Abstract

Two-color laser systems based on a semiconductor laser device and spectrally filtered feedback are studied. By use of a broadband numerical simulator and realistic active-structure optical responses, various two-color lasing configurations are investigated. Five characteristic dynamic regimes are observed and classified as semicoherent, coherent, multimode, chaotic, and multimode chaotic. Practical implications for gigahertz or terahertz signal-generation applications are discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Axner, M. Lejon, I. Magnusson, H. Rubinsztein-Dunlop, and S. Sjöström, “Detection of traces in semiconductor materials by two-color laser-enhanced ionization spectroscopy in flames,” Appl. Opt. 26, 3521–3525 (1987).
    [CrossRef] [PubMed]
  2. J. Zhou, N. Park, J. W. Dawson, and K. J. Vahala, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
    [CrossRef]
  3. J. Langbein, R. Burford, and L. Slater, “Variations in fault slip and strain accumulation at Parkfield, California: initial results using two-color geodimeter measurements, 1984–1988,” J. Geophys. Res. 95, 2533–2552 (1990).
    [CrossRef]
  4. S. Jiang and M. Dagenais, “Parameter extraction in semiconductor lasers using nearly degenerate four-wave mixing measurements,” in Lasers and Electro-Optics Society Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1993), pp. 578–579.
  5. J.-M. Liu and T. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
    [CrossRef]
  6. C.-L. Wang and C.-L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20, 1292–1294 (1995).
    [CrossRef] [PubMed]
  7. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
    [CrossRef]
  8. T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, and M. Sperling, “Continuous wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
    [CrossRef]
  9. B. Hu and M. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [CrossRef] [PubMed]
  10. K. J. Siebert, H. Quast, and H. G. Roskos, “cw–THz generation using a two-color Ti:sapphire laser,” presented at the International THz Workshop 2000, Sandbjerg, Denmark, September 17–19, 2000.
  11. F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color cw Ti:Al2 O3 laser,” IEEE J. Quantum Electron. 35, 1731–1736 (1999).
    [CrossRef]
  12. C.-L. Wang and C.-L. Pana, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
    [CrossRef]
  13. M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589–1591 (1996).
    [CrossRef]
  14. D. Lei, F. Dejun, L. Heliang, G. Chunfeng, Z. Donghui, K. Guiyun, L. Zhiguo, L. Kecheng, S. Qiuqin, and D. Xiaoyi, “A novel dual wavelength Er-doped fiber laser with narrow line-width,” Fifth Asia-Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference (IEEE, Piscataway, N.J., 1999), pp. 1501–1503.
  15. S. Reilly, S. James, and R. Tatam, “Tunable and switchable dual wavelength lasers using optical fibre Bragg grating external cavities,” Electron. Lett. 38, 1033–1034 (2002).
    [CrossRef]
  16. S. Pajarola, G. Guekos, and J. Mørk, “Optical generation of millimeter-waves using a dual-polarization emission external cavity diode laser,” IEEE Photonics Technol. Lett. 8, 157–159 (1996).
    [CrossRef]
  17. M. Brunner, K. Gulden, R. Hövel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photonics Technol. Lett. 12, 1316–1318 (2000).
    [CrossRef]
  18. P. Pellandini, R. Stanley, R. Houdré, U. Oesterle, and M. Ilegems, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
    [CrossRef]
  19. K. Razavi and P. Davies, “Semiconductor laser sources forthe generation of millimetre-wave signals,” IEE Proc.: Optoelectron. 145, 159–163 (1999).
  20. M. Maeda, T. Hirata, M. H. Masayuki Suehiro, A. Yamaguchi, and H. Hosomatsu, “Photonic integrated circuit combining two GaAs distributed Bragg reflector laser diodes for generation of the beat signal,” Jpn. J. Appl. Phys., Part 1 31, L183–L185 (1992).
    [CrossRef]
  21. S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal-mode laser diodes,” IEEE Photonics Technol. Lett. 7, 959–961 (1995).
    [CrossRef]
  22. S. D. Roh, T. S. Yeoh, R. B. Swint, A. E. Huber, C. Y. Woo, J. S. Hughes, and J. J. Coleman, “Dual-wavelength InGaAs GaAs ridge waveguide distributed Bragg reflector lasers with tunable mode separation,” IEEE Photonics Technol. Lett. 12, 1307–1309 (2000).
    [CrossRef]
  23. J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, and Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photonics Technol. Lett. 12, 1310–1312 (2000).
    [CrossRef]
  24. M. Osowski, R. Lammert, and J. Coleman, “A dual-wavelength source with monolithically integrated electroabsorption modulators and Y-junction coupler by selective-area MOCVD,” IEEE Photonics Technol. Lett. 9, 158–160 (1997).
    [CrossRef]
  25. M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
    [CrossRef]
  26. F. Rogister, D. W. Sukow, A. Gavrielides, P. Megret, O. Deparis, and M. Blondel, “Experimental demonstration of suppression of low-frequency fluctuations and stabilization of an external-cavity laser diode,” Opt. Lett. 25, 808–810 (2000).
    [CrossRef]
  27. D. W. Sukow, M. C. Hegg, J. L. Wright, and A. Gavrielides, “Mixed external cavity mode dynamics in a semiconductor laser,” Opt. Lett. 27, 827–829 (2002).
    [CrossRef]
  28. S. Jiang and M. Dagenais, “Observation of nearly degenerate and cavity-enhanced highly nondegenerate four-wave mixing in semiconductor lasers,” Appl. Phys. Lett. 62, 2757–2759 (1993).
    [CrossRef]
  29. T. Erneux, A. Gavrielides, and M. Sciamanna, “Stable microwave oscillations due to external-cavity-mode beating in laser diodes subject to optical feedback,” Phys. Rev. A 66, 033809 (2002).
    [CrossRef]
  30. T. Erneux, F. Rogister, A. Gavrielides, and V. Kovanis, “Bifurcation to mixed external cavity mode solutions for semiconductor lasers subject to optical feedback,” Opt. Commun. 183, 467–677 (2000).
    [CrossRef]
  31. F. Rogister, P. Megret, O. Deparis, M. Blondel, and T. Erneux, “Suppression of low-frequency fluctuations and stabilization of a semiconductor laser subjected to optical feedback from a double cavity: theoretical results,” Opt. Lett. 2174, 1218–1220 (1999).
    [CrossRef]
  32. A. Mecozzi, A. D’Ottavi, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993).
    [CrossRef]
  33. E. Cerboneschi, D. Hennequin, and E. Arimondo, “Frequency conversion in external cavity semiconductor lasers exposed to optical injection,” IEEE J. Quantum Electron. 32, 192–200 (1996).
    [CrossRef]
  34. S. Murata, A. Tomita, J. Shimizu, M. Kitamura, and A. Suzuki, “Observation of highly nondegenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
    [CrossRef]
  35. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
    [CrossRef]
  36. J. Mørk, B. Tromborg, and J. Mark, “Chaos in semiconductor laser with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
    [CrossRef]
  37. A. Hohl and A. Gavrielides, “Bifurcation cascade in a semiconductor laser subject to optical feedback,” Phys. Rev. Lett. 82, 1148–1151 (1999).
    [CrossRef]
  38. I. Fischer, O. Hess, W. Elsässer, and E. Göbel, “High-dimensional chaotic dynamics of an external cavity semiconductor laser,” Phys. Rev. Lett. 73, 2188–2191 (1994).
    [CrossRef] [PubMed]
  39. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
    [CrossRef]
  40. J. M. Buldú, J. Trull, M. C. Torrent, J. García-Ojalvo, and C. R. Mirasso, “Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback,” J. Opt. B Quantum Semiclass. Opt. 4, L1–L3 (2002).
    [CrossRef]
  41. T. W. Carr, D. Pieroux, and P. Mandel, “Theory of a multimode semiconductor laser with optical feedback,” Phys. Rev. A 63, 033817 (2001).
    [CrossRef]
  42. C. Serrat, S. Prins, and R. Vilaseca, “Dynamics and coherence of a multimode semiconductor laser with optical feedback in an intermediate-length external-cavity regime,” Phys. Rev. A 68, 053804 (2003).
    [CrossRef]
  43. J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic theory of gain, absorption and refractive index in semiconductor laser materials: influence of conduction-band nonparabolicity and Coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. 35, 1878–1886 (1999).
    [CrossRef]
  44. M. Kolesik and J. V. Moloney, “A spatial digital filter method for broad-band simulation of semiconductor lasers,” IEEE J. Quantum Electron. 37, 936–944 (2001).
    [CrossRef]
  45. W. Chow and S. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer-Verlag, Berlin, 1999).
  46. J. Hader, A. Zakharian, J. Moloney, T. Nelson, W. Siskaninetz, J. Ehret, K. Hantke, S. Koch, and M. Hofmann, “Semiconductor quantum-well designer active materials,” Opt. Photonics News 13 (12), 22 (2002).
    [CrossRef]
  47. M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
    [CrossRef]
  48. P. Smowton, P. Blood, and W. Chow, “Comparison of experimental and theoretical gain-current relations in GaInP quantum well lasers,” Appl. Phys. Lett. 76, 1522–1524 (2000).
    [CrossRef]
  49. A. Cartaxo and J. Morgado, “Analysis of semiconductor laser frequency noise taking into account multiple reflections in the external cavity,” IEE Proc.: Optoelectron. 147, 335–344 (2000).
  50. P. Besnard, B. Meziane, K. Ait-Ameur, and S. Stephan, “Microwave spectra in external-cavity semiconductor lasers: theoretical modeling of multipass resonances,” IEEE J. Quantum Electron. 30, 1713–1722 (1994).
    [CrossRef]
  51. C. R. Mirasso, M. Kolesik, M. Matus, J. K. White, and J. V. Moloney, “Synchronization and multimode dynamics of mutually coupled semiconductor lasers,” Phys. Rev. A 65, 013805 (2002).
    [CrossRef]
  52. M. Matus, J. V. Moloney, and M. Kolesik, “Relevance of symmetry for the synchronization of chaotic optical systems and the related Lang–Kobayashi model limitations,” Phys. Rev. E 67, 016208 (2003).
    [CrossRef]
  53. R. Indik, A. Knorr, R. Binder, J. V. Moloney, and S. W. Koch, “Propagation-induced adiabatic following in a semiconductor amplifier,” Opt. Lett. 19, 966–968 (1994).
    [CrossRef] [PubMed]
  54. R. Indik, R. Binder, M. M. J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, “Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers,” Phys. Rev. A 53, 3614–3620 (1996).
    [CrossRef] [PubMed]
  55. S. Hughes, “Carrier–carrier interaction and ultrashort pulse propagation in a highly excited semiconductor laser amplifier beyond the rate equation limit,” Phys. Rev. A 58, 2567–2576 (1998).
    [CrossRef]
  56. A. D. Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. S. J. Landreau, A. Ougazzaden, and J. C. Bouley, “Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett. 64, 2492–2494 (1994).
    [CrossRef]
  57. Y.-J. Wong, C.-W. Hsu, and C. C. Yang, “Characteristics of adual-wavelength semiconductor laser near 1550 nm,” IEEE Photonics Technol. Lett. 11, 173–175 (1999).
    [CrossRef]
  58. L. Hsu, L. Chi, S. Wang, and C.-L. Pan, “Frequency tracking and stabilization of a tunable dual-wavelength external-cavity diode laser,” Opt. Commun. 199, 195–200 (1999).
    [CrossRef]
  59. P. Gi, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys., Part 1 38, L1246–L1248 (1999).
    [CrossRef]
  60. K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry–Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
    [CrossRef]
  61. M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
    [CrossRef]
  62. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
    [CrossRef]
  63. S. Pajarola, G. Guekos, and H. Kawaguchi, “Dual-polarization optical pulse generation using a mode-locked two-arm external cavity diode laser,” Opt. Commun. 154, 39–42 (1998).
    [CrossRef]
  64. B. Tromborg, J. Osmundsen, and H. Olesen, “Stability analysis for a semiconductor laser in an external cavity,” IEEE J. Quantum Electron. 20, 1023–1032 (1984).
    [CrossRef]
  65. K.-S. Lee and C. Shu, “Generation of optical millimeter-wave with a widely tunable carrier using Fabry–Perot grating-lens external cavity laser,” IEEE Microwave Guid. Wave Lett. 9, 192–194 (1999).
    [CrossRef]
  66. M. Yousefi, D. Lenstra, G. Vemuri, and A. Fischer, “Control of nonlinear dynamics of a semiconductor laser with filtered optical feedback,” IEE Proc.: Optoelectron. 148, 233–237 (2001).
  67. A. Mihaescu, T. Tam, P. Besnard, and G. Stephan, “Effects of external cavities on laser spectra: application to a fibre laser,” J. Opt. B Quantum Semiclass. Opt. 4, 67–74 (2002).
    [CrossRef]
  68. N. K. Dutta, T. Cella, J. L. Zilko, A. B. Piccirilli, R. L. Brown, and S. G. Napholtz, “Integrated external cavity distributed Bragg reflector laser,” Appl. Phys. Lett. 50, 644–646 (1987).
    [CrossRef]

