Abstract

Quantum-dot infrared photodetectors (QDIPs) exhibit a bias-dependent shift in their spectral response. In this paper, a novel signal-processing technique is developed that exploits this bias-dependent spectral diversity to synthesize measurements that are tuned to a wide range of user-specified spectra. The technique is based on two steps: The desired spectral response is first optimally approximated by a weighted superposition of a family of bias-controlled spectra of the QDIP, corresponding to a preselected set of biases. Second, multiple measurements are taken of the object to be probed, one for each of the prescribed biases, which are subsequently combined linearly with the same weights. The technique is demonstrated to produce a unimodal response that has a tunable FWHM (down to Δλ0.5 µm) for each center wavelength in the range 3–8 µm, which is an improvement by a factor of 4 over the spectral resolution of the raw QDIP.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Arias, M. Zandian, J. G. Pasko, J. Bajaj, L. J. Kozlowski, W. E. Tennant, and R. E. DeWames, “MBE HgCdTe infrared focal plane array (IRFPA) flexible manufacturing,” in Infrared Detectors: State of the Art II, R. E. Longshore, ed., Proc. SPIE 2274, 2–16 (1994).
    [CrossRef]
  2. P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadjian, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184–185, 1262–1271 (1998).
    [CrossRef]
  3. J. M. Arias, M. Zandian, J. Bajaj, J. G. Pasko, L. O. Bubulac, S. H. Shin, and R. E. DeWarnes, “Molecular beam epitaxy HgCdTe growth-induced void defects and their effect on infrared photodiodes,” J. Electron. Mater. 24, 521–524 (1995).
    [CrossRef]
  4. R. M. Biefeld, J. R. Wendt, and S. R. Kurtz, “Improving the performance of InAs1−xSbx/InSb infrared detectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 107, 836–839 (1991).
    [CrossRef]
  5. M. H. Young, D. H. Chow, A. T. Hunter, and R. H. Miles, “Recent advances in Ga1−xInxSb/InAs superlattice IR detector materials,” Appl. Surf. Sci. 123–124, 395–399 (1998).
    [CrossRef]
  6. L. West and S. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
    [CrossRef]
  7. B. F. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).
    [CrossRef]
  8. A. C. Goldberg, J. W. Little, S. W. Kennerly, D. W. Beekman, and R. P. Leavitt, “Temperature dependence of the responsivity of quantum well infrared photodetectors,” in Proceedings of 6th International Symposium on LWIR Detectors and Arrays: Physics and Applications, S. S. Li, M. Z. Tidrow, S. D. Gunapala, and H. C. Liu, eds. (Electrochemical Society, Boston, Mass., 1999), Vol. 98–21, pp. 122–123.
  9. C. J. Chen, K. K. Choi, W. H. Chang, and D. C. Tsui, “Two-color corrugated quantum-well infrared photodetector for remote temperature sensing,” Appl. Phys. Lett. 72, 7–9 (1998).
    [CrossRef]
  10. S. D. Gunapala and K. M. S. V. Bandara, “Recent developments in quantum well infrared photodetectors,” in Thin Films, M. H. Francombe and J. L. Vossen, eds. (Academic, New York, 1995), pp. 113–237.
  11. M. Z. Tidrow, J. C. Chirefllang, S. S. Li, and K. Bacher, “A high strain two-stack two-color quantum well infrared photodetector,” Appl. Phys. Lett. 70, 859–861 (1997).
    [CrossRef]
  12. V. Ryzhii, I. Khmyrova, V. Mitin, M. Stroscio, and M. Willander, “On the detectivity of quantum-dot infrared photodetectors,” Appl. Phys. Lett. 78, 3523–3525 (2001).
    [CrossRef]
  13. M. A. Kinch, “Fundamental physics of infrared detector materials,” J. Electron. Mater. 29, 809–817 (2000).
    [CrossRef]
  14. A. Rogalski, “Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long wavelength focal plane arrays,” Infrared Phys. Technol. 40, 279–294 (1999).
    [CrossRef]
  15. J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35, 936–943 (1999).
    [CrossRef]
  16. H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78, 79–81 (2001).
    [CrossRef]
  17. S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ~ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81, 1369–1371 (2002), and references therein.
    [CrossRef]
  18. P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, “Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors,” J. Cryst. Growth 227, 27–35 (2001).
    [CrossRef]
  19. P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, “Quantum dot carrier dynamics and far-infrared devices,” in Optoelectronic Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84–89 (2000).
    [CrossRef]
  20. V. Ryzhii, M. Ershov, I. Khmyrova, M. Ryzhii, and T. Iizuka, “Multiple quantum-dot infrared phototransistors,” Physica B 227, 17–20 (1996).
    [CrossRef]
  21. M. R. Descour, C. E. Volin, E. L. Dereniak, T. M. Gleeson, M. F. Hopkins, D. W. Wilson, and P. D. Maker, “Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser,” Appl. Opt. 36, 3694–3698 (1997).
    [CrossRef] [PubMed]
  22. A. C. Goldberg, T. Fischer, and Z. I. Derzko, “Application of dual band infrared focal plane arrays to tactical and strategic military problems,” in Infrared Technology and Applications XVIII, B. Andersen, G. F. Fulop, and M. Stronik, eds., Proc. SPIE 4480, 500–514 (2002).
  23. F. E. Prins, G. Lehr, M. Burkad, S. Nikitin, H. Schweizer, and G. Smith, “Quantum dots and quantum wires with high optical quality by implantation-induced intermixing,” Jpn. J. Appl. Phys., Part 1 32, 6228–6232 (1993).
    [CrossRef]
  24. D. Bimberg, M. Grundmann, and N. N. Ledenstov, Quantum Dot Heterostructures, 1st ed. (Wiley, New York, 1999).
  25. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (2000), and references therein.
    [CrossRef]
  26. E.-T. Kim, Z. Chen, and A. Madhukar, “Selective manipulation of InAs quantum dot electronic states using a lateral potential confinement layer,” Appl. Phys. Lett. 81, 3473–3475 (2002).
    [CrossRef]
  27. S. Krishna, P. Rotella, S. Raghavan, A. Stintz, M. M. Hayat, S. J. Tyo, and S. W. Kennerly, “Bias-dependent tunable response of normal incidence long wave infrared quantum dot detectors,” in Proceedings of IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 754–755.
  28. H. Stark and J. Woods, Probability and Random Processes with Applications to Signal Processing, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 2002).
  29. J. Luenberger, Optimization by Vector Space Methods (Wiley, New York, 1967).
  30. P. Rotella, S. Raghavan, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. Le, and S. W. Kennerly, “Normal incidence InAs/InGaAs dots-in-well detectors with current blocking AlGaAs layer,” J. Cryst. Growth 251, 787–793 (2003).
    [CrossRef]
  31. G. V. Winckel and S. Krishna, “A theoretical model for bias dependent shift of absorption spectra in quantum well infrared photodetectors,” in Proceedings of IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 756–757.

