Abstract

The energy exchange processes within Er3+Yb3+-codoped silica fibers manufactured for high-power optical amplifiers are investigated through luminescent decay measurements and rate-equation modeling. The Er3+ and Yb3+ luminescence, as functions of pump power, exhibit an unquenchable Yb3+ to Er3+ cooperative energy transfer (CET) that does not subside with saturation of the Er3+ inversion. Consistent with the experimental results is the occurrence of secondary energy transfer to excited Er3+ ions in their metastable  4I13/2 state. The transfer coefficient for this secondary  4I13/2 CET is determined to be of the same order of magnitude as that for the initial Yb3+ to ground-state Er3+ CET. Additionally, the decay measurements and modeling indicate that a fraction of Yb3+ ions does not participate in energy exchange with the Er3+. These nonparticipatory Yb3+ ions amounted to ∼15% of the total Yb3+ concentration and could constitute Yb3+ clusters. Both secondary CET and nonparticipatory Yb3+ will lower Er3+Yb3+ fiber amplifier efficiencies.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
    [CrossRef]
  2. F. Leplingard, P. Bousselet, M. Bettiati, L. Gasca, L. Lorcy, A. Tardy, and D. Bayart, “High-power (+24 dBm) double-clad erbium-doped fiber amplifier for WDM applications in the C-band (1528 nm–1562 nm),” in Conference on Lasers and Electro-Optics, Europe, Conference Digest (Institute of Electrical and Electronic Engineers, Piscataway, N.J., 2000), p. 381.
  3. J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photonics Technol. Lett. 5, 301–303 (1993).
    [CrossRef]
  4. L. Goldberg, B. Cole, and E. Snitzer, “V-groove side-pumped 1.5 μm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997).
    [CrossRef]
  5. V. P. Gapontsev, V. V. Fomin, I. E. Samartsev, and A. Unt, “25 kW peak power, wide-tunable-repetition-rate and pulse duration eye-safe MOPFA laser,” in Conference on Lasers and Electro-optics, Vol. 9 of OSA 1996 Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 209–210.
  6. G. Wilson, J. M. P. Delavaux, A. Stentz, I. Ryazansky, R. Windeler, M. Fishteyn, and C. McIntosh, “Low-noise 1-Watt Er/Yb fiber amplifier for CATV distribution in HFC and FTTH/C systems,” in Optical Fiber Communication Conference, Postconference Digest, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 58–60.
  7. F. Di Pasquale, G. Grasso, F. Meli, G. Sacchi, and S. Turolla, “23 dBm output power Er/Yb co-doped fiber amplifier for WDM signals in the 1575–1605 nm wavelength region,” in Optical Fiber Communication Conference, Vol. 2 of OSA 1999 Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 4–6.
  8. D. M. Dagenais, L. Goldberg, R. P. Moeller, and W. K. Burns, “Wavelength stability characteristics of a high-power, amplified superfluorescent source,” J. Lightwave Technol. 17, 1415–1422 (1999).
    [CrossRef]
  9. E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5, 73–75 (1993).
    [CrossRef]
  10. J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
    [CrossRef]
  11. M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photonics Technol. Lett. 7, 303–305 (1995).
    [CrossRef]
  12. C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90, 4314–4320 (2001).
    [CrossRef]
  13. E. Yahel and A. Hardy, “Efficiency optimization of high-power, Er3+–Yb3+-codoped fiber amplifiers for wavelength-division-multiplexing applications,” J. Opt. Soc. Am. B 20, 1189–1197 (2003).
    [CrossRef]
  14. E. Yahel and A. Hardy, “Modeling high-power Er3+–Yb3+ codoped fiber lasers,” J. Lightwave Technol. 21, 2044–2052 (2003).
    [CrossRef]
  15. M. Achtenhagen, R. J. Beeson, F. Pan, B. Nyman, and A. Hardy, “Gain and noise in ytterbium-sensitized erbium-doped fiber amplifiers: measurements and simulations,” J. Lightwave Technol. 19, 1521–1526 (2001).
    [CrossRef]
  16. G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol. Mater. Devices Syst. 7, 21–44 (2001).
    [CrossRef]
  17. M. Karasek, “Optimum design of Er3+–Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699–1705 (1997).
    [CrossRef]
  18. J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 6, 383–385 (1994).
    [CrossRef]
  19. B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+–Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17, 833–839 (2000).
    [CrossRef]
  20. V. P. Gapontsev, S. M. Matitsin, and A. A. Isineev, “Channels of energy losses in erbium laser glasses in the simulated emission process,” Opt. Commun. 46, 226–230 (1983).
    [CrossRef]
  21. G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990–2001 (1998).
    [CrossRef]
  22. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20, 2487–2489 (1995).
    [CrossRef] [PubMed]
  23. M. L. Abell and J. P. Braselton, Differential Equations with Mathematica (Academic, Boston, 1993).
  24. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991).
    [CrossRef] [PubMed]
  25. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).
  26. E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1730–1741 (1990).
    [CrossRef]
  27. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering effects on double energy transfer in heavily ytterbium-erbium-codoped silica fibers,” J. Opt. Soc. Am. B 13, 693–701 (1996).
    [CrossRef]
  28. C.-H. Huang and L. McCaughan, “Polarization-dependent enhancement of population inversion and of green upconversion in Er:LiNbO3 by Yb codoping,” IEEE Photonics Technol. Lett. 9, 599–601 (1997).
    [CrossRef]
  29. C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitived Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
    [CrossRef]
  30. E. I. Galant, V. N. Kalinin, S. G. Lunter, A. A. Mak, A. K. Przhevuskii, D. S. Prilezhaev, M. N. Tolstoi, and V. A. Fromzel, “Stimulated emission from laser-pumped ytterbium- and erbium-activated glasses,” Sov. J. Quantum Electron. 6, 1190–1195 (1976).
    [CrossRef]
  31. A. G. Murzin and V. A. Fromzel, “Maximum gains of laser-pumped glasses activated with Yb3+ and Er3+ ions,” Sov. J. Quantum Electron. 11, 304–308 (1981).
    [CrossRef]
  32. E. F. Artemev, A. G. Murzin, Y. K. Fedorov, and V. A. Fromzel, “Some characteristics of population inversion at the 4I13/2 level of erbium ions in ytterbium-erbium glasses,” Sov. J. Quantum Electron. 11, 1266–1268 (1981).
    [CrossRef]
  33. S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quantum Electron. 31, 249–262 (1999).
    [CrossRef]
  34. R. Francini, F. Giovenale, U. M. Grassano, P. Laporta, and S. Taccheo, “Spectroscopy of Er and Er–Yb-doped phosphate glasses,” Opt. Mater. (Amsterdam, Neth.) 13, 417–425 (2000).
  35. D. Barbier, M. Rattay, F. Saint Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Technol. Lett. 9, 315–317 (1997).
    [CrossRef]
  36. P. F. Wysocki, G. Nykolak, D. S. Shenk, and K. Eason, “Noise figure limitation in ytterbium-codoped erbium-doped fiber amplifiers pumped at 1064 nm,” in Optical Fiber Communication Conference, Vol. 2 of OSA 1996 Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 32–33.
  37. S. Jiang, M. J. Myers, D. L. Rhonehouse, S. J. Hamlin, J. D. Myers, U. Griebner, R. Kock, and H. Schonnagel, “Ytterbium doped phosphate laser glasses,” in Solid State Lasers VI, R. Scheps, ed. Proc. SPIE 2986, 10–15 (1997).
    [CrossRef]
  38. A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30, 249–264 (1998).
    [CrossRef]

2003 (2)

2001 (3)

M. Achtenhagen, R. J. Beeson, F. Pan, B. Nyman, and A. Hardy, “Gain and noise in ytterbium-sensitized erbium-doped fiber amplifiers: measurements and simulations,” J. Lightwave Technol. 19, 1521–1526 (2001).
[CrossRef]

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol. Mater. Devices Syst. 7, 21–44 (2001).
[CrossRef]

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90, 4314–4320 (2001).
[CrossRef]

2000 (3)

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+–Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17, 833–839 (2000).
[CrossRef]

R. Francini, F. Giovenale, U. M. Grassano, P. Laporta, and S. Taccheo, “Spectroscopy of Er and Er–Yb-doped phosphate glasses,” Opt. Mater. (Amsterdam, Neth.) 13, 417–425 (2000).

1999 (2)

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quantum Electron. 31, 249–262 (1999).
[CrossRef]

D. M. Dagenais, L. Goldberg, R. P. Moeller, and W. K. Burns, “Wavelength stability characteristics of a high-power, amplified superfluorescent source,” J. Lightwave Technol. 17, 1415–1422 (1999).
[CrossRef]

1998 (2)

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990–2001 (1998).
[CrossRef]

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30, 249–264 (1998).
[CrossRef]

1997 (5)

D. Barbier, M. Rattay, F. Saint Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Technol. Lett. 9, 315–317 (1997).
[CrossRef]

S. Jiang, M. J. Myers, D. L. Rhonehouse, S. J. Hamlin, J. D. Myers, U. Griebner, R. Kock, and H. Schonnagel, “Ytterbium doped phosphate laser glasses,” in Solid State Lasers VI, R. Scheps, ed. Proc. SPIE 2986, 10–15 (1997).
[CrossRef]

C.-H. Huang and L. McCaughan, “Polarization-dependent enhancement of population inversion and of green upconversion in Er:LiNbO3 by Yb codoping,” IEEE Photonics Technol. Lett. 9, 599–601 (1997).
[CrossRef]

M. Karasek, “Optimum design of Er3+–Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699–1705 (1997).
[CrossRef]

L. Goldberg, B. Cole, and E. Snitzer, “V-groove side-pumped 1.5 μm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997).
[CrossRef]

1996 (1)

1995 (4)

C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitived Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
[CrossRef]

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
[CrossRef]

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photonics Technol. Lett. 7, 303–305 (1995).
[CrossRef]

E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20, 2487–2489 (1995).
[CrossRef] [PubMed]

1994 (1)

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 6, 383–385 (1994).
[CrossRef]

1993 (2)

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5, 73–75 (1993).
[CrossRef]

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photonics Technol. Lett. 5, 301–303 (1993).
[CrossRef]

1991 (1)

1990 (1)

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1730–1741 (1990).
[CrossRef]

1983 (1)

V. P. Gapontsev, S. M. Matitsin, and A. A. Isineev, “Channels of energy losses in erbium laser glasses in the simulated emission process,” Opt. Commun. 46, 226–230 (1983).
[CrossRef]

1981 (2)

A. G. Murzin and V. A. Fromzel, “Maximum gains of laser-pumped glasses activated with Yb3+ and Er3+ ions,” Sov. J. Quantum Electron. 11, 304–308 (1981).
[CrossRef]

E. F. Artemev, A. G. Murzin, Y. K. Fedorov, and V. A. Fromzel, “Some characteristics of population inversion at the 4I13/2 level of erbium ions in ytterbium-erbium glasses,” Sov. J. Quantum Electron. 11, 1266–1268 (1981).
[CrossRef]

1976 (1)

E. I. Galant, V. N. Kalinin, S. G. Lunter, A. A. Mak, A. K. Przhevuskii, D. S. Prilezhaev, M. N. Tolstoi, and V. A. Fromzel, “Stimulated emission from laser-pumped ytterbium- and erbium-activated glasses,” Sov. J. Quantum Electron. 6, 1190–1195 (1976).
[CrossRef]

Achtenhagen, M.

Artemev, E. F.

E. F. Artemev, A. G. Murzin, Y. K. Fedorov, and V. A. Fromzel, “Some characteristics of population inversion at the 4I13/2 level of erbium ions in ytterbium-erbium glasses,” Sov. J. Quantum Electron. 11, 1266–1268 (1981).
[CrossRef]

Babonas, J.

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
[CrossRef]

Barbier, D.

D. Barbier, M. Rattay, F. Saint Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Barnes, W. L.

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photonics Technol. Lett. 5, 301–303 (1993).
[CrossRef]

Bayart, D.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Bayon, J.-F.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5, 73–75 (1993).
[CrossRef]

Beeson, R. J.

Bettiati, M.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Bjarklev, A.

C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitived Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
[CrossRef]

Blixt, P.

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
[CrossRef]

Boubal, F.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Bousselet, P.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Burns, W. K.

Caplen, J. E.

Clauss, G.

D. Barbier, M. Rattay, F. Saint Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Cole, B.

L. Goldberg, B. Cole, and E. Snitzer, “V-groove side-pumped 1.5 μm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997).
[CrossRef]

Dagenais, D. M.

Delavaux, J.-M. P.

D. Barbier, M. Rattay, F. Saint Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Delevaque, E.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5, 73–75 (1993).
[CrossRef]

Desthieux, B.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Desurvire, E.

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1730–1741 (1990).
[CrossRef]

Di Pasquale, F.

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photonics Technol. Lett. 7, 303–305 (1995).
[CrossRef]

Dinesen, P. G.

C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitived Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
[CrossRef]

Dong, L.

Dussardier, B.

Federighi, M.

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photonics Technol. Lett. 7, 303–305 (1995).
[CrossRef]

Fedorov, Y. K.

E. F. Artemev, A. G. Murzin, Y. K. Fedorov, and V. A. Fromzel, “Some characteristics of population inversion at the 4I13/2 level of erbium ions in ytterbium-erbium glasses,” Sov. J. Quantum Electron. 11, 1266–1268 (1981).
[CrossRef]

Francini, R.

R. Francini, F. Giovenale, U. M. Grassano, P. Laporta, and S. Taccheo, “Spectroscopy of Er and Er–Yb-doped phosphate glasses,” Opt. Mater. (Amsterdam, Neth.) 13, 417–425 (2000).

Fromzel, V. A.

E. F. Artemev, A. G. Murzin, Y. K. Fedorov, and V. A. Fromzel, “Some characteristics of population inversion at the 4I13/2 level of erbium ions in ytterbium-erbium glasses,” Sov. J. Quantum Electron. 11, 1266–1268 (1981).
[CrossRef]

A. G. Murzin and V. A. Fromzel, “Maximum gains of laser-pumped glasses activated with Yb3+ and Er3+ ions,” Sov. J. Quantum Electron. 11, 304–308 (1981).
[CrossRef]

E. I. Galant, V. N. Kalinin, S. G. Lunter, A. A. Mak, A. K. Przhevuskii, D. S. Prilezhaev, M. N. Tolstoi, and V. A. Fromzel, “Stimulated emission from laser-pumped ytterbium- and erbium-activated glasses,” Sov. J. Quantum Electron. 6, 1190–1195 (1976).
[CrossRef]

Galant, E. I.

E. I. Galant, V. N. Kalinin, S. G. Lunter, A. A. Mak, A. K. Przhevuskii, D. S. Prilezhaev, M. N. Tolstoi, and V. A. Fromzel, “Stimulated emission from laser-pumped ytterbium- and erbium-activated glasses,” Sov. J. Quantum Electron. 6, 1190–1195 (1976).
[CrossRef]

Gapontsev, V. P.

V. P. Gapontsev, S. M. Matitsin, and A. A. Isineev, “Channels of energy losses in erbium laser glasses in the simulated emission process,” Opt. Commun. 46, 226–230 (1983).
[CrossRef]

Gasca, L.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Georges, T.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5, 73–75 (1993).
[CrossRef]

Giles, C. R.

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1730–1741 (1990).
[CrossRef]

Giovenale, F.

R. Francini, F. Giovenale, U. M. Grassano, P. Laporta, and S. Taccheo, “Spectroscopy of Er and Er–Yb-doped phosphate glasses,” Opt. Mater. (Amsterdam, Neth.) 13, 417–425 (2000).

Goix, M.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Goldberg, L.

Grassano, U. M.

R. Francini, F. Giovenale, U. M. Grassano, P. Laporta, and S. Taccheo, “Spectroscopy of Er and Er–Yb-doped phosphate glasses,” Opt. Mater. (Amsterdam, Neth.) 13, 417–425 (2000).

Griebner, U.

S. Jiang, M. J. Myers, D. L. Rhonehouse, S. J. Hamlin, J. D. Myers, U. Griebner, R. Kock, and H. Schonnagel, “Ytterbium doped phosphate laser glasses,” in Solid State Lasers VI, R. Scheps, ed. Proc. SPIE 2986, 10–15 (1997).
[CrossRef]

Grubb, S. G.

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photonics Technol. Lett. 5, 301–303 (1993).
[CrossRef]

Hamlin, S. J.

S. Jiang, M. J. Myers, D. L. Rhonehouse, S. J. Hamlin, J. D. Myers, U. Griebner, R. Kock, and H. Schonnagel, “Ytterbium doped phosphate laser glasses,” in Solid State Lasers VI, R. Scheps, ed. Proc. SPIE 2986, 10–15 (1997).
[CrossRef]

Hardy, A.

Hatami-Hanza, H.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30, 249–264 (1998).
[CrossRef]

Huang, C.-H.

C.-H. Huang and L. McCaughan, “Polarization-dependent enhancement of population inversion and of green upconversion in Er:LiNbO3 by Yb codoping,” IEEE Photonics Technol. Lett. 9, 599–601 (1997).
[CrossRef]

Hwang, B.-C.

Isineev, A. A.

V. P. Gapontsev, S. M. Matitsin, and A. A. Isineev, “Channels of energy losses in erbium laser glasses in the simulated emission process,” Opt. Commun. 46, 226–230 (1983).
[CrossRef]

Jaskorzynska, B.

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
[CrossRef]

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 6, 383–385 (1994).
[CrossRef]

Jiang, S.

B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+–Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17, 833–839 (2000).
[CrossRef]

S. Jiang, M. J. Myers, D. L. Rhonehouse, S. J. Hamlin, J. D. Myers, U. Griebner, R. Kock, and H. Schonnagel, “Ytterbium doped phosphate laser glasses,” in Solid State Lasers VI, R. Scheps, ed. Proc. SPIE 2986, 10–15 (1997).
[CrossRef]

Kalinin, V. N.

E. I. Galant, V. N. Kalinin, S. G. Lunter, A. A. Mak, A. K. Przhevuskii, D. S. Prilezhaev, M. N. Tolstoi, and V. A. Fromzel, “Stimulated emission from laser-pumped ytterbium- and erbium-activated glasses,” Sov. J. Quantum Electron. 6, 1190–1195 (1976).
[CrossRef]

Karasek, M.

M. Karasek, “Optimum design of Er3+–Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699–1705 (1997).
[CrossRef]

Kevorkian, A.

D. Barbier, M. Rattay, F. Saint Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Kock, R.

S. Jiang, M. J. Myers, D. L. Rhonehouse, S. J. Hamlin, J. D. Myers, U. Griebner, R. Kock, and H. Schonnagel, “Ytterbium doped phosphate laser glasses,” in Solid State Lasers VI, R. Scheps, ed. Proc. SPIE 2986, 10–15 (1997).
[CrossRef]

Laming, R. I.

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photonics Technol. Lett. 5, 301–303 (1993).
[CrossRef]

Lamouler, P.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5, 73–75 (1993).
[CrossRef]

Laporta, P.

R. Francini, F. Giovenale, U. M. Grassano, P. Laporta, and S. Taccheo, “Spectroscopy of Er and Er–Yb-doped phosphate glasses,” Opt. Mater. (Amsterdam, Neth.) 13, 417–425 (2000).

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quantum Electron. 31, 249–262 (1999).
[CrossRef]

Leplingard, F.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Lester, C.

C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitived Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
[CrossRef]

Longhi, S.

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quantum Electron. 31, 249–262 (1999).
[CrossRef]

Lunter, S. G.

E. I. Galant, V. N. Kalinin, S. G. Lunter, A. A. Mak, A. K. Przhevuskii, D. S. Prilezhaev, M. N. Tolstoi, and V. A. Fromzel, “Stimulated emission from laser-pumped ytterbium- and erbium-activated glasses,” Sov. J. Quantum Electron. 6, 1190–1195 (1976).
[CrossRef]

Luo, T.

Mak, A. A.

E. I. Galant, V. N. Kalinin, S. G. Lunter, A. A. Mak, A. K. Przhevuskii, D. S. Prilezhaev, M. N. Tolstoi, and V. A. Fromzel, “Stimulated emission from laser-pumped ytterbium- and erbium-activated glasses,” Sov. J. Quantum Electron. 6, 1190–1195 (1976).
[CrossRef]

Matitsin, S. M.

V. P. Gapontsev, S. M. Matitsin, and A. A. Isineev, “Channels of energy losses in erbium laser glasses in the simulated emission process,” Opt. Commun. 46, 226–230 (1983).
[CrossRef]

Maurice, E.

McCaughan, L.

C.-H. Huang and L. McCaughan, “Polarization-dependent enhancement of population inversion and of green upconversion in Er:LiNbO3 by Yb codoping,” IEEE Photonics Technol. Lett. 9, 599–601 (1997).
[CrossRef]

Minelly, J. D.

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990–2001 (1998).
[CrossRef]

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photonics Technol. Lett. 5, 301–303 (1993).
[CrossRef]

Miniscalco, W. J.

Moeller, R. P.

Monerie, M.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5, 73–75 (1993).
[CrossRef]

Monnom, G.

Morkel, P. R.

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photonics Technol. Lett. 5, 301–303 (1993).
[CrossRef]

Murphy, E.

D. Barbier, M. Rattay, F. Saint Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Murzin, A. G.

E. F. Artemev, A. G. Murzin, Y. K. Fedorov, and V. A. Fromzel, “Some characteristics of population inversion at the 4I13/2 level of erbium ions in ytterbium-erbium glasses,” Sov. J. Quantum Electron. 11, 1266–1268 (1981).
[CrossRef]

A. G. Murzin and V. A. Fromzel, “Maximum gains of laser-pumped glasses activated with Yb3+ and Er3+ ions,” Sov. J. Quantum Electron. 11, 304–308 (1981).
[CrossRef]

Myers, J. D.

S. Jiang, M. J. Myers, D. L. Rhonehouse, S. J. Hamlin, J. D. Myers, U. Griebner, R. Kock, and H. Schonnagel, “Ytterbium doped phosphate laser glasses,” in Solid State Lasers VI, R. Scheps, ed. Proc. SPIE 2986, 10–15 (1997).
[CrossRef]

Myers, M. J.

S. Jiang, M. J. Myers, D. L. Rhonehouse, S. J. Hamlin, J. D. Myers, U. Griebner, R. Kock, and H. Schonnagel, “Ytterbium doped phosphate laser glasses,” in Solid State Lasers VI, R. Scheps, ed. Proc. SPIE 2986, 10–15 (1997).
[CrossRef]

Najafi, S. I.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30, 249–264 (1998).
[CrossRef]

Nilsson, J.

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990–2001 (1998).
[CrossRef]

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
[CrossRef]

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 6, 383–385 (1994).
[CrossRef]

Nyman, B.

Ostrowsky, D. B.

Pan, F.

Payne, D. N.

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990–2001 (1998).
[CrossRef]

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photonics Technol. Lett. 5, 301–303 (1993).
[CrossRef]

Peyghambarian, N.

Polman, A.

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90, 4314–4320 (2001).
[CrossRef]

Prilezhaev, D. S.

E. I. Galant, V. N. Kalinin, S. G. Lunter, A. A. Mak, A. K. Przhevuskii, D. S. Prilezhaev, M. N. Tolstoi, and V. A. Fromzel, “Stimulated emission from laser-pumped ytterbium- and erbium-activated glasses,” Sov. J. Quantum Electron. 6, 1190–1195 (1976).
[CrossRef]

Przhevuskii, A. K.

E. I. Galant, V. N. Kalinin, S. G. Lunter, A. A. Mak, A. K. Przhevuskii, D. S. Prilezhaev, M. N. Tolstoi, and V. A. Fromzel, “Stimulated emission from laser-pumped ytterbium- and erbium-activated glasses,” Sov. J. Quantum Electron. 6, 1190–1195 (1976).
[CrossRef]

Quimby, R. S.

Rasmussen, T.

C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitived Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
[CrossRef]

Rattay, M.

D. Barbier, M. Rattay, F. Saint Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Rhonehouse, D. L.

S. Jiang, M. J. Myers, D. L. Rhonehouse, S. J. Hamlin, J. D. Myers, U. Griebner, R. Kock, and H. Schonnagel, “Ytterbium doped phosphate laser glasses,” in Solid State Lasers VI, R. Scheps, ed. Proc. SPIE 2986, 10–15 (1997).
[CrossRef]

Safavi-Naeini, S.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30, 249–264 (1998).
[CrossRef]

Saint Andre, F.

D. Barbier, M. Rattay, F. Saint Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Scheer, P.

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 6, 383–385 (1994).
[CrossRef]

Schonnagel, H.

S. Jiang, M. J. Myers, D. L. Rhonehouse, S. J. Hamlin, J. D. Myers, U. Griebner, R. Kock, and H. Schonnagel, “Ytterbium doped phosphate laser glasses,” in Solid State Lasers VI, R. Scheps, ed. Proc. SPIE 2986, 10–15 (1997).
[CrossRef]

Shooshtari, A.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30, 249–264 (1998).
[CrossRef]

Snitzer, E.

L. Goldberg, B. Cole, and E. Snitzer, “V-groove side-pumped 1.5 μm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997).
[CrossRef]

Sorbello, G.

B.-C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+–Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17, 833–839 (2000).
[CrossRef]

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quantum Electron. 31, 249–262 (1999).
[CrossRef]

Strohhöfer, C.

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90, 4314–4320 (2001).
[CrossRef]

Taccheo, S.

R. Francini, F. Giovenale, U. M. Grassano, P. Laporta, and S. Taccheo, “Spectroscopy of Er and Er–Yb-doped phosphate glasses,” Opt. Mater. (Amsterdam, Neth.) 13, 417–425 (2000).

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quantum Electron. 31, 249–262 (1999).
[CrossRef]

Tardy, A.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Tolstoi, M. N.

E. I. Galant, V. N. Kalinin, S. G. Lunter, A. A. Mak, A. K. Przhevuskii, D. S. Prilezhaev, M. N. Tolstoi, and V. A. Fromzel, “Stimulated emission from laser-pumped ytterbium- and erbium-activated glasses,” Sov. J. Quantum Electron. 6, 1190–1195 (1976).
[CrossRef]

Touam, T.

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30, 249–264 (1998).
[CrossRef]

Townsend, J. E.

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photonics Technol. Lett. 5, 301–303 (1993).
[CrossRef]

Trouillon, M.

D. Barbier, M. Rattay, F. Saint Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Technol. Lett. 9, 315–317 (1997).
[CrossRef]

Valley, G. C.

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol. Mater. Devices Syst. 7, 21–44 (2001).
[CrossRef]

Vienne, G. G.

Watson, J.

Yahel, E.

Zyskind, J. L.

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1730–1741 (1990).
[CrossRef]

Electron. Lett. (2)

L. Goldberg, B. Cole, and E. Snitzer, “V-groove side-pumped 1.5 μm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997).
[CrossRef]

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Karasek, “Optimum design of Er3+–Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699–1705 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (6)

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 6, 383–385 (1994).
[CrossRef]

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5, 73–75 (1993).
[CrossRef]

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photonics Technol. Lett. 7, 303–305 (1995).
[CrossRef]

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photonics Technol. Lett. 5, 301–303 (1993).
[CrossRef]

C.-H. Huang and L. McCaughan, “Polarization-dependent enhancement of population inversion and of green upconversion in Er:LiNbO3 by Yb codoping,” IEEE Photonics Technol. Lett. 9, 599–601 (1997).
[CrossRef]

D. Barbier, M. Rattay, F. Saint Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Technol. Lett. 9, 315–317 (1997).
[CrossRef]

J. Appl. Phys. (1)

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90, 4314–4320 (2001).
[CrossRef]

J. Lightwave Technol. (7)

J. Nilsson, P. Blixt, B. Jaskorzynska, and J. Babonas, “Evaluation of parasitic upconversion mechanisms in Er3+-doped silica-glass fibers by analysis of fluorescence at 980 nm,” J. Lightwave Technol. 13, 341–349 (1995).
[CrossRef]

D. M. Dagenais, L. Goldberg, R. P. Moeller, and W. K. Burns, “Wavelength stability characteristics of a high-power, amplified superfluorescent source,” J. Lightwave Technol. 17, 1415–1422 (1999).
[CrossRef]

C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitived Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
[CrossRef]

E. Yahel and A. Hardy, “Modeling high-power Er3+–Yb3+ codoped fiber lasers,” J. Lightwave Technol. 21, 2044–2052 (2003).
[CrossRef]

M. Achtenhagen, R. J. Beeson, F. Pan, B. Nyman, and A. Hardy, “Gain and noise in ytterbium-sensitized erbium-doped fiber amplifiers: measurements and simulations,” J. Lightwave Technol. 19, 1521–1526 (2001).
[CrossRef]

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990–2001 (1998).
[CrossRef]

E. Desurvire, J. L. Zyskind, and C. R. Giles, “Design optimization for efficient erbium-doped fiber amplifiers,” J. Lightwave Technol. 8, 1730–1741 (1990).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

V. P. Gapontsev, S. M. Matitsin, and A. A. Isineev, “Channels of energy losses in erbium laser glasses in the simulated emission process,” Opt. Commun. 46, 226–230 (1983).
[CrossRef]

Opt. Fiber Technol. Mater. Devices Syst. (1)

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol. Mater. Devices Syst. 7, 21–44 (2001).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (Amsterdam, Neth.) (1)

R. Francini, F. Giovenale, U. M. Grassano, P. Laporta, and S. Taccheo, “Spectroscopy of Er and Er–Yb-doped phosphate glasses,” Opt. Mater. (Amsterdam, Neth.) 13, 417–425 (2000).

Opt. Quantum Electron. (2)

S. Taccheo, G. Sorbello, S. Longhi, and P. Laporta, “Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass,” Opt. Quantum Electron. 31, 249–262 (1999).
[CrossRef]

A. Shooshtari, T. Touam, S. I. Najafi, S. Safavi-Naeini, and H. Hatami-Hanza, “Yb3+ sensitized Er3+-doped waveguide amplifiers: a theoretical approach,” Opt. Quantum Electron. 30, 249–264 (1998).
[CrossRef]

Proc. SPIE (1)

S. Jiang, M. J. Myers, D. L. Rhonehouse, S. J. Hamlin, J. D. Myers, U. Griebner, R. Kock, and H. Schonnagel, “Ytterbium doped phosphate laser glasses,” in Solid State Lasers VI, R. Scheps, ed. Proc. SPIE 2986, 10–15 (1997).
[CrossRef]

Sov. J. Quantum Electron. (3)

E. I. Galant, V. N. Kalinin, S. G. Lunter, A. A. Mak, A. K. Przhevuskii, D. S. Prilezhaev, M. N. Tolstoi, and V. A. Fromzel, “Stimulated emission from laser-pumped ytterbium- and erbium-activated glasses,” Sov. J. Quantum Electron. 6, 1190–1195 (1976).
[CrossRef]

A. G. Murzin and V. A. Fromzel, “Maximum gains of laser-pumped glasses activated with Yb3+ and Er3+ ions,” Sov. J. Quantum Electron. 11, 304–308 (1981).
[CrossRef]

E. F. Artemev, A. G. Murzin, Y. K. Fedorov, and V. A. Fromzel, “Some characteristics of population inversion at the 4I13/2 level of erbium ions in ytterbium-erbium glasses,” Sov. J. Quantum Electron. 11, 1266–1268 (1981).
[CrossRef]

Other (7)

P. F. Wysocki, G. Nykolak, D. S. Shenk, and K. Eason, “Noise figure limitation in ytterbium-codoped erbium-doped fiber amplifiers pumped at 1064 nm,” in Optical Fiber Communication Conference, Vol. 2 of OSA 1996 Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 32–33.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

M. L. Abell and J. P. Braselton, Differential Equations with Mathematica (Academic, Boston, 1993).

F. Leplingard, P. Bousselet, M. Bettiati, L. Gasca, L. Lorcy, A. Tardy, and D. Bayart, “High-power (+24 dBm) double-clad erbium-doped fiber amplifier for WDM applications in the C-band (1528 nm–1562 nm),” in Conference on Lasers and Electro-Optics, Europe, Conference Digest (Institute of Electrical and Electronic Engineers, Piscataway, N.J., 2000), p. 381.

V. P. Gapontsev, V. V. Fomin, I. E. Samartsev, and A. Unt, “25 kW peak power, wide-tunable-repetition-rate and pulse duration eye-safe MOPFA laser,” in Conference on Lasers and Electro-optics, Vol. 9 of OSA 1996 Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 209–210.

G. Wilson, J. M. P. Delavaux, A. Stentz, I. Ryazansky, R. Windeler, M. Fishteyn, and C. McIntosh, “Low-noise 1-Watt Er/Yb fiber amplifier for CATV distribution in HFC and FTTH/C systems,” in Optical Fiber Communication Conference, Postconference Digest, Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 58–60.

F. Di Pasquale, G. Grasso, F. Meli, G. Sacchi, and S. Turolla, “23 dBm output power Er/Yb co-doped fiber amplifier for WDM signals in the 1575–1605 nm wavelength region,” in Optical Fiber Communication Conference, Vol. 2 of OSA 1999 Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 4–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy levels and energy exchange processes for coupled Yb3+ and Er3+ ions and for nonparticipatory Yb3+ ions used to model luminescence measurements of EYDFA fibers.

Fig. 2
Fig. 2

Experimental setup used to measure Er3+ 1550-nm band and Yb3+ 980-nm band luminescent decays from the EYDF samples. FBG, fiber Bragg grating; ND, neutral density; MM, multimode.

Fig. 3
Fig. 3

Measured and simulated luminescence data for EYDF 1. Measured steady-state luminescence and calculated population inversion versus pump power for (a) Er3+ and (b) Yb3+. Luminescent decay curves for varying pump powers for (c) Er3+ and (d) Yb3+.

Fig. 4
Fig. 4

Comparison of the measured data and model fits for EYDF 1 from Fig. 3 to the predictions of EYDFA models without secondary  4I13/2 CET or nonparticipatory Yb3+ ions.

Fig. 5
Fig. 5

Simulation of the measured Yb3+ luminescent decay by the combined luminescence from nonparticipatory Yb3+ ions and from Yb3+ ions involved in Yb3+Er3+ energy exchange, illustrated for the highest pump power curve in Fig. 3(d).

Fig. 6
Fig. 6

Individual process rates as functions of time for the participatory-ion component of the simulated Yb3+ decay in Fig. 5.

Fig. 7
Fig. 7

Measured Yb3+ luminescent decays for the three different EYDF samples and the one Yb3+-doped fiber at a common high pump intensity.

Tables (1)

Tables Icon

Table 1 EYDF Fiber and Best-Fit Model Parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dY2dt=-Y2τYb-K1Y2E1+K-1Y1E3-K2Y2E2+WY12Y1-WY21Y2,
Y1=(1-fNP)NYb-Y2,
dE2dt=-E2τEr+E3τ32-2CupE22-K2Y2E2+WE12E1-WE21E2,
dE3dt=-E3τ32+K1Y2E1-K-1Y1E3+K2Y2E2+CupE22+WE13E1,
E4,E50,
E1=NEr-E2-E3.
dY2NPdt=-Y2NPτYb+WY12Y1NP-WY21Y2NP,
Y1NP=fNPNYb-Y2NP.

Metrics