2003 (2)

C. Serrat, S. Prins, and R. Vilaseca, “Dynamics and coherence of a multimode semiconductor laser with optical feedback in an intermediate-length external-cavity regime,” Phys. Rev. A 68, 053804 (2003).
[CrossRef]

M. Matus, J. V. Moloney, and M. Kolesik, “Relevance of symmetry for the synchronization of chaotic optical systems and the related Lang–Kobayashi model limitations,” Phys. Rev. E 67, 016208 (2003).
[CrossRef]

2002 (9)

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

C. R. Mirasso, M. Kolesik, M. Matus, J. K. White, and J. V. Moloney, “Synchronization and multimode dynamics of mutually coupled semiconductor lasers,” Phys. Rev. A 65, 013805 (2002).
[CrossRef]

A. Mihaescu, T. Tam, P. Besnard, and G. Stephan, “Effects of external cavities on laser spectra: application to a fibre laser,” J. Opt. B Quantum Semiclass. Opt. 4, 67–74 (2002).
[CrossRef]

D. W. Sukow, M. C. Hegg, J. L. Wright, and A. Gavrielides, “Mixed external cavity mode dynamics in a semiconductor laser,” Opt. Lett. 27, 827–829 (2002).
[CrossRef]

J. Hader, A. Zakharian, J. Moloney, T. Nelson, W. Siskaninetz, J. Ehret, K. Hantke, S. Koch, and M. Hofmann, “Semiconductor quantum-well designer active materials,” Opt. Photonics News 13 (12), 22 (2002).
[CrossRef]

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

J. M. Buldú, J. Trull, M. C. Torrent, J. García-Ojalvo, and C. R. Mirasso, “Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback,” J. Opt. B Quantum Semiclass. Opt. 4, L1–L3 (2002).
[CrossRef]

S. Reilly, S. James, and R. Tatam, “Tunable and switchable dual wavelength lasers using optical fibre Bragg grating external cavities,” Electron. Lett. 38, 1033–1034 (2002).
[CrossRef]

T. Erneux, A. Gavrielides, and M. Sciamanna, “Stable microwave oscillations due to external-cavity-mode beating in laser diodes subject to optical feedback,” Phys. Rev. A 66, 033809 (2002).
[CrossRef]

2001 (4)

T. W. Carr, D. Pieroux, and P. Mandel, “Theory of a multimode semiconductor laser with optical feedback,” Phys. Rev. A 63, 033817 (2001).
[CrossRef]

M. Kolesik and J. V. Moloney, “A spatial digital filter method for broad-band simulation of semiconductor lasers,” IEEE J. Quantum Electron. 37, 936–944 (2001).
[CrossRef]

M. Yousefi, D. Lenstra, G. Vemuri, and A. Fischer, “Control of nonlinear dynamics of a semiconductor laser with filtered optical feedback,” IEE Proc.: Optoelectron. 148, 233–237 (2001).

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, and M. Sperling, “Continuous wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[CrossRef]

2000 (8)

F. Rogister, D. W. Sukow, A. Gavrielides, P. Megret, O. Deparis, and M. Blondel, “Experimental demonstration of suppression of low-frequency fluctuations and stabilization of an external-cavity laser diode,” Opt. Lett. 25, 808–810 (2000).
[CrossRef]

P. Smowton, P. Blood, and W. Chow, “Comparison of experimental and theoretical gain-current relations in GaInP quantum well lasers,” Appl. Phys. Lett. 76, 1522–1524 (2000).
[CrossRef]

A. Cartaxo and J. Morgado, “Analysis of semiconductor laser frequency noise taking into account multiple reflections in the external cavity,” IEE Proc.: Optoelectron. 147, 335–344 (2000).

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[CrossRef]

T. Erneux, F. Rogister, A. Gavrielides, and V. Kovanis, “Bifurcation to mixed external cavity mode solutions for semiconductor lasers subject to optical feedback,” Opt. Commun. 183, 467–677 (2000).
[CrossRef]

S. D. Roh, T. S. Yeoh, R. B. Swint, A. E. Huber, C. Y. Woo, J. S. Hughes, and J. J. Coleman, “Dual-wavelength InGaAs GaAs ridge waveguide distributed Bragg reflector lasers with tunable mode separation,” IEEE Photonics Technol. Lett. 12, 1307–1309 (2000).
[CrossRef]

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, and Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photonics Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

M. Brunner, K. Gulden, R. Hövel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photonics Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

1999 (9)

K. Razavi and P. Davies, “Semiconductor laser sources forthe generation of millimetre-wave signals,” IEE Proc.: Optoelectron. 145, 159–163 (1999).

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color cw Ti:Al2 O3 laser,” IEEE J. Quantum Electron. 35, 1731–1736 (1999).
[CrossRef]

F. Rogister, P. Megret, O. Deparis, M. Blondel, and T. Erneux, “Suppression of low-frequency fluctuations and stabilization of a semiconductor laser subjected to optical feedback from a double cavity: theoretical results,” Opt. Lett. 2174, 1218–1220 (1999).
[CrossRef]

A. Hohl and A. Gavrielides, “Bifurcation cascade in a semiconductor laser subject to optical feedback,” Phys. Rev. Lett. 82, 1148–1151 (1999).
[CrossRef]

J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic theory of gain, absorption and refractive index in semiconductor laser materials: influence of conduction-band nonparabolicity and Coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. 35, 1878–1886 (1999).
[CrossRef]

K.-S. Lee and C. Shu, “Generation of optical millimeter-wave with a widely tunable carrier using Fabry–Perot grating-lens external cavity laser,” IEEE Microwave Guid. Wave Lett. 9, 192–194 (1999).
[CrossRef]

Y.-J. Wong, C.-W. Hsu, and C. C. Yang, “Characteristics of adual-wavelength semiconductor laser near 1550 nm,” IEEE Photonics Technol. Lett. 11, 173–175 (1999).
[CrossRef]

L. Hsu, L. Chi, S. Wang, and C.-L. Pan, “Frequency tracking and stabilization of a tunable dual-wavelength external-cavity diode laser,” Opt. Commun. 199, 195–200 (1999).
[CrossRef]

P. Gi, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys., Part 1 38, L1246–L1248 (1999).
[CrossRef]

1998 (2)

S. Hughes, “Carrier–carrier interaction and ultrashort pulse propagation in a highly excited semiconductor laser amplifier beyond the rate equation limit,” Phys. Rev. A 58, 2567–2576 (1998).
[CrossRef]

S. Pajarola, G. Guekos, and H. Kawaguchi, “Dual-polarization optical pulse generation using a mode-locked two-arm external cavity diode laser,” Opt. Commun. 154, 39–42 (1998).
[CrossRef]

1997 (4)

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry–Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[CrossRef]

M. Osowski, R. Lammert, and J. Coleman, “A dual-wavelength source with monolithically integrated electroabsorption modulators and Y-junction coupler by selective-area MOCVD,” IEEE Photonics Technol. Lett. 9, 158–160 (1997).
[CrossRef]

P. Pellandini, R. Stanley, R. Houdré, U. Oesterle, and M. Ilegems, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

1996 (4)

S. Pajarola, G. Guekos, and J. Mørk, “Optical generation of millimeter-waves using a dual-polarization emission external cavity diode laser,” IEEE Photonics Technol. Lett. 8, 157–159 (1996).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589–1591 (1996).
[CrossRef]

E. Cerboneschi, D. Hennequin, and E. Arimondo, “Frequency conversion in external cavity semiconductor lasers exposed to optical injection,” IEEE J. Quantum Electron. 32, 192–200 (1996).
[CrossRef]

R. Indik, R. Binder, M. M. J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, “Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers,” Phys. Rev. A 53, 3614–3620 (1996).
[CrossRef] [PubMed]

1995 (4)

C.-L. Wang and C.-L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20, 1292–1294 (1995).
[CrossRef] [PubMed]

B. Hu and M. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
[CrossRef] [PubMed]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal-mode laser diodes,” IEEE Photonics Technol. Lett. 7, 959–961 (1995).
[CrossRef]

1994 (6)

C.-L. Wang and C.-L. Pana, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[CrossRef]

I. Fischer, O. Hess, W. Elsässer, and E. Göbel, “High-dimensional chaotic dynamics of an external cavity semiconductor laser,” Phys. Rev. Lett. 73, 2188–2191 (1994).
[CrossRef] [PubMed]

P. Besnard, B. Meziane, K. Ait-Ameur, and S. Stephan, “Microwave spectra in external-cavity semiconductor lasers: theoretical modeling of multipass resonances,” IEEE J. Quantum Electron. 30, 1713–1722 (1994).
[CrossRef]

R. Indik, A. Knorr, R. Binder, J. V. Moloney, and S. W. Koch, “Propagation-induced adiabatic following in a semiconductor amplifier,” Opt. Lett. 19, 966–968 (1994).
[CrossRef] [PubMed]

J.-M. Liu and T. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

A. D. Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. S. J. Landreau, A. Ougazzaden, and J. C. Bouley, “Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett. 64, 2492–2494 (1994).
[CrossRef]

1993 (3)

J. Zhou, N. Park, J. W. Dawson, and K. J. Vahala, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

S. Jiang and M. Dagenais, “Observation of nearly degenerate and cavity-enhanced highly nondegenerate four-wave mixing in semiconductor lasers,” Appl. Phys. Lett. 62, 2757–2759 (1993).
[CrossRef]

A. Mecozzi, A. D’Ottavi, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993).
[CrossRef]

1992 (2)

M. Maeda, T. Hirata, M. H. Masayuki Suehiro, A. Yamaguchi, and H. Hosomatsu, “Photonic integrated circuit combining two GaAs distributed Bragg reflector laser diodes for generation of the beat signal,” Jpn. J. Appl. Phys., Part 1 31, L183–L185 (1992).
[CrossRef]

J. Mørk, B. Tromborg, and J. Mark, “Chaos in semiconductor laser with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[CrossRef]

1991 (1)

S. Murata, A. Tomita, J. Shimizu, M. Kitamura, and A. Suzuki, “Observation of highly nondegenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

1990 (1)

J. Langbein, R. Burford, and L. Slater, “Variations in fault slip and strain accumulation at Parkfield, California: initial results using two-color geodimeter measurements, 1984–1988,” J. Geophys. Res. 95, 2533–2552 (1990).
[CrossRef]

1987 (2)

O. Axner, M. Lejon, I. Magnusson, H. Rubinsztein-Dunlop, and S. Sjöström, “Detection of traces in semiconductor materials by two-color laser-enhanced ionization spectroscopy in flames,” Appl. Opt. 26, 3521–3525 (1987).
[CrossRef] [PubMed]

N. K. Dutta, T. Cella, J. L. Zilko, A. B. Piccirilli, R. L. Brown, and S. G. Napholtz, “Integrated external cavity distributed Bragg reflector laser,” Appl. Phys. Lett. 50, 644–646 (1987).
[CrossRef]

1986 (1)

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[CrossRef]

1984 (1)

B. Tromborg, J. Osmundsen, and H. Olesen, “Stability analysis for a semiconductor laser in an external cavity,” IEEE J. Quantum Electron. 20, 1023–1032 (1984).
[CrossRef]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Ait-Ameur, K.

P. Besnard, B. Meziane, K. Ait-Ameur, and S. Stephan, “Microwave spectra in external-cavity semiconductor lasers: theoretical modeling of multipass resonances,” IEEE J. Quantum Electron. 30, 1713–1722 (1994).
[CrossRef]

Arimondo, E.

E. Cerboneschi, D. Hennequin, and E. Arimondo, “Frequency conversion in external cavity semiconductor lasers exposed to optical injection,” IEEE J. Quantum Electron. 32, 192–200 (1996).
[CrossRef]

Axner, O.

Besnard, P.

A. Mihaescu, T. Tam, P. Besnard, and G. Stephan, “Effects of external cavities on laser spectra: application to a fibre laser,” J. Opt. B Quantum Semiclass. Opt. 4, 67–74 (2002).
[CrossRef]

P. Besnard, B. Meziane, K. Ait-Ameur, and S. Stephan, “Microwave spectra in external-cavity semiconductor lasers: theoretical modeling of multipass resonances,” IEEE J. Quantum Electron. 30, 1713–1722 (1994).
[CrossRef]

Binder, R.

R. Indik, R. Binder, M. M. J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, “Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers,” Phys. Rev. A 53, 3614–3620 (1996).
[CrossRef] [PubMed]

R. Indik, A. Knorr, R. Binder, J. V. Moloney, and S. W. Koch, “Propagation-induced adiabatic following in a semiconductor amplifier,” Opt. Lett. 19, 966–968 (1994).
[CrossRef] [PubMed]

Blondel, M.

F. Rogister, D. W. Sukow, A. Gavrielides, P. Megret, O. Deparis, and M. Blondel, “Experimental demonstration of suppression of low-frequency fluctuations and stabilization of an external-cavity laser diode,” Opt. Lett. 25, 808–810 (2000).
[CrossRef]

F. Rogister, P. Megret, O. Deparis, M. Blondel, and T. Erneux, “Suppression of low-frequency fluctuations and stabilization of a semiconductor laser subjected to optical feedback from a double cavity: theoretical results,” Opt. Lett. 2174, 1218–1220 (1999).
[CrossRef]

Blood, P.

P. Smowton, P. Blood, and W. Chow, “Comparison of experimental and theoretical gain-current relations in GaInP quantum well lasers,” Appl. Phys. Lett. 76, 1522–1524 (2000).
[CrossRef]

Borchert, B.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

Bouley, J. C.

A. D. Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. S. J. Landreau, A. Ougazzaden, and J. C. Bouley, “Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett. 64, 2492–2494 (1994).
[CrossRef]

Breede, M.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, and M. Sperling, “Continuous wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[CrossRef]

Brown, E. R.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

Brown, R. L.

N. K. Dutta, T. Cella, J. L. Zilko, A. B. Piccirilli, R. L. Brown, and S. G. Napholtz, “Integrated external cavity distributed Bragg reflector laser,” Appl. Phys. Lett. 50, 644–646 (1987).
[CrossRef]

Brunner, M.

M. Brunner, K. Gulden, R. Hövel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photonics Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Buldú, J. M.

J. M. Buldú, J. Trull, M. C. Torrent, J. García-Ojalvo, and C. R. Mirasso, “Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback,” J. Opt. B Quantum Semiclass. Opt. 4, L1–L3 (2002).
[CrossRef]

Burford, R.

J. Langbein, R. Burford, and L. Slater, “Variations in fault slip and strain accumulation at Parkfield, California: initial results using two-color geodimeter measurements, 1984–1988,” J. Geophys. Res. 95, 2533–2552 (1990).
[CrossRef]

Carlin, J. F.

M. Brunner, K. Gulden, R. Hövel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photonics Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Carr, T. W.

T. W. Carr, D. Pieroux, and P. Mandel, “Theory of a multimode semiconductor laser with optical feedback,” Phys. Rev. A 63, 033817 (2001).
[CrossRef]

Cartaxo, A.

A. Cartaxo and J. Morgado, “Analysis of semiconductor laser frequency noise taking into account multiple reflections in the external cavity,” IEE Proc.: Optoelectron. 147, 335–344 (2000).

Cella, T.

N. K. Dutta, T. Cella, J. L. Zilko, A. B. Piccirilli, R. L. Brown, and S. G. Napholtz, “Integrated external cavity distributed Bragg reflector laser,” Appl. Phys. Lett. 50, 644–646 (1987).
[CrossRef]

Cerboneschi, E.

E. Cerboneschi, D. Hennequin, and E. Arimondo, “Frequency conversion in external cavity semiconductor lasers exposed to optical injection,” IEEE J. Quantum Electron. 32, 192–200 (1996).
[CrossRef]

Chang, F.

P. Gi, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys., Part 1 38, L1246–L1248 (1999).
[CrossRef]

Chi, L.

L. Hsu, L. Chi, S. Wang, and C.-L. Pan, “Frequency tracking and stabilization of a tunable dual-wavelength external-cavity diode laser,” Opt. Commun. 199, 195–200 (1999).
[CrossRef]

Chow, W.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

P. Smowton, P. Blood, and W. Chow, “Comparison of experimental and theoretical gain-current relations in GaInP quantum well lasers,” Appl. Phys. Lett. 76, 1522–1524 (2000).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[CrossRef]

Chua, S. J.

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, and Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photonics Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

Coleman, J.

M. Osowski, R. Lammert, and J. Coleman, “A dual-wavelength source with monolithically integrated electroabsorption modulators and Y-junction coupler by selective-area MOCVD,” IEEE Photonics Technol. Lett. 9, 158–160 (1997).
[CrossRef]

Coleman, J. J.

S. D. Roh, T. S. Yeoh, R. B. Swint, A. E. Huber, C. Y. Woo, J. S. Hughes, and J. J. Coleman, “Dual-wavelength InGaAs GaAs ridge waveguide distributed Bragg reflector lasers with tunable mode separation,” IEEE Photonics Technol. Lett. 12, 1307–1309 (2000).
[CrossRef]

D’Ottavi, A.

A. Mecozzi, A. D’Ottavi, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993).
[CrossRef]

Dagenais, M.

S. Jiang and M. Dagenais, “Observation of nearly degenerate and cavity-enhanced highly nondegenerate four-wave mixing in semiconductor lasers,” Appl. Phys. Lett. 62, 2757–2759 (1993).
[CrossRef]

Davies, P.

K. Razavi and P. Davies, “Semiconductor laser sources forthe generation of millimetre-wave signals,” IEE Proc.: Optoelectron. 145, 159–163 (1999).

Dawson, J. W.

J. Zhou, N. Park, J. W. Dawson, and K. J. Vahala, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

Deparis, O.

F. Rogister, D. W. Sukow, A. Gavrielides, P. Megret, O. Deparis, and M. Blondel, “Experimental demonstration of suppression of low-frequency fluctuations and stabilization of an external-cavity laser diode,” Opt. Lett. 25, 808–810 (2000).
[CrossRef]

F. Rogister, P. Megret, O. Deparis, M. Blondel, and T. Erneux, “Suppression of low-frequency fluctuations and stabilization of a semiconductor laser subjected to optical feedback from a double cavity: theoretical results,” Opt. Lett. 2174, 1218–1220 (1999).
[CrossRef]

Dutta, N. K.

N. K. Dutta, T. Cella, J. L. Zilko, A. B. Piccirilli, R. L. Brown, and S. G. Napholtz, “Integrated external cavity distributed Bragg reflector laser,” Appl. Phys. Lett. 50, 644–646 (1987).
[CrossRef]

Egorov, A.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

Ehret, J.

J. Hader, A. Zakharian, J. Moloney, T. Nelson, W. Siskaninetz, J. Ehret, K. Hantke, S. Koch, and M. Hofmann, “Semiconductor quantum-well designer active materials,” Opt. Photonics News 13 (12), 22 (2002).
[CrossRef]

Ellmers, C.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

Elsässer, W.

I. Fischer, O. Hess, W. Elsässer, and E. Göbel, “High-dimensional chaotic dynamics of an external cavity semiconductor laser,” Phys. Rev. Lett. 73, 2188–2191 (1994).
[CrossRef] [PubMed]

Erneux, T.

T. Erneux, A. Gavrielides, and M. Sciamanna, “Stable microwave oscillations due to external-cavity-mode beating in laser diodes subject to optical feedback,” Phys. Rev. A 66, 033809 (2002).
[CrossRef]

T. Erneux, F. Rogister, A. Gavrielides, and V. Kovanis, “Bifurcation to mixed external cavity mode solutions for semiconductor lasers subject to optical feedback,” Opt. Commun. 183, 467–677 (2000).
[CrossRef]

F. Rogister, P. Megret, O. Deparis, M. Blondel, and T. Erneux, “Suppression of low-frequency fluctuations and stabilization of a semiconductor laser subjected to optical feedback from a double cavity: theoretical results,” Opt. Lett. 2174, 1218–1220 (1999).
[CrossRef]

Fischer, A.

M. Yousefi, D. Lenstra, G. Vemuri, and A. Fischer, “Control of nonlinear dynamics of a semiconductor laser with filtered optical feedback,” IEE Proc.: Optoelectron. 148, 233–237 (2001).

Fischer, I.

I. Fischer, O. Hess, W. Elsässer, and E. Göbel, “High-dimensional chaotic dynamics of an external cavity semiconductor laser,” Phys. Rev. Lett. 73, 2188–2191 (1994).
[CrossRef] [PubMed]

García-Ojalvo, J.

J. M. Buldú, J. Trull, M. C. Torrent, J. García-Ojalvo, and C. R. Mirasso, “Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback,” J. Opt. B Quantum Semiclass. Opt. 4, L1–L3 (2002).
[CrossRef]

Gavrielides, A.

T. Erneux, A. Gavrielides, and M. Sciamanna, “Stable microwave oscillations due to external-cavity-mode beating in laser diodes subject to optical feedback,” Phys. Rev. A 66, 033809 (2002).
[CrossRef]

D. W. Sukow, M. C. Hegg, J. L. Wright, and A. Gavrielides, “Mixed external cavity mode dynamics in a semiconductor laser,” Opt. Lett. 27, 827–829 (2002).
[CrossRef]

F. Rogister, D. W. Sukow, A. Gavrielides, P. Megret, O. Deparis, and M. Blondel, “Experimental demonstration of suppression of low-frequency fluctuations and stabilization of an external-cavity laser diode,” Opt. Lett. 25, 808–810 (2000).
[CrossRef]

T. Erneux, F. Rogister, A. Gavrielides, and V. Kovanis, “Bifurcation to mixed external cavity mode solutions for semiconductor lasers subject to optical feedback,” Opt. Commun. 183, 467–677 (2000).
[CrossRef]

A. Hohl and A. Gavrielides, “Bifurcation cascade in a semiconductor laser subject to optical feedback,” Phys. Rev. Lett. 82, 1148–1151 (1999).
[CrossRef]

Gerhardt, N.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

Gi, P.

P. Gi, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys., Part 1 38, L1246–L1248 (1999).
[CrossRef]

Göbel, E.

I. Fischer, O. Hess, W. Elsässer, and E. Göbel, “High-dimensional chaotic dynamics of an external cavity semiconductor laser,” Phys. Rev. Lett. 73, 2188–2191 (1994).
[CrossRef] [PubMed]

Gu, P.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[CrossRef]

Guekos, G.

S. Pajarola, G. Guekos, and H. Kawaguchi, “Dual-polarization optical pulse generation using a mode-locked two-arm external cavity diode laser,” Opt. Commun. 154, 39–42 (1998).
[CrossRef]

S. Pajarola, G. Guekos, and J. Mørk, “Optical generation of millimeter-waves using a dual-polarization emission external cavity diode laser,” IEEE Photonics Technol. Lett. 8, 157–159 (1996).
[CrossRef]

Gulden, K.

M. Brunner, K. Gulden, R. Hövel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photonics Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Hader, J.

J. Hader, A. Zakharian, J. Moloney, T. Nelson, W. Siskaninetz, J. Ehret, K. Hantke, S. Koch, and M. Hofmann, “Semiconductor quantum-well designer active materials,” Opt. Photonics News 13 (12), 22 (2002).
[CrossRef]

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic theory of gain, absorption and refractive index in semiconductor laser materials: influence of conduction-band nonparabolicity and Coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. 35, 1878–1886 (1999).
[CrossRef]

Hantke, K.

J. Hader, A. Zakharian, J. Moloney, T. Nelson, W. Siskaninetz, J. Ehret, K. Hantke, S. Koch, and M. Hofmann, “Semiconductor quantum-well designer active materials,” Opt. Photonics News 13 (12), 22 (2002).
[CrossRef]

Hegg, M. C.

Hein, G.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, and M. Sperling, “Continuous wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[CrossRef]

Hennequin, D.

E. Cerboneschi, D. Hennequin, and E. Arimondo, “Frequency conversion in external cavity semiconductor lasers exposed to optical injection,” IEEE J. Quantum Electron. 32, 192–200 (1996).
[CrossRef]

Hess, O.

I. Fischer, O. Hess, W. Elsässer, and E. Göbel, “High-dimensional chaotic dynamics of an external cavity semiconductor laser,” Phys. Rev. Lett. 73, 2188–2191 (1994).
[CrossRef] [PubMed]

Hidaka, T.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[CrossRef]

S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal-mode laser diodes,” IEEE Photonics Technol. Lett. 7, 959–961 (1995).
[CrossRef]

Hirata, T.

S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal-mode laser diodes,” IEEE Photonics Technol. Lett. 7, 959–961 (1995).
[CrossRef]

M. Maeda, T. Hirata, M. H. Masayuki Suehiro, A. Yamaguchi, and H. Hosomatsu, “Photonic integrated circuit combining two GaAs distributed Bragg reflector laser diodes for generation of the beat signal,” Jpn. J. Appl. Phys., Part 1 31, L183–L185 (1992).
[CrossRef]

Hoffmann, S.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, and M. Sperling, “Continuous wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[CrossRef]

Hofmann, M.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

J. Hader, A. Zakharian, J. Moloney, T. Nelson, W. Siskaninetz, J. Ehret, K. Hantke, S. Koch, and M. Hofmann, “Semiconductor quantum-well designer active materials,” Opt. Photonics News 13 (12), 22 (2002).
[CrossRef]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, and M. Sperling, “Continuous wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[CrossRef]

Hohl, A.

A. Hohl and A. Gavrielides, “Bifurcation cascade in a semiconductor laser subject to optical feedback,” Phys. Rev. Lett. 82, 1148–1151 (1999).
[CrossRef]

Höhnsdorf, F.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

Hosomatsu, H.

M. Maeda, T. Hirata, M. H. Masayuki Suehiro, A. Yamaguchi, and H. Hosomatsu, “Photonic integrated circuit combining two GaAs distributed Bragg reflector laser diodes for generation of the beat signal,” Jpn. J. Appl. Phys., Part 1 31, L183–L185 (1992).
[CrossRef]

Houdré, R.

P. Pellandini, R. Stanley, R. Houdré, U. Oesterle, and M. Ilegems, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Hövel, R.

M. Brunner, K. Gulden, R. Hövel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photonics Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Hsu, C.-W.

Y.-J. Wong, C.-W. Hsu, and C. C. Yang, “Characteristics of adual-wavelength semiconductor laser near 1550 nm,” IEEE Photonics Technol. Lett. 11, 173–175 (1999).
[CrossRef]

Hsu, L.

L. Hsu, L. Chi, S. Wang, and C.-L. Pan, “Frequency tracking and stabilization of a tunable dual-wavelength external-cavity diode laser,” Opt. Commun. 199, 195–200 (1999).
[CrossRef]

Hu, B.

Huang, Y. H.

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, and Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photonics Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

Huber, A. E.

S. D. Roh, T. S. Yeoh, R. B. Swint, A. E. Huber, C. Y. Woo, J. S. Hughes, and J. J. Coleman, “Dual-wavelength InGaAs GaAs ridge waveguide distributed Bragg reflector lasers with tunable mode separation,” IEEE Photonics Technol. Lett. 12, 1307–1309 (2000).
[CrossRef]

Hughes, J. S.

S. D. Roh, T. S. Yeoh, R. B. Swint, A. E. Huber, C. Y. Woo, J. S. Hughes, and J. J. Coleman, “Dual-wavelength InGaAs GaAs ridge waveguide distributed Bragg reflector lasers with tunable mode separation,” IEEE Photonics Technol. Lett. 12, 1307–1309 (2000).
[CrossRef]

Hughes, S.

S. Hughes, “Carrier–carrier interaction and ultrashort pulse propagation in a highly excited semiconductor laser amplifier beyond the rate equation limit,” Phys. Rev. A 58, 2567–2576 (1998).
[CrossRef]

R. Indik, R. Binder, M. M. J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, “Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers,” Phys. Rev. A 53, 3614–3620 (1996).
[CrossRef] [PubMed]

Hui, R.

A. Mecozzi, A. D’Ottavi, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993).
[CrossRef]

Hyodo, M.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589–1591 (1996).
[CrossRef]

Iannone, E.

A. D. Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. S. J. Landreau, A. Ougazzaden, and J. C. Bouley, “Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett. 64, 2492–2494 (1994).
[CrossRef]

Iio, S.

S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal-mode laser diodes,” IEEE Photonics Technol. Lett. 7, 959–961 (1995).
[CrossRef]

Ilegems, M.

M. Brunner, K. Gulden, R. Hövel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photonics Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

P. Pellandini, R. Stanley, R. Houdré, U. Oesterle, and M. Ilegems, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Indik, R.

R. Indik, R. Binder, M. M. J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, “Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers,” Phys. Rev. A 53, 3614–3620 (1996).
[CrossRef] [PubMed]

R. Indik, A. Knorr, R. Binder, J. V. Moloney, and S. W. Koch, “Propagation-induced adiabatic following in a semiconductor amplifier,” Opt. Lett. 19, 966–968 (1994).
[CrossRef] [PubMed]

James, S.

S. Reilly, S. James, and R. Tatam, “Tunable and switchable dual wavelength lasers using optical fibre Bragg grating external cavities,” Electron. Lett. 38, 1033–1034 (2002).
[CrossRef]

Jiang, S.

S. Jiang and M. Dagenais, “Observation of nearly degenerate and cavity-enhanced highly nondegenerate four-wave mixing in semiconductor lasers,” Appl. Phys. Lett. 62, 2757–2759 (1993).
[CrossRef]

Kawaguchi, H.

S. Pajarola, G. Guekos, and H. Kawaguchi, “Dual-polarization optical pulse generation using a mode-locked two-arm external cavity diode laser,” Opt. Commun. 154, 39–42 (1998).
[CrossRef]

Kitamura, M.

S. Murata, A. Tomita, J. Shimizu, M. Kitamura, and A. Suzuki, “Observation of highly nondegenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

Kleine-Ostmann, T.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, and M. Sperling, “Continuous wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[CrossRef]

Klein-Ostmann, T.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

Knobloch, P.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, and M. Sperling, “Continuous wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[CrossRef]

Knorr, A.

R. Indik, R. Binder, M. M. J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, “Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers,” Phys. Rev. A 53, 3614–3620 (1996).
[CrossRef] [PubMed]

R. Indik, A. Knorr, R. Binder, J. V. Moloney, and S. W. Koch, “Propagation-induced adiabatic following in a semiconductor amplifier,” Opt. Lett. 19, 966–968 (1994).
[CrossRef] [PubMed]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Koch, J.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

Koch, M.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, and M. Sperling, “Continuous wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[CrossRef]

Koch, S.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

J. Hader, A. Zakharian, J. Moloney, T. Nelson, W. Siskaninetz, J. Ehret, K. Hantke, S. Koch, and M. Hofmann, “Semiconductor quantum-well designer active materials,” Opt. Photonics News 13 (12), 22 (2002).
[CrossRef]

Koch, S. W.

J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic theory of gain, absorption and refractive index in semiconductor laser materials: influence of conduction-band nonparabolicity and Coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. 35, 1878–1886 (1999).
[CrossRef]

R. Indik, R. Binder, M. M. J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, “Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers,” Phys. Rev. A 53, 3614–3620 (1996).
[CrossRef] [PubMed]

R. Indik, A. Knorr, R. Binder, J. V. Moloney, and S. W. Koch, “Propagation-induced adiabatic following in a semiconductor amplifier,” Opt. Lett. 19, 966–968 (1994).
[CrossRef] [PubMed]

Kolesik, M.

M. Matus, J. V. Moloney, and M. Kolesik, “Relevance of symmetry for the synchronization of chaotic optical systems and the related Lang–Kobayashi model limitations,” Phys. Rev. E 67, 016208 (2003).
[CrossRef]

C. R. Mirasso, M. Kolesik, M. Matus, J. K. White, and J. V. Moloney, “Synchronization and multimode dynamics of mutually coupled semiconductor lasers,” Phys. Rev. A 65, 013805 (2002).
[CrossRef]

M. Kolesik and J. V. Moloney, “A spatial digital filter method for broad-band simulation of semiconductor lasers,” IEEE J. Quantum Electron. 37, 936–944 (2001).
[CrossRef]

Kovanis, V.

T. Erneux, F. Rogister, A. Gavrielides, and V. Kovanis, “Bifurcation to mixed external cavity mode solutions for semiconductor lasers subject to optical feedback,” Opt. Commun. 183, 467–677 (2000).
[CrossRef]

Lammert, R.

M. Osowski, R. Lammert, and J. Coleman, “A dual-wavelength source with monolithically integrated electroabsorption modulators and Y-junction coupler by selective-area MOCVD,” IEEE Photonics Technol. Lett. 9, 158–160 (1997).
[CrossRef]

Landreau, P. S. J.

A. D. Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. S. J. Landreau, A. Ougazzaden, and J. C. Bouley, “Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett. 64, 2492–2494 (1994).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

Langbein, J.

J. Langbein, R. Burford, and L. Slater, “Variations in fault slip and strain accumulation at Parkfield, California: initial results using two-color geodimeter measurements, 1984–1988,” J. Geophys. Res. 95, 2533–2552 (1990).
[CrossRef]

Lee, K.-S.

K.-S. Lee and C. Shu, “Generation of optical millimeter-wave with a widely tunable carrier using Fabry–Perot grating-lens external cavity laser,” IEEE Microwave Guid. Wave Lett. 9, 192–194 (1999).
[CrossRef]

K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry–Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[CrossRef]

Lejon, M.

Lenstra, D.

M. Yousefi, D. Lenstra, G. Vemuri, and A. Fischer, “Control of nonlinear dynamics of a semiconductor laser with filtered optical feedback,” IEE Proc.: Optoelectron. 148, 233–237 (2001).

Leonhardt, R.

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color cw Ti:Al2 O3 laser,” IEEE J. Quantum Electron. 35, 1731–1736 (1999).
[CrossRef]

Li, G.

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, and Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photonics Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

Liu, J.-M.

J.-M. Liu and T. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

Maeda, M.

M. Maeda, T. Hirata, M. H. Masayuki Suehiro, A. Yamaguchi, and H. Hosomatsu, “Photonic integrated circuit combining two GaAs distributed Bragg reflector laser diodes for generation of the beat signal,” Jpn. J. Appl. Phys., Part 1 31, L183–L185 (1992).
[CrossRef]

Magnusson, I.

Mandel, P.

T. W. Carr, D. Pieroux, and P. Mandel, “Theory of a multimode semiconductor laser with optical feedback,” Phys. Rev. A 63, 033817 (2001).
[CrossRef]

Mark, J.

J. Mørk, B. Tromborg, and J. Mark, “Chaos in semiconductor laser with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[CrossRef]

Masayuki Suehiro, M. H.

M. Maeda, T. Hirata, M. H. Masayuki Suehiro, A. Yamaguchi, and H. Hosomatsu, “Photonic integrated circuit combining two GaAs distributed Bragg reflector laser diodes for generation of the beat signal,” Jpn. J. Appl. Phys., Part 1 31, L183–L185 (1992).
[CrossRef]

Matsuura, S.

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589–1591 (1996).
[CrossRef]

Matus, M.

M. Matus, J. V. Moloney, and M. Kolesik, “Relevance of symmetry for the synchronization of chaotic optical systems and the related Lang–Kobayashi model limitations,” Phys. Rev. E 67, 016208 (2003).
[CrossRef]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

C. R. Mirasso, M. Kolesik, M. Matus, J. K. White, and J. V. Moloney, “Synchronization and multimode dynamics of mutually coupled semiconductor lasers,” Phys. Rev. A 65, 013805 (2002).
[CrossRef]

McIntosh, K. A.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

Mecozzi, A.

A. D. Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. S. J. Landreau, A. Ougazzaden, and J. C. Bouley, “Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett. 64, 2492–2494 (1994).
[CrossRef]

A. Mecozzi, A. D’Ottavi, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993).
[CrossRef]

Megret, P.

F. Rogister, D. W. Sukow, A. Gavrielides, P. Megret, O. Deparis, and M. Blondel, “Experimental demonstration of suppression of low-frequency fluctuations and stabilization of an external-cavity laser diode,” Opt. Lett. 25, 808–810 (2000).
[CrossRef]

F. Rogister, P. Megret, O. Deparis, M. Blondel, and T. Erneux, “Suppression of low-frequency fluctuations and stabilization of a semiconductor laser subjected to optical feedback from a double cavity: theoretical results,” Opt. Lett. 2174, 1218–1220 (1999).
[CrossRef]

Meyn, J.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

Meziane, B.

P. Besnard, B. Meziane, K. Ait-Ameur, and S. Stephan, “Microwave spectra in external-cavity semiconductor lasers: theoretical modeling of multipass resonances,” IEEE J. Quantum Electron. 30, 1713–1722 (1994).
[CrossRef]

Mihaescu, A.

A. Mihaescu, T. Tam, P. Besnard, and G. Stephan, “Effects of external cavities on laser spectra: application to a fibre laser,” J. Opt. B Quantum Semiclass. Opt. 4, 67–74 (2002).
[CrossRef]

Mirasso, C. R.

J. M. Buldú, J. Trull, M. C. Torrent, J. García-Ojalvo, and C. R. Mirasso, “Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback,” J. Opt. B Quantum Semiclass. Opt. 4, L1–L3 (2002).
[CrossRef]

C. R. Mirasso, M. Kolesik, M. Matus, J. K. White, and J. V. Moloney, “Synchronization and multimode dynamics of mutually coupled semiconductor lasers,” Phys. Rev. A 65, 013805 (2002).
[CrossRef]

Moloney, J.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

J. Hader, A. Zakharian, J. Moloney, T. Nelson, W. Siskaninetz, J. Ehret, K. Hantke, S. Koch, and M. Hofmann, “Semiconductor quantum-well designer active materials,” Opt. Photonics News 13 (12), 22 (2002).
[CrossRef]

Moloney, J. V.

M. Matus, J. V. Moloney, and M. Kolesik, “Relevance of symmetry for the synchronization of chaotic optical systems and the related Lang–Kobayashi model limitations,” Phys. Rev. E 67, 016208 (2003).
[CrossRef]

C. R. Mirasso, M. Kolesik, M. Matus, J. K. White, and J. V. Moloney, “Synchronization and multimode dynamics of mutually coupled semiconductor lasers,” Phys. Rev. A 65, 013805 (2002).
[CrossRef]

M. Kolesik and J. V. Moloney, “A spatial digital filter method for broad-band simulation of semiconductor lasers,” IEEE J. Quantum Electron. 37, 936–944 (2001).
[CrossRef]

J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic theory of gain, absorption and refractive index in semiconductor laser materials: influence of conduction-band nonparabolicity and Coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. 35, 1878–1886 (1999).
[CrossRef]

R. Indik, A. Knorr, R. Binder, J. V. Moloney, and S. W. Koch, “Propagation-induced adiabatic following in a semiconductor amplifier,” Opt. Lett. 19, 966–968 (1994).
[CrossRef] [PubMed]

Moloney, M. M. J. V.

R. Indik, R. Binder, M. M. J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, “Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers,” Phys. Rev. A 53, 3614–3620 (1996).
[CrossRef] [PubMed]

Morgado, J.

A. Cartaxo and J. Morgado, “Analysis of semiconductor laser frequency noise taking into account multiple reflections in the external cavity,” IEE Proc.: Optoelectron. 147, 335–344 (2000).

Mørk, J.

S. Pajarola, G. Guekos, and J. Mørk, “Optical generation of millimeter-waves using a dual-polarization emission external cavity diode laser,” IEEE Photonics Technol. Lett. 8, 157–159 (1996).
[CrossRef]

J. Mørk, B. Tromborg, and J. Mark, “Chaos in semiconductor laser with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[CrossRef]

Moser, M.

M. Brunner, K. Gulden, R. Hövel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photonics Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Murata, S.

S. Murata, A. Tomita, J. Shimizu, M. Kitamura, and A. Suzuki, “Observation of highly nondegenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

Napholtz, S. G.

N. K. Dutta, T. Cella, J. L. Zilko, A. B. Piccirilli, R. L. Brown, and S. G. Napholtz, “Integrated external cavity distributed Bragg reflector laser,” Appl. Phys. Lett. 50, 644–646 (1987).
[CrossRef]

Nelson, T.

J. Hader, A. Zakharian, J. Moloney, T. Nelson, W. Siskaninetz, J. Ehret, K. Hantke, S. Koch, and M. Hofmann, “Semiconductor quantum-well designer active materials,” Opt. Photonics News 13 (12), 22 (2002).
[CrossRef]

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

Nuss, M.

O’Reilly, E.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

Oesterle, U.

P. Pellandini, R. Stanley, R. Houdré, U. Oesterle, and M. Ilegems, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Olesen, H.

B. Tromborg, J. Osmundsen, and H. Olesen, “Stability analysis for a semiconductor laser in an external cavity,” IEEE J. Quantum Electron. 20, 1023–1032 (1984).
[CrossRef]

Onodera, N.

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589–1591 (1996).
[CrossRef]

Osmundsen, J.

B. Tromborg, J. Osmundsen, and H. Olesen, “Stability analysis for a semiconductor laser in an external cavity,” IEEE J. Quantum Electron. 20, 1023–1032 (1984).
[CrossRef]

Osowski, M.

M. Osowski, R. Lammert, and J. Coleman, “A dual-wavelength source with monolithically integrated electroabsorption modulators and Y-junction coupler by selective-area MOCVD,” IEEE Photonics Technol. Lett. 9, 158–160 (1997).
[CrossRef]

Ottavi, A. D.

A. D. Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. S. J. Landreau, A. Ougazzaden, and J. C. Bouley, “Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett. 64, 2492–2494 (1994).
[CrossRef]

Ougazzaden, A.

A. D. Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. S. J. Landreau, A. Ougazzaden, and J. C. Bouley, “Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett. 64, 2492–2494 (1994).
[CrossRef]

Pajarola, S.

S. Pajarola, G. Guekos, and H. Kawaguchi, “Dual-polarization optical pulse generation using a mode-locked two-arm external cavity diode laser,” Opt. Commun. 154, 39–42 (1998).
[CrossRef]

S. Pajarola, G. Guekos, and J. Mørk, “Optical generation of millimeter-waves using a dual-polarization emission external cavity diode laser,” IEEE Photonics Technol. Lett. 8, 157–159 (1996).
[CrossRef]

Pan, C.-L.

P. Gi, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys., Part 1 38, L1246–L1248 (1999).
[CrossRef]

L. Hsu, L. Chi, S. Wang, and C.-L. Pan, “Frequency tracking and stabilization of a tunable dual-wavelength external-cavity diode laser,” Opt. Commun. 199, 195–200 (1999).
[CrossRef]

C.-L. Wang and C.-L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20, 1292–1294 (1995).
[CrossRef] [PubMed]

Pana, C.-L.

C.-L. Wang and C.-L. Pana, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[CrossRef]

Park, N.

J. Zhou, N. Park, J. W. Dawson, and K. J. Vahala, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Pellandini, P.

P. Pellandini, R. Stanley, R. Houdré, U. Oesterle, and M. Ilegems, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Piccirilli, A. B.

N. K. Dutta, T. Cella, J. L. Zilko, A. B. Piccirilli, R. L. Brown, and S. G. Napholtz, “Integrated external cavity distributed Bragg reflector laser,” Appl. Phys. Lett. 50, 644–646 (1987).
[CrossRef]

Pieroux, D.

T. W. Carr, D. Pieroux, and P. Mandel, “Theory of a multimode semiconductor laser with optical feedback,” Phys. Rev. A 63, 033817 (2001).
[CrossRef]

Pierz, K.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, and M. Sperling, “Continuous wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[CrossRef]

Prins, S.

C. Serrat, S. Prins, and R. Vilaseca, “Dynamics and coherence of a multimode semiconductor laser with optical feedback in an intermediate-length external-cavity regime,” Phys. Rev. A 68, 053804 (2003).
[CrossRef]

Razavi, K.

K. Razavi and P. Davies, “Semiconductor laser sources forthe generation of millimetre-wave signals,” IEE Proc.: Optoelectron. 145, 159–163 (1999).

Reilly, S.

S. Reilly, S. James, and R. Tatam, “Tunable and switchable dual wavelength lasers using optical fibre Bragg grating external cavities,” Electron. Lett. 38, 1033–1034 (2002).
[CrossRef]

Riechert, H.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

Rogister, F.

T. Erneux, F. Rogister, A. Gavrielides, and V. Kovanis, “Bifurcation to mixed external cavity mode solutions for semiconductor lasers subject to optical feedback,” Opt. Commun. 183, 467–677 (2000).
[CrossRef]

F. Rogister, D. W. Sukow, A. Gavrielides, P. Megret, O. Deparis, and M. Blondel, “Experimental demonstration of suppression of low-frequency fluctuations and stabilization of an external-cavity laser diode,” Opt. Lett. 25, 808–810 (2000).
[CrossRef]

F. Rogister, P. Megret, O. Deparis, M. Blondel, and T. Erneux, “Suppression of low-frequency fluctuations and stabilization of a semiconductor laser subjected to optical feedback from a double cavity: theoretical results,” Opt. Lett. 2174, 1218–1220 (1999).
[CrossRef]

Roh, S. D.

S. D. Roh, T. S. Yeoh, R. B. Swint, A. E. Huber, C. Y. Woo, J. S. Hughes, and J. J. Coleman, “Dual-wavelength InGaAs GaAs ridge waveguide distributed Bragg reflector lasers with tunable mode separation,” IEEE Photonics Technol. Lett. 12, 1307–1309 (2000).
[CrossRef]

Roskos, H. G.

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color cw Ti:Al2 O3 laser,” IEEE J. Quantum Electron. 35, 1731–1736 (1999).
[CrossRef]

Rubinsztein-Dunlop, H.

Rühle, W.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

Sakai, K.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[CrossRef]

P. Gi, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys., Part 1 38, L1246–L1248 (1999).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589–1591 (1996).
[CrossRef]

Schneider, H.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

Sciamanna, M.

T. Erneux, A. Gavrielides, and M. Sciamanna, “Stable microwave oscillations due to external-cavity-mode beating in laser diodes subject to optical feedback,” Phys. Rev. A 66, 033809 (2002).
[CrossRef]

Scotti, S.

A. D. Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. S. J. Landreau, A. Ougazzaden, and J. C. Bouley, “Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett. 64, 2492–2494 (1994).
[CrossRef]

Serrat, C.

C. Serrat, S. Prins, and R. Vilaseca, “Dynamics and coherence of a multimode semiconductor laser with optical feedback in an intermediate-length external-cavity regime,” Phys. Rev. A 68, 053804 (2003).
[CrossRef]

Shimizu, J.

S. Murata, A. Tomita, J. Shimizu, M. Kitamura, and A. Suzuki, “Observation of highly nondegenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

Shu, C.

K.-S. Lee and C. Shu, “Generation of optical millimeter-wave with a widely tunable carrier using Fabry–Perot grating-lens external cavity laser,” IEEE Microwave Guid. Wave Lett. 9, 192–194 (1999).
[CrossRef]

K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry–Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[CrossRef]

Siebe, F.

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color cw Ti:Al2 O3 laser,” IEEE J. Quantum Electron. 35, 1731–1736 (1999).
[CrossRef]

Siebert, K.

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color cw Ti:Al2 O3 laser,” IEEE J. Quantum Electron. 35, 1731–1736 (1999).
[CrossRef]

Simpson, T.

J.-M. Liu and T. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

Siskaninetz, W.

J. Hader, A. Zakharian, J. Moloney, T. Nelson, W. Siskaninetz, J. Ehret, K. Hantke, S. Koch, and M. Hofmann, “Semiconductor quantum-well designer active materials,” Opt. Photonics News 13 (12), 22 (2002).
[CrossRef]

Sjöström, S.

Slater, L.

J. Langbein, R. Burford, and L. Slater, “Variations in fault slip and strain accumulation at Parkfield, California: initial results using two-color geodimeter measurements, 1984–1988,” J. Geophys. Res. 95, 2533–2552 (1990).
[CrossRef]

Smowton, P.

P. Smowton, P. Blood, and W. Chow, “Comparison of experimental and theoretical gain-current relations in GaInP quantum well lasers,” Appl. Phys. Lett. 76, 1522–1524 (2000).
[CrossRef]

Sperling, M.

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, and M. Sperling, “Continuous wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[CrossRef]

Stanley, R.

P. Pellandini, R. Stanley, R. Houdré, U. Oesterle, and M. Ilegems, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

Stanley, R. P.

M. Brunner, K. Gulden, R. Hövel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photonics Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

Stephan, G.

A. Mihaescu, T. Tam, P. Besnard, and G. Stephan, “Effects of external cavities on laser spectra: application to a fibre laser,” J. Opt. B Quantum Semiclass. Opt. 4, 67–74 (2002).
[CrossRef]

Stephan, S.

P. Besnard, B. Meziane, K. Ait-Ameur, and S. Stephan, “Microwave spectra in external-cavity semiconductor lasers: theoretical modeling of multipass resonances,” IEEE J. Quantum Electron. 30, 1713–1722 (1994).
[CrossRef]

Stolz, W.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

Struckmeier, J.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

Suehiro, M.

S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal-mode laser diodes,” IEEE Photonics Technol. Lett. 7, 959–961 (1995).
[CrossRef]

Sukow, D. W.

Suzuki, A.

S. Murata, A. Tomita, J. Shimizu, M. Kitamura, and A. Suzuki, “Observation of highly nondegenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

Swint, R. B.

S. D. Roh, T. S. Yeoh, R. B. Swint, A. E. Huber, C. Y. Woo, J. S. Hughes, and J. J. Coleman, “Dual-wavelength InGaAs GaAs ridge waveguide distributed Bragg reflector lasers with tunable mode separation,” IEEE Photonics Technol. Lett. 12, 1307–1309 (2000).
[CrossRef]

Tam, T.

A. Mihaescu, T. Tam, P. Besnard, and G. Stephan, “Effects of external cavities on laser spectra: application to a fibre laser,” J. Opt. B Quantum Semiclass. Opt. 4, 67–74 (2002).
[CrossRef]

Tani, M.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[CrossRef]

P. Gi, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys., Part 1 38, L1246–L1248 (1999).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589–1591 (1996).
[CrossRef]

Tatam, R.

S. Reilly, S. James, and R. Tatam, “Tunable and switchable dual wavelength lasers using optical fibre Bragg grating external cavities,” Electron. Lett. 38, 1033–1034 (2002).
[CrossRef]

Teng, J. H.

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, and Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photonics Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[CrossRef]

Tomita, A.

S. Murata, A. Tomita, J. Shimizu, M. Kitamura, and A. Suzuki, “Observation of highly nondegenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

Torrent, M. C.

J. M. Buldú, J. Trull, M. C. Torrent, J. García-Ojalvo, and C. R. Mirasso, “Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback,” J. Opt. B Quantum Semiclass. Opt. 4, L1–L3 (2002).
[CrossRef]

Tromborg, B.

J. Mørk, B. Tromborg, and J. Mark, “Chaos in semiconductor laser with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[CrossRef]

B. Tromborg, J. Osmundsen, and H. Olesen, “Stability analysis for a semiconductor laser in an external cavity,” IEEE J. Quantum Electron. 20, 1023–1032 (1984).
[CrossRef]

Trull, J.

J. M. Buldú, J. Trull, M. C. Torrent, J. García-Ojalvo, and C. R. Mirasso, “Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback,” J. Opt. B Quantum Semiclass. Opt. 4, L1–L3 (2002).
[CrossRef]

Vahala, K. J.

J. Zhou, N. Park, J. W. Dawson, and K. J. Vahala, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Vemuri, G.

M. Yousefi, D. Lenstra, G. Vemuri, and A. Fischer, “Control of nonlinear dynamics of a semiconductor laser with filtered optical feedback,” IEE Proc.: Optoelectron. 148, 233–237 (2001).

Vilaseca, R.

C. Serrat, S. Prins, and R. Vilaseca, “Dynamics and coherence of a multimode semiconductor laser with optical feedback in an intermediate-length external-cavity regime,” Phys. Rev. A 68, 053804 (2003).
[CrossRef]

Wagner, A.

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

Wang, C.-L.

C.-L. Wang and C.-L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20, 1292–1294 (1995).
[CrossRef] [PubMed]

C.-L. Wang and C.-L. Pana, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[CrossRef]

Wang, S.

L. Hsu, L. Chi, S. Wang, and C.-L. Pan, “Frequency tracking and stabilization of a tunable dual-wavelength external-cavity diode laser,” Opt. Commun. 199, 195–200 (1999).
[CrossRef]

Wang, Z. J.

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, and Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photonics Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

White, J. K.

C. R. Mirasso, M. Kolesik, M. Matus, J. K. White, and J. V. Moloney, “Synchronization and multimode dynamics of mutually coupled semiconductor lasers,” Phys. Rev. A 65, 013805 (2002).
[CrossRef]

Wong, Y.-J.

Y.-J. Wong, C.-W. Hsu, and C. C. Yang, “Characteristics of adual-wavelength semiconductor laser near 1550 nm,” IEEE Photonics Technol. Lett. 11, 173–175 (1999).
[CrossRef]

Woo, C. Y.

S. D. Roh, T. S. Yeoh, R. B. Swint, A. E. Huber, C. Y. Woo, J. S. Hughes, and J. J. Coleman, “Dual-wavelength InGaAs GaAs ridge waveguide distributed Bragg reflector lasers with tunable mode separation,” IEEE Photonics Technol. Lett. 12, 1307–1309 (2000).
[CrossRef]

Wright, J. L.

Yamaguchi, A.

M. Maeda, T. Hirata, M. H. Masayuki Suehiro, A. Yamaguchi, and H. Hosomatsu, “Photonic integrated circuit combining two GaAs distributed Bragg reflector laser diodes for generation of the beat signal,” Jpn. J. Appl. Phys., Part 1 31, L183–L185 (1992).
[CrossRef]

Yang, C. C.

Y.-J. Wong, C.-W. Hsu, and C. C. Yang, “Characteristics of adual-wavelength semiconductor laser near 1550 nm,” IEEE Photonics Technol. Lett. 11, 173–175 (1999).
[CrossRef]

Yeoh, T. S.

S. D. Roh, T. S. Yeoh, R. B. Swint, A. E. Huber, C. Y. Woo, J. S. Hughes, and J. J. Coleman, “Dual-wavelength InGaAs GaAs ridge waveguide distributed Bragg reflector lasers with tunable mode separation,” IEEE Photonics Technol. Lett. 12, 1307–1309 (2000).
[CrossRef]

Yousefi, M.

M. Yousefi, D. Lenstra, G. Vemuri, and A. Fischer, “Control of nonlinear dynamics of a semiconductor laser with filtered optical feedback,” IEE Proc.: Optoelectron. 148, 233–237 (2001).

Zakharian, A.

J. Hader, A. Zakharian, J. Moloney, T. Nelson, W. Siskaninetz, J. Ehret, K. Hantke, S. Koch, and M. Hofmann, “Semiconductor quantum-well designer active materials,” Opt. Photonics News 13 (12), 22 (2002).
[CrossRef]

Zhang, Z. H.

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, and Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photonics Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

Zhou, J.

J. Zhou, N. Park, J. W. Dawson, and K. J. Vahala, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Zilko, J. L.

N. K. Dutta, T. Cella, J. L. Zilko, A. B. Piccirilli, R. L. Brown, and S. G. Napholtz, “Integrated external cavity distributed Bragg reflector laser,” Appl. Phys. Lett. 50, 644–646 (1987).
[CrossRef]

Zimmermann, J.

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (10)

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

A. D. Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. S. J. Landreau, A. Ougazzaden, and J. C. Bouley, “Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four-wave mixing,” Appl. Phys. Lett. 64, 2492–2494 (1994).
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[CrossRef]

N. K. Dutta, T. Cella, J. L. Zilko, A. B. Piccirilli, R. L. Brown, and S. G. Napholtz, “Integrated external cavity distributed Bragg reflector laser,” Appl. Phys. Lett. 50, 644–646 (1987).
[CrossRef]

J. Zhou, N. Park, J. W. Dawson, and K. J. Vahala, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

C.-L. Wang and C.-L. Pana, “Tunable dual-wavelength operation of a diode array with an external grating-loaded cavity,” Appl. Phys. Lett. 64, 3089–3091 (1994).
[CrossRef]

P. Pellandini, R. Stanley, R. Houdré, U. Oesterle, and M. Ilegems, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71, 864–866 (1997).
[CrossRef]

S. Jiang and M. Dagenais, “Observation of nearly degenerate and cavity-enhanced highly nondegenerate four-wave mixing in semiconductor lasers,” Appl. Phys. Lett. 62, 2757–2759 (1993).
[CrossRef]

S. Murata, A. Tomita, J. Shimizu, M. Kitamura, and A. Suzuki, “Observation of highly nondegenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

P. Smowton, P. Blood, and W. Chow, “Comparison of experimental and theoretical gain-current relations in GaInP quantum well lasers,” Appl. Phys. Lett. 76, 1522–1524 (2000).
[CrossRef]

Electron. Lett. (3)

S. Reilly, S. James, and R. Tatam, “Tunable and switchable dual wavelength lasers using optical fibre Bragg grating external cavities,” Electron. Lett. 38, 1033–1034 (2002).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimetre-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32, 1589–1591 (1996).
[CrossRef]

T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, and M. Sperling, “Continuous wave THz imaging,” Electron. Lett. 37, 1461–1463 (2001).
[CrossRef]

IEE Proc.: Optoelectron. (3)

M. Yousefi, D. Lenstra, G. Vemuri, and A. Fischer, “Control of nonlinear dynamics of a semiconductor laser with filtered optical feedback,” IEE Proc.: Optoelectron. 148, 233–237 (2001).

K. Razavi and P. Davies, “Semiconductor laser sources forthe generation of millimetre-wave signals,” IEE Proc.: Optoelectron. 145, 159–163 (1999).

A. Cartaxo and J. Morgado, “Analysis of semiconductor laser frequency noise taking into account multiple reflections in the external cavity,” IEE Proc.: Optoelectron. 147, 335–344 (2000).

IEEE J. Quantum Electron. (12)

P. Besnard, B. Meziane, K. Ait-Ameur, and S. Stephan, “Microwave spectra in external-cavity semiconductor lasers: theoretical modeling of multipass resonances,” IEEE J. Quantum Electron. 30, 1713–1722 (1994).
[CrossRef]

A. Mecozzi, A. D’Ottavi, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993).
[CrossRef]

E. Cerboneschi, D. Hennequin, and E. Arimondo, “Frequency conversion in external cavity semiconductor lasers exposed to optical injection,” IEEE J. Quantum Electron. 32, 192–200 (1996).
[CrossRef]

J. Hader, J. V. Moloney, and S. W. Koch, “Microscopic theory of gain, absorption and refractive index in semiconductor laser materials: influence of conduction-band nonparabolicity and Coulomb-induced intersubband coupling,” IEEE J. Quantum Electron. 35, 1878–1886 (1999).
[CrossRef]

M. Kolesik and J. V. Moloney, “A spatial digital filter method for broad-band simulation of semiconductor lasers,” IEEE J. Quantum Electron. 37, 936–944 (2001).
[CrossRef]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
[CrossRef]

J. Mørk, B. Tromborg, and J. Mark, “Chaos in semiconductor laser with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[CrossRef]

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color cw Ti:Al2 O3 laser,” IEEE J. Quantum Electron. 35, 1731–1736 (1999).
[CrossRef]

J.-M. Liu and T. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

B. Tromborg, J. Osmundsen, and H. Olesen, “Stability analysis for a semiconductor laser in an external cavity,” IEEE J. Quantum Electron. 20, 1023–1032 (1984).
[CrossRef]

K.-S. Lee and C. Shu, “Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry–Perot grating-lens external cavity,” IEEE J. Quantum Electron. 33, 1832–1838 (1997).
[CrossRef]

M. Hofmann, N. Gerhardt, A. Wagner, C. Ellmers, F. Höhnsdorf, J. Koch, W. Stolz, S. Koch, W. Rühle, J. Hader, J. Moloney, E. O’Reilly, B. Borchert, A. Egorov, H. Riechert, H. Schneider, and W. Chow, “Emission dynamics and optical gain of 1.3 μm (GaIn)(NAs)/GaAs lasers,” IEEE J. Quantum Electron. 38, 213–221 (2002).
[CrossRef]

IEEE Microwave Guid. Wave Lett. (1)

K.-S. Lee and C. Shu, “Generation of optical millimeter-wave with a widely tunable carrier using Fabry–Perot grating-lens external cavity laser,” IEEE Microwave Guid. Wave Lett. 9, 192–194 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (7)

Y.-J. Wong, C.-W. Hsu, and C. C. Yang, “Characteristics of adual-wavelength semiconductor laser near 1550 nm,” IEEE Photonics Technol. Lett. 11, 173–175 (1999).
[CrossRef]

S. Pajarola, G. Guekos, and J. Mørk, “Optical generation of millimeter-waves using a dual-polarization emission external cavity diode laser,” IEEE Photonics Technol. Lett. 8, 157–159 (1996).
[CrossRef]

M. Brunner, K. Gulden, R. Hövel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Ilegems, “Continuous-wave dual-wavelength lasing in a two-section vertical-cavity laser,” IEEE Photonics Technol. Lett. 12, 1316–1318 (2000).
[CrossRef]

S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal-mode laser diodes,” IEEE Photonics Technol. Lett. 7, 959–961 (1995).
[CrossRef]

S. D. Roh, T. S. Yeoh, R. B. Swint, A. E. Huber, C. Y. Woo, J. S. Hughes, and J. J. Coleman, “Dual-wavelength InGaAs GaAs ridge waveguide distributed Bragg reflector lasers with tunable mode separation,” IEEE Photonics Technol. Lett. 12, 1307–1309 (2000).
[CrossRef]

J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, and Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photonics Technol. Lett. 12, 1310–1312 (2000).
[CrossRef]

M. Osowski, R. Lammert, and J. Coleman, “A dual-wavelength source with monolithically integrated electroabsorption modulators and Y-junction coupler by selective-area MOCVD,” IEEE Photonics Technol. Lett. 9, 158–160 (1997).
[CrossRef]

J. Geophys. Res. (1)

J. Langbein, R. Burford, and L. Slater, “Variations in fault slip and strain accumulation at Parkfield, California: initial results using two-color geodimeter measurements, 1984–1988,” J. Geophys. Res. 95, 2533–2552 (1990).
[CrossRef]

J. Lightwave Technol. (1)

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[CrossRef]

J. Opt. B Quantum Semiclass. Opt. (2)

J. M. Buldú, J. Trull, M. C. Torrent, J. García-Ojalvo, and C. R. Mirasso, “Dynamics of modal power distribution in a multimode semiconductor laser with optical feedback,” J. Opt. B Quantum Semiclass. Opt. 4, L1–L3 (2002).
[CrossRef]

A. Mihaescu, T. Tam, P. Besnard, and G. Stephan, “Effects of external cavities on laser spectra: application to a fibre laser,” J. Opt. B Quantum Semiclass. Opt. 4, 67–74 (2002).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (2)

P. Gi, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of coherent cw-Terahertz radiation using a tunable dual-wavelength external cavity laser diode,” Jpn. J. Appl. Phys., Part 1 38, L1246–L1248 (1999).
[CrossRef]

M. Maeda, T. Hirata, M. H. Masayuki Suehiro, A. Yamaguchi, and H. Hosomatsu, “Photonic integrated circuit combining two GaAs distributed Bragg reflector laser diodes for generation of the beat signal,” Jpn. J. Appl. Phys., Part 1 31, L183–L185 (1992).
[CrossRef]

Opt. Commun. (4)

T. Erneux, F. Rogister, A. Gavrielides, and V. Kovanis, “Bifurcation to mixed external cavity mode solutions for semiconductor lasers subject to optical feedback,” Opt. Commun. 183, 467–677 (2000).
[CrossRef]

S. Pajarola, G. Guekos, and H. Kawaguchi, “Dual-polarization optical pulse generation using a mode-locked two-arm external cavity diode laser,” Opt. Commun. 154, 39–42 (1998).
[CrossRef]

L. Hsu, L. Chi, S. Wang, and C.-L. Pan, “Frequency tracking and stabilization of a tunable dual-wavelength external-cavity diode laser,” Opt. Commun. 199, 195–200 (1999).
[CrossRef]

M. Breede, S. Hoffmann, J. Zimmermann, J. Struckmeier, M. Hofmann, T. Klein-Ostmann, P. Knobloch, M. Koch, J. Meyn, M. Matus, S. Koch, and J. Moloney, “Fourier-transform external cavity lasers,” Opt. Commun. 207, 261–271 (2002).
[CrossRef]

Opt. Lett. (6)

Opt. Photonics News (1)

J. Hader, A. Zakharian, J. Moloney, T. Nelson, W. Siskaninetz, J. Ehret, K. Hantke, S. Koch, and M. Hofmann, “Semiconductor quantum-well designer active materials,” Opt. Photonics News 13 (12), 22 (2002).
[CrossRef]

Opt. Quantum Electron. (1)

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[CrossRef]

Phys. Rev. A (6)

T. Erneux, A. Gavrielides, and M. Sciamanna, “Stable microwave oscillations due to external-cavity-mode beating in laser diodes subject to optical feedback,” Phys. Rev. A 66, 033809 (2002).
[CrossRef]

T. W. Carr, D. Pieroux, and P. Mandel, “Theory of a multimode semiconductor laser with optical feedback,” Phys. Rev. A 63, 033817 (2001).
[CrossRef]

C. Serrat, S. Prins, and R. Vilaseca, “Dynamics and coherence of a multimode semiconductor laser with optical feedback in an intermediate-length external-cavity regime,” Phys. Rev. A 68, 053804 (2003).
[CrossRef]

C. R. Mirasso, M. Kolesik, M. Matus, J. K. White, and J. V. Moloney, “Synchronization and multimode dynamics of mutually coupled semiconductor lasers,” Phys. Rev. A 65, 013805 (2002).
[CrossRef]

R. Indik, R. Binder, M. M. J. V. Moloney, S. Hughes, A. Knorr, and S. W. Koch, “Role of plasma cooling, heating, and memory effects in subpicosecond pulse propagation in semiconductor amplifiers,” Phys. Rev. A 53, 3614–3620 (1996).
[CrossRef] [PubMed]

S. Hughes, “Carrier–carrier interaction and ultrashort pulse propagation in a highly excited semiconductor laser amplifier beyond the rate equation limit,” Phys. Rev. A 58, 2567–2576 (1998).
[CrossRef]

Phys. Rev. E (1)

M. Matus, J. V. Moloney, and M. Kolesik, “Relevance of symmetry for the synchronization of chaotic optical systems and the related Lang–Kobayashi model limitations,” Phys. Rev. E 67, 016208 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

A. Hohl and A. Gavrielides, “Bifurcation cascade in a semiconductor laser subject to optical feedback,” Phys. Rev. Lett. 82, 1148–1151 (1999).
[CrossRef]

I. Fischer, O. Hess, W. Elsässer, and E. Göbel, “High-dimensional chaotic dynamics of an external cavity semiconductor laser,” Phys. Rev. Lett. 73, 2188–2191 (1994).
[CrossRef] [PubMed]

Other (4)

W. Chow and S. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer-Verlag, Berlin, 1999).

K. J. Siebert, H. Quast, and H. G. Roskos, “cw–THz generation using a two-color Ti:sapphire laser,” presented at the International THz Workshop 2000, Sandbjerg, Denmark, September 17–19, 2000.

D. Lei, F. Dejun, L. Heliang, G. Chunfeng, Z. Donghui, K. Guiyun, L. Zhiguo, L. Kecheng, S. Qiuqin, and D. Xiaoyi, “A novel dual wavelength Er-doped fiber laser with narrow line-width,” Fifth Asia-Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference (IEEE, Piscataway, N.J., 1999), pp. 1501–1503.

S. Jiang and M. Dagenais, “Parameter extraction in semiconductor lasers using nearly degenerate four-wave mixing measurements,” in Lasers and Electro-Optics Society Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1993), pp. 578–579.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Two-color laser with spectrally filtered feedback using a single external cavity: HR, highly reflecting; AR, antireflecting facet; Att, tunable attenuator.

Fig. 2
Fig. 2

Two-color laser with spectrally filtered feedback using a two-arm external cavity.

Fig. 3
Fig. 3

Semicoherent two-color laser regime.

Fig. 4
Fig. 4

Coherent two-color laser regime.

Fig. 5
Fig. 5

Multimode two-color laser regime.

Fig. 6
Fig. 6

Chaotic two-color laser regime.

Fig. 7
Fig. 7

Multimode chaotic two-color laser regime.

Tables (1)

Tables Icon

Table 1 Main Parameters of the System

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2δz2 E(z, t)=μ 2δt2[E(z, t)+P(z, t)],
P(z, t)=0 χ[N(z, t), τ]E(z, t-τ)dτ,
tN=Je-Nτc(N)+A2 Imm=0,1 Pm+E¯m++Pm-E¯m-,
I(t)=I1+I2+2I1I2 cos(2πΔft).

Metrics