2003 (1)

P. Rotella, S. Raghavan, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. Le, and S. W. Kennerly, “Normal incidence InAs/InGaAs dots-in-well detectors with current blocking AlGaAs layer,” J. Cryst. Growth 251, 787–793 (2003).
[CrossRef]

2002 (3)

E.-T. Kim, Z. Chen, and A. Madhukar, “Selective manipulation of InAs quantum dot electronic states using a lateral potential confinement layer,” Appl. Phys. Lett. 81, 3473–3475 (2002).
[CrossRef]

A. C. Goldberg, T. Fischer, and Z. I. Derzko, “Application of dual band infrared focal plane arrays to tactical and strategic military problems,” in Infrared Technology and Applications XVIII, B. Andersen, G. F. Fulop, and M. Stronik, eds., Proc. SPIE 4480, 500–514 (2002).

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ~ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81, 1369–1371 (2002), and references therein.
[CrossRef]

2001 (3)

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, “Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors,” J. Cryst. Growth 227, 27–35 (2001).
[CrossRef]

V. Ryzhii, I. Khmyrova, V. Mitin, M. Stroscio, and M. Willander, “On the detectivity of quantum-dot infrared photodetectors,” Appl. Phys. Lett. 78, 3523–3525 (2001).
[CrossRef]

H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78, 79–81 (2001).
[CrossRef]

2000 (3)

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (2000), and references therein.
[CrossRef]

M. A. Kinch, “Fundamental physics of infrared detector materials,” J. Electron. Mater. 29, 809–817 (2000).
[CrossRef]

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, “Quantum dot carrier dynamics and far-infrared devices,” in Optoelectronic Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84–89 (2000).
[CrossRef]

1999 (2)

A. Rogalski, “Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long wavelength focal plane arrays,” Infrared Phys. Technol. 40, 279–294 (1999).
[CrossRef]

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35, 936–943 (1999).
[CrossRef]

1998 (3)

P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadjian, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184–185, 1262–1271 (1998).
[CrossRef]

M. H. Young, D. H. Chow, A. T. Hunter, and R. H. Miles, “Recent advances in Ga1−xInxSb/InAs superlattice IR detector materials,” Appl. Surf. Sci. 123–124, 395–399 (1998).
[CrossRef]

C. J. Chen, K. K. Choi, W. H. Chang, and D. C. Tsui, “Two-color corrugated quantum-well infrared photodetector for remote temperature sensing,” Appl. Phys. Lett. 72, 7–9 (1998).
[CrossRef]

1997 (2)

1996 (1)

V. Ryzhii, M. Ershov, I. Khmyrova, M. Ryzhii, and T. Iizuka, “Multiple quantum-dot infrared phototransistors,” Physica B 227, 17–20 (1996).
[CrossRef]

1995 (1)

J. M. Arias, M. Zandian, J. Bajaj, J. G. Pasko, L. O. Bubulac, S. H. Shin, and R. E. DeWarnes, “Molecular beam epitaxy HgCdTe growth-induced void defects and their effect on infrared photodiodes,” J. Electron. Mater. 24, 521–524 (1995).
[CrossRef]

1994 (1)

J. M. Arias, M. Zandian, J. G. Pasko, J. Bajaj, L. J. Kozlowski, W. E. Tennant, and R. E. DeWames, “MBE HgCdTe infrared focal plane array (IRFPA) flexible manufacturing,” in Infrared Detectors: State of the Art II, R. E. Longshore, ed., Proc. SPIE 2274, 2–16 (1994).
[CrossRef]

1993 (2)

B. F. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).
[CrossRef]

F. E. Prins, G. Lehr, M. Burkad, S. Nikitin, H. Schweizer, and G. Smith, “Quantum dots and quantum wires with high optical quality by implantation-induced intermixing,” Jpn. J. Appl. Phys., Part 1 32, 6228–6232 (1993).
[CrossRef]

1991 (1)

R. M. Biefeld, J. R. Wendt, and S. R. Kurtz, “Improving the performance of InAs1−xSbx/InSb infrared detectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 107, 836–839 (1991).
[CrossRef]

1985 (1)

L. West and S. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[CrossRef]

Arias, J. M.

J. M. Arias, M. Zandian, J. Bajaj, J. G. Pasko, L. O. Bubulac, S. H. Shin, and R. E. DeWarnes, “Molecular beam epitaxy HgCdTe growth-induced void defects and their effect on infrared photodiodes,” J. Electron. Mater. 24, 521–524 (1995).
[CrossRef]

J. M. Arias, M. Zandian, J. G. Pasko, J. Bajaj, L. J. Kozlowski, W. E. Tennant, and R. E. DeWames, “MBE HgCdTe infrared focal plane array (IRFPA) flexible manufacturing,” in Infrared Detectors: State of the Art II, R. E. Longshore, ed., Proc. SPIE 2274, 2–16 (1994).
[CrossRef]

Bacher, K.

M. Z. Tidrow, J. C. Chirefllang, S. S. Li, and K. Bacher, “A high strain two-stack two-color quantum well infrared photodetector,” Appl. Phys. Lett. 70, 859–861 (1997).
[CrossRef]

Bajaj, J.

J. M. Arias, M. Zandian, J. Bajaj, J. G. Pasko, L. O. Bubulac, S. H. Shin, and R. E. DeWarnes, “Molecular beam epitaxy HgCdTe growth-induced void defects and their effect on infrared photodiodes,” J. Electron. Mater. 24, 521–524 (1995).
[CrossRef]

J. M. Arias, M. Zandian, J. G. Pasko, J. Bajaj, L. J. Kozlowski, W. E. Tennant, and R. E. DeWames, “MBE HgCdTe infrared focal plane array (IRFPA) flexible manufacturing,” in Infrared Detectors: State of the Art II, R. E. Longshore, ed., Proc. SPIE 2274, 2–16 (1994).
[CrossRef]

Beekman, D. W.

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35, 936–943 (1999).
[CrossRef]

Bhattacharya, P.

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, “Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors,” J. Cryst. Growth 227, 27–35 (2001).
[CrossRef]

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, “Quantum dot carrier dynamics and far-infrared devices,” in Optoelectronic Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84–89 (2000).
[CrossRef]

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35, 936–943 (1999).
[CrossRef]

Biefeld, R. M.

R. M. Biefeld, J. R. Wendt, and S. R. Kurtz, “Improving the performance of InAs1−xSbx/InSb infrared detectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 107, 836–839 (1991).
[CrossRef]

Bubulac, L. O.

J. M. Arias, M. Zandian, J. Bajaj, J. G. Pasko, L. O. Bubulac, S. H. Shin, and R. E. DeWarnes, “Molecular beam epitaxy HgCdTe growth-induced void defects and their effect on infrared photodiodes,” J. Electron. Mater. 24, 521–524 (1995).
[CrossRef]

Burkad, M.

F. E. Prins, G. Lehr, M. Burkad, S. Nikitin, H. Schweizer, and G. Smith, “Quantum dots and quantum wires with high optical quality by implantation-induced intermixing,” Jpn. J. Appl. Phys., Part 1 32, 6228–6232 (1993).
[CrossRef]

Cardimona, D. A.

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ~ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81, 1369–1371 (2002), and references therein.
[CrossRef]

Chang, W. H.

C. J. Chen, K. K. Choi, W. H. Chang, and D. C. Tsui, “Two-color corrugated quantum-well infrared photodetector for remote temperature sensing,” Appl. Phys. Lett. 72, 7–9 (1998).
[CrossRef]

Chatard, J. P.

P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadjian, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184–185, 1262–1271 (1998).
[CrossRef]

Chen, C. J.

C. J. Chen, K. K. Choi, W. H. Chang, and D. C. Tsui, “Two-color corrugated quantum-well infrared photodetector for remote temperature sensing,” Appl. Phys. Lett. 72, 7–9 (1998).
[CrossRef]

Chen, Z.

E.-T. Kim, Z. Chen, and A. Madhukar, “Selective manipulation of InAs quantum dot electronic states using a lateral potential confinement layer,” Appl. Phys. Lett. 81, 3473–3475 (2002).
[CrossRef]

Chirefllang, J. C.

M. Z. Tidrow, J. C. Chirefllang, S. S. Li, and K. Bacher, “A high strain two-stack two-color quantum well infrared photodetector,” Appl. Phys. Lett. 70, 859–861 (1997).
[CrossRef]

Choi, K. K.

C. J. Chen, K. K. Choi, W. H. Chang, and D. C. Tsui, “Two-color corrugated quantum-well infrared photodetector for remote temperature sensing,” Appl. Phys. Lett. 72, 7–9 (1998).
[CrossRef]

Chow, D. H.

M. H. Young, D. H. Chow, A. T. Hunter, and R. H. Miles, “Recent advances in Ga1−xInxSb/InAs superlattice IR detector materials,” Appl. Surf. Sci. 123–124, 395–399 (1998).
[CrossRef]

Costa, P.

P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadjian, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184–185, 1262–1271 (1998).
[CrossRef]

Dereniak, E. L.

Derzko, Z. I.

A. C. Goldberg, T. Fischer, and Z. I. Derzko, “Application of dual band infrared focal plane arrays to tactical and strategic military problems,” in Infrared Technology and Applications XVIII, B. Andersen, G. F. Fulop, and M. Stronik, eds., Proc. SPIE 4480, 500–514 (2002).

Descour, M. R.

DeWames, R. E.

J. M. Arias, M. Zandian, J. G. Pasko, J. Bajaj, L. J. Kozlowski, W. E. Tennant, and R. E. DeWames, “MBE HgCdTe infrared focal plane array (IRFPA) flexible manufacturing,” in Infrared Detectors: State of the Art II, R. E. Longshore, ed., Proc. SPIE 2274, 2–16 (1994).
[CrossRef]

DeWarnes, R. E.

J. M. Arias, M. Zandian, J. Bajaj, J. G. Pasko, L. O. Bubulac, S. H. Shin, and R. E. DeWarnes, “Molecular beam epitaxy HgCdTe growth-induced void defects and their effect on infrared photodiodes,” J. Electron. Mater. 24, 521–524 (1995).
[CrossRef]

Dutta, M.

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35, 936–943 (1999).
[CrossRef]

Eglash, S.

L. West and S. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[CrossRef]

Ershov, M.

V. Ryzhii, M. Ershov, I. Khmyrova, M. Ryzhii, and T. Iizuka, “Multiple quantum-dot infrared phototransistors,” Physica B 227, 17–20 (1996).
[CrossRef]

Fafard, S.

H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78, 79–81 (2001).
[CrossRef]

Fischer, T.

A. C. Goldberg, T. Fischer, and Z. I. Derzko, “Application of dual band infrared focal plane arrays to tactical and strategic military problems,” in Infrared Technology and Applications XVIII, B. Andersen, G. F. Fulop, and M. Stronik, eds., Proc. SPIE 4480, 500–514 (2002).

Fuchs, B.

P. Rotella, S. Raghavan, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. Le, and S. W. Kennerly, “Normal incidence InAs/InGaAs dots-in-well detectors with current blocking AlGaAs layer,” J. Cryst. Growth 251, 787–793 (2003).
[CrossRef]

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ~ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81, 1369–1371 (2002), and references therein.
[CrossRef]

Fuchs, B. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (2000), and references therein.
[CrossRef]

Gao, M.

H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78, 79–81 (2001).
[CrossRef]

Gleeson, T. M.

Goldberg, A. C.

A. C. Goldberg, T. Fischer, and Z. I. Derzko, “Application of dual band infrared focal plane arrays to tactical and strategic military problems,” in Infrared Technology and Applications XVIII, B. Andersen, G. F. Fulop, and M. Stronik, eds., Proc. SPIE 4480, 500–514 (2002).

Hopkins, M. F.

Hunter, A. T.

M. H. Young, D. H. Chow, A. T. Hunter, and R. H. Miles, “Recent advances in Ga1−xInxSb/InAs superlattice IR detector materials,” Appl. Surf. Sci. 123–124, 395–399 (1998).
[CrossRef]

Iizuka, T.

V. Ryzhii, M. Ershov, I. Khmyrova, M. Ryzhii, and T. Iizuka, “Multiple quantum-dot infrared phototransistors,” Physica B 227, 17–20 (1996).
[CrossRef]

Kennerly, S. W.

P. Rotella, S. Raghavan, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. Le, and S. W. Kennerly, “Normal incidence InAs/InGaAs dots-in-well detectors with current blocking AlGaAs layer,” J. Cryst. Growth 251, 787–793 (2003).
[CrossRef]

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ~ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81, 1369–1371 (2002), and references therein.
[CrossRef]

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35, 936–943 (1999).
[CrossRef]

Khmyrova, I.

V. Ryzhii, I. Khmyrova, V. Mitin, M. Stroscio, and M. Willander, “On the detectivity of quantum-dot infrared photodetectors,” Appl. Phys. Lett. 78, 3523–3525 (2001).
[CrossRef]

V. Ryzhii, M. Ershov, I. Khmyrova, M. Ryzhii, and T. Iizuka, “Multiple quantum-dot infrared phototransistors,” Physica B 227, 17–20 (1996).
[CrossRef]

Kim, E.-T.

E.-T. Kim, Z. Chen, and A. Madhukar, “Selective manipulation of InAs quantum dot electronic states using a lateral potential confinement layer,” Appl. Phys. Lett. 81, 3473–3475 (2002).
[CrossRef]

Kinch, M. A.

M. A. Kinch, “Fundamental physics of infrared detector materials,” J. Electron. Mater. 29, 809–817 (2000).
[CrossRef]

Klotzkin, D.

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, “Quantum dot carrier dynamics and far-infrared devices,” in Optoelectronic Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84–89 (2000).
[CrossRef]

Kozlowski, L. J.

J. M. Arias, M. Zandian, J. G. Pasko, J. Bajaj, L. J. Kozlowski, W. E. Tennant, and R. E. DeWames, “MBE HgCdTe infrared focal plane array (IRFPA) flexible manufacturing,” in Infrared Detectors: State of the Art II, R. E. Longshore, ed., Proc. SPIE 2274, 2–16 (1994).
[CrossRef]

Krishna, S.

P. Rotella, S. Raghavan, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. Le, and S. W. Kennerly, “Normal incidence InAs/InGaAs dots-in-well detectors with current blocking AlGaAs layer,” J. Cryst. Growth 251, 787–793 (2003).
[CrossRef]

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ~ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81, 1369–1371 (2002), and references therein.
[CrossRef]

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, “Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors,” J. Cryst. Growth 227, 27–35 (2001).
[CrossRef]

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, “Quantum dot carrier dynamics and far-infrared devices,” in Optoelectronic Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84–89 (2000).
[CrossRef]

Kurtz, S. R.

R. M. Biefeld, J. R. Wendt, and S. R. Kurtz, “Improving the performance of InAs1−xSbx/InSb infrared detectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 107, 836–839 (1991).
[CrossRef]

Le, D.

P. Rotella, S. Raghavan, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. Le, and S. W. Kennerly, “Normal incidence InAs/InGaAs dots-in-well detectors with current blocking AlGaAs layer,” J. Cryst. Growth 251, 787–793 (2003).
[CrossRef]

Lehr, G.

F. E. Prins, G. Lehr, M. Burkad, S. Nikitin, H. Schweizer, and G. Smith, “Quantum dots and quantum wires with high optical quality by implantation-induced intermixing,” Jpn. J. Appl. Phys., Part 1 32, 6228–6232 (1993).
[CrossRef]

Lester, L. F.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (2000), and references therein.
[CrossRef]

Levine, B. F.

B. F. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).
[CrossRef]

Li, H.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (2000), and references therein.
[CrossRef]

Li, S. S.

M. Z. Tidrow, J. C. Chirefllang, S. S. Li, and K. Bacher, “A high strain two-stack two-color quantum well infrared photodetector,” Appl. Phys. Lett. 70, 859–861 (1997).
[CrossRef]

Liu, H. C.

H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78, 79–81 (2001).
[CrossRef]

Madhukar, A.

E.-T. Kim, Z. Chen, and A. Madhukar, “Selective manipulation of InAs quantum dot electronic states using a lateral potential confinement layer,” Appl. Phys. Lett. 81, 3473–3475 (2002).
[CrossRef]

Maker, P. D.

Malloy, K. J.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (2000), and references therein.
[CrossRef]

Manissadjian, A.

P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadjian, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184–185, 1262–1271 (1998).
[CrossRef]

McCaffrey, J.

H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78, 79–81 (2001).
[CrossRef]

McCann, P. J.

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, “Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors,” J. Cryst. Growth 227, 27–35 (2001).
[CrossRef]

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, “Quantum dot carrier dynamics and far-infrared devices,” in Optoelectronic Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84–89 (2000).
[CrossRef]

Miles, R. H.

M. H. Young, D. H. Chow, A. T. Hunter, and R. H. Miles, “Recent advances in Ga1−xInxSb/InAs superlattice IR detector materials,” Appl. Surf. Sci. 123–124, 395–399 (1998).
[CrossRef]

Mitin, V.

V. Ryzhii, I. Khmyrova, V. Mitin, M. Stroscio, and M. Willander, “On the detectivity of quantum-dot infrared photodetectors,” Appl. Phys. Lett. 78, 3523–3525 (2001).
[CrossRef]

Morath, C.

P. Rotella, S. Raghavan, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. Le, and S. W. Kennerly, “Normal incidence InAs/InGaAs dots-in-well detectors with current blocking AlGaAs layer,” J. Cryst. Growth 251, 787–793 (2003).
[CrossRef]

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ~ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81, 1369–1371 (2002), and references therein.
[CrossRef]

Namjou, K.

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, “Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors,” J. Cryst. Growth 227, 27–35 (2001).
[CrossRef]

Newell, T. C.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (2000), and references therein.
[CrossRef]

Nikitin, S.

F. E. Prins, G. Lehr, M. Burkad, S. Nikitin, H. Schweizer, and G. Smith, “Quantum dots and quantum wires with high optical quality by implantation-induced intermixing,” Jpn. J. Appl. Phys., Part 1 32, 6228–6232 (1993).
[CrossRef]

Pasko, J. G.

J. M. Arias, M. Zandian, J. Bajaj, J. G. Pasko, L. O. Bubulac, S. H. Shin, and R. E. DeWarnes, “Molecular beam epitaxy HgCdTe growth-induced void defects and their effect on infrared photodiodes,” J. Electron. Mater. 24, 521–524 (1995).
[CrossRef]

J. M. Arias, M. Zandian, J. G. Pasko, J. Bajaj, L. J. Kozlowski, W. E. Tennant, and R. E. DeWames, “MBE HgCdTe infrared focal plane array (IRFPA) flexible manufacturing,” in Infrared Detectors: State of the Art II, R. E. Longshore, ed., Proc. SPIE 2274, 2–16 (1994).
[CrossRef]

Pease, E. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (2000), and references therein.
[CrossRef]

Phillips, J.

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, “Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors,” J. Cryst. Growth 227, 27–35 (2001).
[CrossRef]

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35, 936–943 (1999).
[CrossRef]

Phillips, J. D.

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, “Quantum dot carrier dynamics and far-infrared devices,” in Optoelectronic Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84–89 (2000).
[CrossRef]

Prins, F. E.

F. E. Prins, G. Lehr, M. Burkad, S. Nikitin, H. Schweizer, and G. Smith, “Quantum dots and quantum wires with high optical quality by implantation-induced intermixing,” Jpn. J. Appl. Phys., Part 1 32, 6228–6232 (1993).
[CrossRef]

Raghavan, S.

P. Rotella, S. Raghavan, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. Le, and S. W. Kennerly, “Normal incidence InAs/InGaAs dots-in-well detectors with current blocking AlGaAs layer,” J. Cryst. Growth 251, 787–793 (2003).
[CrossRef]

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ~ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81, 1369–1371 (2002), and references therein.
[CrossRef]

Rogalski, A.

A. Rogalski, “Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long wavelength focal plane arrays,” Infrared Phys. Technol. 40, 279–294 (1999).
[CrossRef]

Rotella, P.

P. Rotella, S. Raghavan, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. Le, and S. W. Kennerly, “Normal incidence InAs/InGaAs dots-in-well detectors with current blocking AlGaAs layer,” J. Cryst. Growth 251, 787–793 (2003).
[CrossRef]

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ~ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81, 1369–1371 (2002), and references therein.
[CrossRef]

Ryzhii, M.

V. Ryzhii, M. Ershov, I. Khmyrova, M. Ryzhii, and T. Iizuka, “Multiple quantum-dot infrared phototransistors,” Physica B 227, 17–20 (1996).
[CrossRef]

Ryzhii, V.

V. Ryzhii, I. Khmyrova, V. Mitin, M. Stroscio, and M. Willander, “On the detectivity of quantum-dot infrared photodetectors,” Appl. Phys. Lett. 78, 3523–3525 (2001).
[CrossRef]

V. Ryzhii, M. Ershov, I. Khmyrova, M. Ryzhii, and T. Iizuka, “Multiple quantum-dot infrared phototransistors,” Physica B 227, 17–20 (1996).
[CrossRef]

Schweizer, H.

F. E. Prins, G. Lehr, M. Burkad, S. Nikitin, H. Schweizer, and G. Smith, “Quantum dots and quantum wires with high optical quality by implantation-induced intermixing,” Jpn. J. Appl. Phys., Part 1 32, 6228–6232 (1993).
[CrossRef]

Shin, S. H.

J. M. Arias, M. Zandian, J. Bajaj, J. G. Pasko, L. O. Bubulac, S. H. Shin, and R. E. DeWarnes, “Molecular beam epitaxy HgCdTe growth-induced void defects and their effect on infrared photodiodes,” J. Electron. Mater. 24, 521–524 (1995).
[CrossRef]

Smith, G.

F. E. Prins, G. Lehr, M. Burkad, S. Nikitin, H. Schweizer, and G. Smith, “Quantum dots and quantum wires with high optical quality by implantation-induced intermixing,” Jpn. J. Appl. Phys., Part 1 32, 6228–6232 (1993).
[CrossRef]

Stintz, A.

P. Rotella, S. Raghavan, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. Le, and S. W. Kennerly, “Normal incidence InAs/InGaAs dots-in-well detectors with current blocking AlGaAs layer,” J. Cryst. Growth 251, 787–793 (2003).
[CrossRef]

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ~ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81, 1369–1371 (2002), and references therein.
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (2000), and references therein.
[CrossRef]

Stroscio, M.

V. Ryzhii, I. Khmyrova, V. Mitin, M. Stroscio, and M. Willander, “On the detectivity of quantum-dot infrared photodetectors,” Appl. Phys. Lett. 78, 3523–3525 (2001).
[CrossRef]

Tennant, W. E.

J. M. Arias, M. Zandian, J. G. Pasko, J. Bajaj, L. J. Kozlowski, W. E. Tennant, and R. E. DeWames, “MBE HgCdTe infrared focal plane array (IRFPA) flexible manufacturing,” in Infrared Detectors: State of the Art II, R. E. Longshore, ed., Proc. SPIE 2274, 2–16 (1994).
[CrossRef]

Tidrow, M. Z.

M. Z. Tidrow, J. C. Chirefllang, S. S. Li, and K. Bacher, “A high strain two-stack two-color quantum well infrared photodetector,” Appl. Phys. Lett. 70, 859–861 (1997).
[CrossRef]

Tribolet, P.

P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadjian, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184–185, 1262–1271 (1998).
[CrossRef]

Tsui, D. C.

C. J. Chen, K. K. Choi, W. H. Chang, and D. C. Tsui, “Two-color corrugated quantum-well infrared photodetector for remote temperature sensing,” Appl. Phys. Lett. 72, 7–9 (1998).
[CrossRef]

Volin, C. E.

Wasilewski, Z. R.

H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78, 79–81 (2001).
[CrossRef]

Wendt, J. R.

R. M. Biefeld, J. R. Wendt, and S. R. Kurtz, “Improving the performance of InAs1−xSbx/InSb infrared detectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 107, 836–839 (1991).
[CrossRef]

West, L.

L. West and S. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[CrossRef]

Willander, M.

V. Ryzhii, I. Khmyrova, V. Mitin, M. Stroscio, and M. Willander, “On the detectivity of quantum-dot infrared photodetectors,” Appl. Phys. Lett. 78, 3523–3525 (2001).
[CrossRef]

Wilson, D. W.

Young, M. H.

M. H. Young, D. H. Chow, A. T. Hunter, and R. H. Miles, “Recent advances in Ga1−xInxSb/InAs superlattice IR detector materials,” Appl. Surf. Sci. 123–124, 395–399 (1998).
[CrossRef]

Zandian, M.

J. M. Arias, M. Zandian, J. Bajaj, J. G. Pasko, L. O. Bubulac, S. H. Shin, and R. E. DeWarnes, “Molecular beam epitaxy HgCdTe growth-induced void defects and their effect on infrared photodiodes,” J. Electron. Mater. 24, 521–524 (1995).
[CrossRef]

J. M. Arias, M. Zandian, J. G. Pasko, J. Bajaj, L. J. Kozlowski, W. E. Tennant, and R. E. DeWames, “MBE HgCdTe infrared focal plane array (IRFPA) flexible manufacturing,” in Infrared Detectors: State of the Art II, R. E. Longshore, ed., Proc. SPIE 2274, 2–16 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

E.-T. Kim, Z. Chen, and A. Madhukar, “Selective manipulation of InAs quantum dot electronic states using a lateral potential confinement layer,” Appl. Phys. Lett. 81, 3473–3475 (2002).
[CrossRef]

L. West and S. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[CrossRef]

C. J. Chen, K. K. Choi, W. H. Chang, and D. C. Tsui, “Two-color corrugated quantum-well infrared photodetector for remote temperature sensing,” Appl. Phys. Lett. 72, 7–9 (1998).
[CrossRef]

M. Z. Tidrow, J. C. Chirefllang, S. S. Li, and K. Bacher, “A high strain two-stack two-color quantum well infrared photodetector,” Appl. Phys. Lett. 70, 859–861 (1997).
[CrossRef]

