Abstract

The dual-beam mode-mismatched thermal lens technique was used to study the temperature dependence of the absolute fluorescence quantum efficiency (η) of a thermal-quenching fluorescence (TQF) process in Cr3+-doped colquiriite crystals (LiSAF and LiSGaF), from 300 to 450 K. The research was developed at a low excitation-power level in order to eliminate the energy-transfer upconversion effect. The results showed that TQF is the main loss mechanism involved. The thermal diffusivity, the thermal conductivity, and the specific heat of the samples were also measured in the same temperature range.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mandelis, J. Vanniasinkan, and S. Budhudu, “Absolute nonradiative energy-conversion-efficiency spectra in Ti3+:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. B 48, 6808–6821 (1993).
    [CrossRef]
  2. A. Rosencwaig and E. A. Hildum, “Nd3+ fluorescence quantum-efficiency measurements with photoacoustics,” Phys. Rev. B 23, 3301–3307 (1981).
    [CrossRef]
  3. E. Rodriguez, J. O. Tocho, and F. Cusso, “Simultaneous multiple-wavelength photoacoustic and luminescence experiments—a method for fluorescent-quantum-efficiency determination,” Phys. Rev. B 47, 14049–14053 (1993).
    [CrossRef]
  4. G. A. Torchia, D. Schinca, N. M. Khaidukov, and J. O. Tocho, “The luminescent quantum efficiency of Cr3+ ions in Cs2NaAlF6 single crystals,” Opt. Mater. 20, 301–304 (2002).
    [CrossRef]
  5. D. P. Devor, L. G. Deshazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25, 1863–1873 (1989).
    [CrossRef]
  6. R. C. Powel, Physics of Solid-State Laser Materials (Springer-Verlag, New York, 1998).
  7. M. Pollnau, P. L. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
    [CrossRef]
  8. M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
    [CrossRef]
  9. S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220–3222 (2001).
    [CrossRef]
  10. S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, “Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses,” Appl. Phys. Lett. 81, 589–591 (2002).
    [CrossRef]
  11. A. J. Ramponi and J. A. Caird, “Fluorescence quantum efficiency and optical heating efficiency in laser crystals and glasses by laser calorimetry,” J. Appl. Phys. 63, 5476–5484 (1998).
    [CrossRef]
  12. S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
    [CrossRef]
  13. J. H. Rohling, A. M. F. Caldeira, J. R. Pereira, A. M. Medina, A. C. Bento, M. L. Baesso, and L. C. M. Miranda, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
    [CrossRef]
  14. S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60, 15173–15178 (1999).
    [CrossRef]
  15. M. A. Noginov, M. Vondrova, and B. D. Lucas, “Thermally induced optical bistability in Cr-doped Colquiriite crystals,” Phys. Rev. B 65, 035112–1–035112–8 (2001).
    [CrossRef]
  16. M. A. Noginov, H. P. Jessen, and A. Cassanho, “Upconversion in Cr:LiSGaF and Cr:LiSAF,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1993), pp. 376–380.
  17. S. Uemura and K. Miyazaki, “Thermal characteristics of a continuous-wave Cr:LiSAF laser,” Jpn. J. Appl. Phys., Part 1 36, 4312–4315 (1997).
    [CrossRef]
  18. M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
    [CrossRef]
  19. F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
    [CrossRef]
  20. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and M. A. Noginov, “Efficient continuous-wave TEM00 and femtosecond Kerr-lens mode-locked Cr:LiSrGaF laser,” Opt. Lett. 21, 204–206 (1996).
    [CrossRef] [PubMed]
  21. D. Kopf, K. J. Weingarten, L. R. Brovelli, M. Kamp, and U. Keller, “Diode-pumped 100-fs passively mode-locked Cr:LiSAF laser with an antiresonant Fabry–Perot saturable absorber,” Opt. Lett. 19, 2143–2145 (1994).
    [CrossRef] [PubMed]
  22. A. Cassanho and H. Jenssen, “LisGaF offers performance edge over LiSAF,” Laser Focus World 33, 169–174 (1997).
  23. J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
    [CrossRef]
  24. F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387–389 (1997).
    [CrossRef] [PubMed]
  25. V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28, 239–241 (2003).
    [CrossRef] [PubMed]
  26. S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. Deloach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAlF6 crystals for laser operation,” Appl. Opt. 33, 5526–5536 (1994).
    [CrossRef] [PubMed]
  27. M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluorescence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271–2273 (1992).
    [CrossRef]
  28. L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, and J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetime,” Phys. Rev. B 34, 2735–2740 (1986).
    [CrossRef]
  29. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982).
    [CrossRef] [PubMed]
  30. A. N. Medina, A. M. F. Caldeira, A. C. Bento, M. L. Baesso, J. A. Sampaio, T. Catunda, and F. G. Gandra, “Thermal relaxation method to determine the specific heat of optical glasses,” J. Non-Cryst. Solids 304, 299–305 (2002).
    [CrossRef]
  31. A. A. Andrade, E. Tenório, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5:Cr3+,” J. Opt. Soc. Am. B 16, 395–400 (1999).
    [CrossRef]

