than ordinary glass) to a level where the coherent component is practically extinguished. A statistical model for describing the diffuser is developed, from which analytical expressions for the coherent and diffuse components of the mean scattered intensity are obtained. Measurements of the mean intensity versus scattering angle and applied voltage that agree well with the theory are also reported.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically controlled Fresnel zone plates made from ring-shaped 180° domains

R. S. Cudney, L. A. Ríos, and H. M. Escamilla
Opt. Express 12(23) 5783-5788 (2004)

Electro-optic vortex-producing lenses using spiral-shaped ferroelectric domains

R. S. Cudney, H. M. Escamilla, and L. A. Ríos
Opt. Express 17(2) 997-1002 (2009)

In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography

Simonetta Grilli, Pietro Ferraro, Melania Paturzo, Domenico Alfieri, Paolo De Natale, Marella de Angelis, Sergio De Nicola, Andrea Finizio, and Giovanni Pierattini
Opt. Express 12(9) 1832-1842 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription