Abstract

Pulse generation with an arbitrary numerator is experimentally demonstrated in seventh- and ninth-order rational-harmonic mode-locked fiber lasers. Conventionally, the numerator of rational-harmonic mode locking is equal to 1. Furthermore, the experimental generation of the numerator m=5, 22nd-order rational-harmonic mode-locked pulse confirms that the amplitude distributions in such pulse trains are strongly modulated by the numerator m=1 lower-order rational-harmonic mode locking. The result is important, as it indicates that a higher-repetition-rate pulse train can be obtained by an arbitrary numerator rational-harmonic mode-locking technique.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
    [CrossRef]
  2. Z. Ahmed and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fiber ring lasers,” Electron. Lett. 32, 455–457 (1996).
    [CrossRef]
  3. D. Foursa, P. Emplit, R. Leners, and L. Meuleman, “18 GHz from a σ-cavity Er-fibre laser with dispersion management and rational harmonic active mode-locking,” Electron. Lett. 33, 486–488 (1997).
    [CrossRef]
  4. S. Li, C. Lou, and K. T. Chan, “Rational harmonic active and passive mode-locking in a figure-of-eight fiber laser,” Electron. Lett. 34, 375–376 (1998).
    [CrossRef]
  5. W. Tang, C. Shu, and K. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating a nonlinear optical loop modulator,” IEEE Photonics Technol. Lett. 13, 16–18 (2001).
    [CrossRef]
  6. C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36, 145–149 (2000).
    [CrossRef]
  7. E. Yoshida and M. Nakazawa, “80–200 GHz erbium doped fibre laser using a rational harmonic mode locking technique,” Electron. Lett. 32, 1930–1932 (1996).
    [CrossRef]

2001 (1)

W. Tang, C. Shu, and K. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating a nonlinear optical loop modulator,” IEEE Photonics Technol. Lett. 13, 16–18 (2001).
[CrossRef]

2000 (1)

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36, 145–149 (2000).
[CrossRef]

1998 (1)

S. Li, C. Lou, and K. T. Chan, “Rational harmonic active and passive mode-locking in a figure-of-eight fiber laser,” Electron. Lett. 34, 375–376 (1998).
[CrossRef]

1997 (1)

D. Foursa, P. Emplit, R. Leners, and L. Meuleman, “18 GHz from a σ-cavity Er-fibre laser with dispersion management and rational harmonic active mode-locking,” Electron. Lett. 33, 486–488 (1997).
[CrossRef]

1996 (2)

Z. Ahmed and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fiber ring lasers,” Electron. Lett. 32, 455–457 (1996).
[CrossRef]

E. Yoshida and M. Nakazawa, “80–200 GHz erbium doped fibre laser using a rational harmonic mode locking technique,” Electron. Lett. 32, 1930–1932 (1996).
[CrossRef]

1993 (1)

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

Ahmed, Z.

Z. Ahmed and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fiber ring lasers,” Electron. Lett. 32, 455–457 (1996).
[CrossRef]

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

Chan, K. T.

S. Li, C. Lou, and K. T. Chan, “Rational harmonic active and passive mode-locking in a figure-of-eight fiber laser,” Electron. Lett. 34, 375–376 (1998).
[CrossRef]

Dutta, N. K.

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36, 145–149 (2000).
[CrossRef]

Emplit, P.

D. Foursa, P. Emplit, R. Leners, and L. Meuleman, “18 GHz from a σ-cavity Er-fibre laser with dispersion management and rational harmonic active mode-locking,” Electron. Lett. 33, 486–488 (1997).
[CrossRef]

Foursa, D.

D. Foursa, P. Emplit, R. Leners, and L. Meuleman, “18 GHz from a σ-cavity Er-fibre laser with dispersion management and rational harmonic active mode-locking,” Electron. Lett. 33, 486–488 (1997).
[CrossRef]

Lee, K.

W. Tang, C. Shu, and K. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating a nonlinear optical loop modulator,” IEEE Photonics Technol. Lett. 13, 16–18 (2001).
[CrossRef]

Leners, R.

D. Foursa, P. Emplit, R. Leners, and L. Meuleman, “18 GHz from a σ-cavity Er-fibre laser with dispersion management and rational harmonic active mode-locking,” Electron. Lett. 33, 486–488 (1997).
[CrossRef]

Li, S.

S. Li, C. Lou, and K. T. Chan, “Rational harmonic active and passive mode-locking in a figure-of-eight fiber laser,” Electron. Lett. 34, 375–376 (1998).
[CrossRef]

Lou, C.

S. Li, C. Lou, and K. T. Chan, “Rational harmonic active and passive mode-locking in a figure-of-eight fiber laser,” Electron. Lett. 34, 375–376 (1998).
[CrossRef]

Lowery, A. J.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

Meuleman, L.

D. Foursa, P. Emplit, R. Leners, and L. Meuleman, “18 GHz from a σ-cavity Er-fibre laser with dispersion management and rational harmonic active mode-locking,” Electron. Lett. 33, 486–488 (1997).
[CrossRef]

Nakazawa, M.

E. Yoshida and M. Nakazawa, “80–200 GHz erbium doped fibre laser using a rational harmonic mode locking technique,” Electron. Lett. 32, 1930–1932 (1996).
[CrossRef]

Onodera, N.

Z. Ahmed and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fiber ring lasers,” Electron. Lett. 32, 455–457 (1996).
[CrossRef]

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

Shu, C.

W. Tang, C. Shu, and K. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating a nonlinear optical loop modulator,” IEEE Photonics Technol. Lett. 13, 16–18 (2001).
[CrossRef]

Tang, W.

W. Tang, C. Shu, and K. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating a nonlinear optical loop modulator,” IEEE Photonics Technol. Lett. 13, 16–18 (2001).
[CrossRef]

Tucker, R. S.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

Wu, C.

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36, 145–149 (2000).
[CrossRef]

Yoshida, E.

E. Yoshida and M. Nakazawa, “80–200 GHz erbium doped fibre laser using a rational harmonic mode locking technique,” Electron. Lett. 32, 1930–1932 (1996).
[CrossRef]

Zhai, L.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, “Frequency multiplication in actively mode-locked semiconductor lasers,” Appl. Phys. Lett. 62, 1329–1331 (1993).
[CrossRef]

Electron. Lett. (4)

Z. Ahmed and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fiber ring lasers,” Electron. Lett. 32, 455–457 (1996).
[CrossRef]

D. Foursa, P. Emplit, R. Leners, and L. Meuleman, “18 GHz from a σ-cavity Er-fibre laser with dispersion management and rational harmonic active mode-locking,” Electron. Lett. 33, 486–488 (1997).
[CrossRef]

S. Li, C. Lou, and K. T. Chan, “Rational harmonic active and passive mode-locking in a figure-of-eight fiber laser,” Electron. Lett. 34, 375–376 (1998).
[CrossRef]

E. Yoshida and M. Nakazawa, “80–200 GHz erbium doped fibre laser using a rational harmonic mode locking technique,” Electron. Lett. 32, 1930–1932 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36, 145–149 (2000).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

W. Tang, C. Shu, and K. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating a nonlinear optical loop modulator,” IEEE Photonics Technol. Lett. 13, 16–18 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental configuration of the rational-harmonic mode-locked fiber laser. WDM, wavelength division multiplexer; EDF, erbium-doped fiber; ISO, isolator; MOD, intensity modulator; PC, polarization controller; PMF, polarization-maintaining fiber.

Fig. 2
Fig. 2

Output traces of seventh-order rational-harmonic mode-locked pulse trains. a, fm=35.7 MHz, the numerator m=1; b, fm=36.7 MHz, m=2; c, fm=37.6 MHz, m=3.

Fig. 3
Fig. 3

Output traces of ninth-order rational-harmonic mode-locked pulse trains. a, fm=35.5 MHz, the numerator m=1; b, fm=36.2 MHz, m=2; c, fm=37.7 MHz, m=4.

Fig. 4
Fig. 4

Output traces of the (a) fourth- and (b) 22nd-order rational-harmonic mode-locked pulse trains. a, fm=36.4 MHz, p=4, and the numerator m=1; b, fm=36.25 MHz, p=22, and m=5.

Metrics