2003 (1)

2002 (3)

A. N. Medina, A. M. F. Caldeira, A. C. Bento, M. L. Baesso, J. A. Sampaio, T. Catunda, and F. G. Gandra, “Thermal relaxation method to determine the specific heat of optical glasses,” J. Non-Cryst. Solids 304, 299–305 (2002).
[CrossRef]

G. A. Torchia, D. Schinca, N. M. Khaidukov, and J. O. Tocho, “The luminescent quantum efficiency of Cr3+ ions in Cs2NaAlF6 single crystals,” Opt. Mater. 20, 301–304 (2002).
[CrossRef]

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, “Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses,” Appl. Phys. Lett. 81, 589–591 (2002).
[CrossRef]

2001 (3)

J. H. Rohling, A. M. F. Caldeira, J. R. Pereira, A. M. Medina, A. C. Bento, M. L. Baesso, and L. C. M. Miranda, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

M. A. Noginov, M. Vondrova, and B. D. Lucas, “Thermally induced optical bistability in Cr-doped Colquiriite crystals,” Phys. Rev. B 65, 035112–1–035112–8 (2001).
[CrossRef]

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220–3222 (2001).
[CrossRef]

2000 (1)

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

1999 (2)

A. A. Andrade, E. Tenório, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5:Cr3+,” J. Opt. Soc. Am. B 16, 395–400 (1999).
[CrossRef]

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60, 15173–15178 (1999).
[CrossRef]

1998 (4)

A. J. Ramponi and J. A. Caird, “Fluorescence quantum efficiency and optical heating efficiency in laser crystals and glasses by laser calorimetry,” J. Appl. Phys. 63, 5476–5484 (1998).
[CrossRef]

M. Pollnau, P. L. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

1997 (4)

F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387–389 (1997).
[CrossRef] [PubMed]

A. Cassanho and H. Jenssen, “LisGaF offers performance edge over LiSAF,” Laser Focus World 33, 169–174 (1997).

S. Uemura and K. Miyazaki, “Thermal characteristics of a continuous-wave Cr:LiSAF laser,” Jpn. J. Appl. Phys., Part 1 36, 4312–4315 (1997).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

1996 (1)

1994 (2)

1993 (2)

E. Rodriguez, J. O. Tocho, and F. Cusso, “Simultaneous multiple-wavelength photoacoustic and luminescence experiments—a method for fluorescent-quantum-efficiency determination,” Phys. Rev. B 47, 14049–14053 (1993).
[CrossRef]

A. Mandelis, J. Vanniasinkan, and S. Budhudu, “Absolute nonradiative energy-conversion-efficiency spectra in Ti3+:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. B 48, 6808–6821 (1993).
[CrossRef]

1992 (2)

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluorescence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271–2273 (1992).
[CrossRef]

1989 (1)

D. P. Devor, L. G. Deshazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25, 1863–1873 (1989).
[CrossRef]

1986 (1)

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, and J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetime,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

1982 (1)

1981 (1)

A. Rosencwaig and E. A. Hildum, “Nd3+ fluorescence quantum-efficiency measurements with photoacoustics,” Phys. Rev. B 23, 3301–3307 (1981).
[CrossRef]

Andrade, A. A.

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220–3222 (2001).
[CrossRef]

A. A. Andrade, E. Tenório, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5:Cr3+,” J. Opt. Soc. Am. B 16, 395–400 (1999).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

Andrews, L. J.

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, and J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetime,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

Baesso, M. L.

A. N. Medina, A. M. F. Caldeira, A. C. Bento, M. L. Baesso, J. A. Sampaio, T. Catunda, and F. G. Gandra, “Thermal relaxation method to determine the specific heat of optical glasses,” J. Non-Cryst. Solids 304, 299–305 (2002).
[CrossRef]

J. H. Rohling, A. M. F. Caldeira, J. R. Pereira, A. M. Medina, A. C. Bento, M. L. Baesso, and L. C. M. Miranda, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220–3222 (2001).
[CrossRef]

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60, 15173–15178 (1999).
[CrossRef]

A. A. Andrade, E. Tenório, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5:Cr3+,” J. Opt. Soc. Am. B 16, 395–400 (1999).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

Balembois, F.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387–389 (1997).
[CrossRef] [PubMed]

Bartram, R. H.

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, and J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetime,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

Bass, M.

Beach, R. J.

Beaud, P.

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

Bento, A. C.

A. N. Medina, A. M. F. Caldeira, A. C. Bento, M. L. Baesso, J. A. Sampaio, T. Catunda, and F. G. Gandra, “Thermal relaxation method to determine the specific heat of optical glasses,” J. Non-Cryst. Solids 304, 299–305 (2002).
[CrossRef]

J. H. Rohling, A. M. F. Caldeira, J. R. Pereira, A. M. Medina, A. C. Bento, M. L. Baesso, and L. C. M. Miranda, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60, 15173–15178 (1999).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

Brovelli, L. R.

Brun, A.

F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387–389 (1997).
[CrossRef] [PubMed]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

Budhudu, S.

A. Mandelis, J. Vanniasinkan, and S. Budhudu, “Absolute nonradiative energy-conversion-efficiency spectra in Ti3+:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. B 48, 6808–6821 (1993).
[CrossRef]

Caird, J. A.

A. J. Ramponi and J. A. Caird, “Fluorescence quantum efficiency and optical heating efficiency in laser crystals and glasses by laser calorimetry,” J. Appl. Phys. 63, 5476–5484 (1998).
[CrossRef]

Caldeira, A. M. F.

A. N. Medina, A. M. F. Caldeira, A. C. Bento, M. L. Baesso, J. A. Sampaio, T. Catunda, and F. G. Gandra, “Thermal relaxation method to determine the specific heat of optical glasses,” J. Non-Cryst. Solids 304, 299–305 (2002).
[CrossRef]

J. H. Rohling, A. M. F. Caldeira, J. R. Pereira, A. M. Medina, A. C. Bento, M. L. Baesso, and L. C. M. Miranda, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

Cassanho, A.

Catunda, T.

V. Pilla, T. Catunda, H. P. Jenssen, and A. Cassanho, “Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,” Opt. Lett. 28, 239–241 (2003).
[CrossRef] [PubMed]

A. N. Medina, A. M. F. Caldeira, A. C. Bento, M. L. Baesso, J. A. Sampaio, T. Catunda, and F. G. Gandra, “Thermal relaxation method to determine the specific heat of optical glasses,” J. Non-Cryst. Solids 304, 299–305 (2002).
[CrossRef]

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, “Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses,” Appl. Phys. Lett. 81, 589–591 (2002).
[CrossRef]

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220–3222 (2001).
[CrossRef]

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60, 15173–15178 (1999).
[CrossRef]

A. A. Andrade, E. Tenório, T. Catunda, M. L. Baesso, A. Cassanho, and H. P. Jenssen, “Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5:Cr3+,” J. Opt. Soc. Am. B 16, 395–400 (1999).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

Chai, B. H. T.

S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. Deloach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of Cr:LiSrAlF6 crystals for laser operation,” Appl. Opt. 33, 5526–5536 (1994).
[CrossRef] [PubMed]

M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluorescence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271–2273 (1992).
[CrossRef]

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

Clarkson, W. A.

M. Pollnau, P. L. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

Cusso, F.

E. Rodriguez, J. O. Tocho, and F. Cusso, “Simultaneous multiple-wavelength photoacoustic and luminescence experiments—a method for fluorescent-quantum-efficiency determination,” Phys. Rev. B 47, 14049–14053 (1993).
[CrossRef]

de Camargo, A. S. S.

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, “Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses,” Appl. Phys. Lett. 81, 589–591 (2002).
[CrossRef]

De Salvo, R.

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

Deloach, L. D.

Deshazer, L. G.

D. P. Devor, L. G. Deshazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25, 1863–1873 (1989).
[CrossRef]

Devor, D. P.

D. P. Devor, L. G. Deshazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25, 1863–1873 (1989).
[CrossRef]

Dolan, J. F.

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, and J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetime,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

Druon, F.

F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387–389 (1997).
[CrossRef] [PubMed]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

Eichenholz, J. M.

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

Falcoz, F.

F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387–389 (1997).
[CrossRef] [PubMed]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

Gama, S.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

Gandra, F. G.

A. N. Medina, A. M. F. Caldeira, A. C. Bento, M. L. Baesso, J. A. Sampaio, T. Catunda, and F. G. Gandra, “Thermal relaxation method to determine the specific heat of optical glasses,” J. Non-Cryst. Solids 304, 299–305 (2002).
[CrossRef]

Garnov, S.

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

Georges, P.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

F. Balembois, F. Druon, F. Falcoz, P. Georges, and A. Brun, “Performances of Cr:LiSrAlF6 and Cr:LiSrGaF6 for continuous-wave diode-pumped Q-switched operation,” Opt. Lett. 22, 387–389 (1997).
[CrossRef] [PubMed]

Giunta, C. J.

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, and J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetime,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

Hagan, D. J.

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

Hanna, D. C.

M. Pollnau, P. L. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

Hardman, P. L.

M. Pollnau, P. L. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

Hernandes, A. C.

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220–3222 (2001).
[CrossRef]

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60, 15173–15178 (1999).
[CrossRef]

Hewak, D. W.

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, “Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses,” Appl. Phys. Lett. 81, 589–591 (2002).
[CrossRef]

Hildum, E. A.

A. Rosencwaig and E. A. Hildum, “Nd3+ fluorescence quantum-efficiency measurements with photoacoustics,” Phys. Rev. B 23, 3301–3307 (1981).
[CrossRef]

Jenssen, H.

A. Cassanho and H. Jenssen, “LisGaF offers performance edge over LiSAF,” Laser Focus World 33, 169–174 (1997).

Jenssen, H. P.

Kamp, M.

Keller, U.

Kerboull, F.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

Kern, M. A.

M. Pollnau, P. L. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

Khaidukov, N. M.

G. A. Torchia, D. Schinca, N. M. Khaidukov, and J. O. Tocho, “The luminescent quantum efficiency of Cr3+ ions in Cs2NaAlF6 single crystals,” Opt. Mater. 20, 301–304 (2002).
[CrossRef]

Klimentov, S.

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

Knight, L. V.

Kopf, D.

Krupke, W. F.

Kway, W. L.

Lebullenger, R.

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220–3222 (2001).
[CrossRef]

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60, 15173–15178 (1999).
[CrossRef]

Lempicki, A.

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, and J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetime,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

Lima, S. M.

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, “Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses,” Appl. Phys. Lett. 81, 589–591 (2002).
[CrossRef]

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220–3222 (2001).
[CrossRef]

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60, 15173–15178 (1999).
[CrossRef]

Lucas, B. D.

M. A. Noginov, M. Vondrova, and B. D. Lucas, “Thermally induced optical bistability in Cr-doped Colquiriite crystals,” Phys. Rev. B 65, 035112–1–035112–8 (2001).
[CrossRef]

Mandelis, A.

A. Mandelis, J. Vanniasinkan, and S. Budhudu, “Absolute nonradiative energy-conversion-efficiency spectra in Ti3+:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. B 48, 6808–6821 (1993).
[CrossRef]

McCollum, B. C.

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, and J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetime,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

Medina, A. M.

J. H. Rohling, A. M. F. Caldeira, J. R. Pereira, A. M. Medina, A. C. Bento, M. L. Baesso, and L. C. M. Miranda, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

Medina, A. N.

A. N. Medina, A. M. F. Caldeira, A. C. Bento, M. L. Baesso, J. A. Sampaio, T. Catunda, and F. G. Gandra, “Thermal relaxation method to determine the specific heat of optical glasses,” J. Non-Cryst. Solids 304, 299–305 (2002).
[CrossRef]

Miranda, L. C. M.

J. H. Rohling, A. M. F. Caldeira, J. R. Pereira, A. M. Medina, A. C. Bento, M. L. Baesso, and L. C. M. Miranda, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60, 15173–15178 (1999).
[CrossRef]

Miyazaki, K.

S. Uemura and K. Miyazaki, “Thermal characteristics of a continuous-wave Cr:LiSAF laser,” Jpn. J. Appl. Phys., Part 1 36, 4312–4315 (1997).
[CrossRef]

Noginov, M. A.

M. A. Noginov, M. Vondrova, and B. D. Lucas, “Thermally induced optical bistability in Cr-doped Colquiriite crystals,” Phys. Rev. B 65, 035112–1–035112–8 (2001).
[CrossRef]

I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and M. A. Noginov, “Efficient continuous-wave TEM00 and femtosecond Kerr-lens mode-locked Cr:LiSrGaF laser,” Opt. Lett. 21, 204–206 (1996).
[CrossRef] [PubMed]

Nunes, L. A. O.

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, “Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses,” Appl. Phys. Lett. 81, 589–591 (2002).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

Pastor, R. C.

D. P. Devor, L. G. Deshazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25, 1863–1873 (1989).
[CrossRef]

Payne, S. A.

Pecoraro, E.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

Pereira, J. R.

J. H. Rohling, A. M. F. Caldeira, J. R. Pereira, A. M. Medina, A. C. Bento, M. L. Baesso, and L. C. M. Miranda, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

Pilla, V.

Pollnau, M.

M. Pollnau, P. L. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

Ramponi, A. J.

A. J. Ramponi and J. A. Caird, “Fluorescence quantum efficiency and optical heating efficiency in laser crystals and glasses by laser calorimetry,” J. Appl. Phys. 63, 5476–5484 (1998).
[CrossRef]

Richardson, K.

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

Richardson, M.

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

Rodriguez, E.

E. Rodriguez, J. O. Tocho, and F. Cusso, “Simultaneous multiple-wavelength photoacoustic and luminescence experiments—a method for fluorescent-quantum-efficiency determination,” Phys. Rev. B 47, 14049–14053 (1993).
[CrossRef]

Rohling, J. H.

J. H. Rohling, A. M. F. Caldeira, J. R. Pereira, A. M. Medina, A. C. Bento, M. L. Baesso, and L. C. M. Miranda, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

Rosencwaig, A.

A. Rosencwaig and E. A. Hildum, “Nd3+ fluorescence quantum-efficiency measurements with photoacoustics,” Phys. Rev. B 23, 3301–3307 (1981).
[CrossRef]

Said, A. A.

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

Sampaio, J. A.

A. N. Medina, A. M. F. Caldeira, A. C. Bento, M. L. Baesso, J. A. Sampaio, T. Catunda, and F. G. Gandra, “Thermal relaxation method to determine the specific heat of optical glasses,” J. Non-Cryst. Solids 304, 299–305 (2002).
[CrossRef]

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

Schinca, D.

G. A. Torchia, D. Schinca, N. M. Khaidukov, and J. O. Tocho, “The luminescent quantum efficiency of Cr3+ ions in Cs2NaAlF6 single crystals,” Opt. Mater. 20, 301–304 (2002).
[CrossRef]

Sheik-Bahae, M.

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

Sheldon, S. J.

Smith, L. K.

Soileau, M. J.

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

Solarz, R. W.

Sorokin, E.

Sorokina, I. T.

Stalder, M.

Tassano, J. H.

Tenório, E.

Thorne, J. M.

Tocho, J. O.

G. A. Torchia, D. Schinca, N. M. Khaidukov, and J. O. Tocho, “The luminescent quantum efficiency of Cr3+ ions in Cs2NaAlF6 single crystals,” Opt. Mater. 20, 301–304 (2002).
[CrossRef]

E. Rodriguez, J. O. Tocho, and F. Cusso, “Simultaneous multiple-wavelength photoacoustic and luminescence experiments—a method for fluorescent-quantum-efficiency determination,” Phys. Rev. B 47, 14049–14053 (1993).
[CrossRef]

Torchia, G. A.

G. A. Torchia, D. Schinca, N. M. Khaidukov, and J. O. Tocho, “The luminescent quantum efficiency of Cr3+ ions in Cs2NaAlF6 single crystals,” Opt. Mater. 20, 301–304 (2002).
[CrossRef]

Uemura, S.

S. Uemura and K. Miyazaki, “Thermal characteristics of a continuous-wave Cr:LiSAF laser,” Jpn. J. Appl. Phys., Part 1 36, 4312–4315 (1997).
[CrossRef]

Van Stryland, E.

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

Vanniasinkan, J.

A. Mandelis, J. Vanniasinkan, and S. Budhudu, “Absolute nonradiative energy-conversion-efficiency spectra in Ti3+:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. B 48, 6808–6821 (1993).
[CrossRef]

Vondrova, M.

M. A. Noginov, M. Vondrova, and B. D. Lucas, “Thermally induced optical bistability in Cr-doped Colquiriite crystals,” Phys. Rev. B 65, 035112–1–035112–8 (2001).
[CrossRef]

Weingarten, K. J.

Wintner, E.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220–3222 (2001).
[CrossRef]

S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, “Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses,” Appl. Phys. Lett. 81, 589–591 (2002).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. P. Devor, L. G. Deshazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25, 1863–1873 (1989).
[CrossRef]

J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[CrossRef]

J. Appl. Phys. (2)

A. J. Ramponi and J. A. Caird, “Fluorescence quantum efficiency and optical heating efficiency in laser crystals and glasses by laser calorimetry,” J. Appl. Phys. 63, 5476–5484 (1998).
[CrossRef]

J. H. Rohling, A. M. F. Caldeira, J. R. Pereira, A. M. Medina, A. C. Bento, M. L. Baesso, and L. C. M. Miranda, “Thermal lens scanning of the glass transition in polymers,” J. Appl. Phys. 89, 2220–2226 (2001).
[CrossRef]

J. Non-Cryst. Solids (2)

S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
[CrossRef]

A. N. Medina, A. M. F. Caldeira, A. C. Bento, M. L. Baesso, J. A. Sampaio, T. Catunda, and F. G. Gandra, “Thermal relaxation method to determine the specific heat of optical glasses,” J. Non-Cryst. Solids 304, 299–305 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys., Part 1 (1)

S. Uemura and K. Miyazaki, “Thermal characteristics of a continuous-wave Cr:LiSAF laser,” Jpn. J. Appl. Phys., Part 1 36, 4312–4315 (1997).
[CrossRef]

Laser Focus World (1)

A. Cassanho and H. Jenssen, “LisGaF offers performance edge over LiSAF,” Laser Focus World 33, 169–174 (1997).

Opt. Lett. (4)

Opt. Mater. (1)

G. A. Torchia, D. Schinca, N. M. Khaidukov, and J. O. Tocho, “The luminescent quantum efficiency of Cr3+ ions in Cs2NaAlF6 single crystals,” Opt. Mater. 20, 301–304 (2002).
[CrossRef]

Phys. Rev. B (8)

L. J. Andrews, A. Lempicki, B. C. McCollum, C. J. Giunta, R. H. Bartram, and J. F. Dolan, “Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetime,” Phys. Rev. B 34, 2735–2740 (1986).
[CrossRef]

M. Pollnau, P. L. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58, 16076–16092 (1998).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B 57, 10545–10549 (1998).
[CrossRef]

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry,” Phys. Rev. B 60, 15173–15178 (1999).
[CrossRef]

M. A. Noginov, M. Vondrova, and B. D. Lucas, “Thermally induced optical bistability in Cr-doped Colquiriite crystals,” Phys. Rev. B 65, 035112–1–035112–8 (2001).
[CrossRef]

A. Mandelis, J. Vanniasinkan, and S. Budhudu, “Absolute nonradiative energy-conversion-efficiency spectra in Ti3+:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. B 48, 6808–6821 (1993).
[CrossRef]

A. Rosencwaig and E. A. Hildum, “Nd3+ fluorescence quantum-efficiency measurements with photoacoustics,” Phys. Rev. B 23, 3301–3307 (1981).
[CrossRef]

E. Rodriguez, J. O. Tocho, and F. Cusso, “Simultaneous multiple-wavelength photoacoustic and luminescence experiments—a method for fluorescent-quantum-efficiency determination,” Phys. Rev. B 47, 14049–14053 (1993).
[CrossRef]

Proc. SPIE (1)

M. Richardson, M. J. Soileau, P. Beaud, R. De Salvo, S. Garnov, D. J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A. A. Said, E. Van Stryland, and B. H. T. Chai, “Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, and M. J. Soileau, eds., Proc. SPIE 1848, 392–402 (1992).
[CrossRef]

Other (2)

M. A. Noginov, H. P. Jessen, and A. Cassanho, “Upconversion in Cr:LiSGaF and Cr:LiSAF,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1993), pp. 376–380.

R. C. Powel, Physics of Solid-State Laser Materials (Springer-Verlag, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram of the mode-mismatched TL experimental apparatus; M, mirror; P, photodetector; and L, convergent lens. The angle between the excitation and the probe beams is indicated by α. (b) Scheme of the geometric position of the excitation and probe beams.

Fig. 2
Fig. 2

TL transient signal for the Cr3+:LiSGaF at 297 and 383 K. The excitation was done with the beam propagation perpendicular to the c axis (c is the crystallographic axis) at 488 nm with P=200 mW. The curve fittings provided θ=-(0.0548±0.0002) rad and tc=(1.02±0.01) ms for 297 K and θ=-(0.1725±0.0002) rad and tc=(1.54±0.01) ms for 383 K.

Fig. 3
Fig. 3

Temperature behavior of the thermal diffusivity, D.

Fig. 4
Fig. 4

Temperature behavior of the specific heat, cp.

Fig. 5
Fig. 5

Temperature behavior of the thermal conductivity, K.

Fig. 6
Fig. 6

Experimental temperature dependence of the product between the fraction of absorbed energy converted into heat, φ, and the temperature coefficient of the optical path-length change, ds/dT. The curves were fitted by the combination of Eqs. (4) and (5).

Fig. 7
Fig. 7

Temperature dependence of the fluorescence quantum efficiency, η, and the fraction of absorbed energy converted into heat, φ, for the (a) Cr3+:LiSAF and (b) Cr3+:LiSGaF crystals. Solid curves, the theoretical curves obtained by the combination of Eqs. (4) and (5).

Tables (1)

Tables Icon

Table 1 Parameters of the Crystals Investigated

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I(t)=I(0)1-θ2a tan-1 × 2mV[(1+2m)2+V2]tc/2t+1+2m+V22,
m=w1pwe2,V=Z1Zcp,ZcpZ2.
θ=-PabsKλpφ dsdT,
φ=1-ηνem/νex,
τ-1(T)=τR-1+[τNR0  exp(ΔE/kBT)]-1,
P=C d(ΔT)dt+KeffΔT,
ΔT=ΔTmax[1-exp(-t/τ)],
ΔT=ΔTmax  exp(-t/τ).
ηtq-1=1+τRτNR0 exp(-ΔE/kBT).
η=ηe1+γτNe,

Metrics