V. Ryzhii, I. Khmyrova, V. Mitin, M. Stroscio, and M. Willander, “On the detectivity of quantum-dot infrared photodetectors,” Appl. Phys. Lett. 78, 3523–3525 (2001).
[CrossRef]

H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett. 78, 79–81 (2001).
[CrossRef]

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ~ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81, 1369–1371 (2002), and references therein.
[CrossRef]

Appl. Surf. Sci. (1)

M. H. Young, D. H. Chow, A. T. Hunter, and R. H. Miles, “Recent advances in Ga1−xInxSb/InAs superlattice IR detector materials,” Appl. Surf. Sci. 123–124, 395–399 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35, 936–943 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (2000), and references therein.
[CrossRef]

Infrared Phys. Technol. (1)

A. Rogalski, “Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long wavelength focal plane arrays,” Infrared Phys. Technol. 40, 279–294 (1999).
[CrossRef]

J. Appl. Phys. (1)

B. F. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).
[CrossRef]

J. Cryst. Growth (4)

P. Tribolet, J. P. Chatard, P. Costa, and A. Manissadjian, “Progress in HgCdTe homojunction infrared detectors,” J. Cryst. Growth 184–185, 1262–1271 (1998).
[CrossRef]

R. M. Biefeld, J. R. Wendt, and S. R. Kurtz, “Improving the performance of InAs1−xSbx/InSb infrared detectors grown by metalorganic chemical vapor deposition,” J. Cryst. Growth 107, 836–839 (1991).
[CrossRef]

P. Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, “Carrier dynamics in self-organized quantum dots and their application to long-wavelength sources and detectors,” J. Cryst. Growth 227, 27–35 (2001).
[CrossRef]

P. Rotella, S. Raghavan, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. Le, and S. W. Kennerly, “Normal incidence InAs/InGaAs dots-in-well detectors with current blocking AlGaAs layer,” J. Cryst. Growth 251, 787–793 (2003).
[CrossRef]

J. Electron. Mater. (2)

M. A. Kinch, “Fundamental physics of infrared detector materials,” J. Electron. Mater. 29, 809–817 (2000).
[CrossRef]

J. M. Arias, M. Zandian, J. Bajaj, J. G. Pasko, L. O. Bubulac, S. H. Shin, and R. E. DeWarnes, “Molecular beam epitaxy HgCdTe growth-induced void defects and their effect on infrared photodiodes,” J. Electron. Mater. 24, 521–524 (1995).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

F. E. Prins, G. Lehr, M. Burkad, S. Nikitin, H. Schweizer, and G. Smith, “Quantum dots and quantum wires with high optical quality by implantation-induced intermixing,” Jpn. J. Appl. Phys., Part 1 32, 6228–6232 (1993).
[CrossRef]

Physica B (1)

V. Ryzhii, M. Ershov, I. Khmyrova, M. Ryzhii, and T. Iizuka, “Multiple quantum-dot infrared phototransistors,” Physica B 227, 17–20 (1996).
[CrossRef]

Proc. SPIE (3)

A. C. Goldberg, T. Fischer, and Z. I. Derzko, “Application of dual band infrared focal plane arrays to tactical and strategic military problems,” in Infrared Technology and Applications XVIII, B. Andersen, G. F. Fulop, and M. Stronik, eds., Proc. SPIE 4480, 500–514 (2002).

J. M. Arias, M. Zandian, J. G. Pasko, J. Bajaj, L. J. Kozlowski, W. E. Tennant, and R. E. DeWames, “MBE HgCdTe infrared focal plane array (IRFPA) flexible manufacturing,” in Infrared Detectors: State of the Art II, R. E. Longshore, ed., Proc. SPIE 2274, 2–16 (1994).
[CrossRef]

P. Bhattacharya, S. Krishna, J. D. Phillips, D. Klotzkin, and P. J. McCann, “Quantum dot carrier dynamics and far-infrared devices,” in Optoelectronic Materials and Devices II, Y.-K. Su and P. Bhattacharya, eds., Proc. SPIE 4078, 84–89 (2000).
[CrossRef]

Other (7)

A. C. Goldberg, J. W. Little, S. W. Kennerly, D. W. Beekman, and R. P. Leavitt, “Temperature dependence of the responsivity of quantum well infrared photodetectors,” in Proceedings of 6th International Symposium on LWIR Detectors and Arrays: Physics and Applications, S. S. Li, M. Z. Tidrow, S. D. Gunapala, and H. C. Liu, eds. (Electrochemical Society, Boston, Mass., 1999), Vol. 98–21, pp. 122–123.

S. D. Gunapala and K. M. S. V. Bandara, “Recent developments in quantum well infrared photodetectors,” in Thin Films, M. H. Francombe and J. L. Vossen, eds. (Academic, New York, 1995), pp. 113–237.

S. Krishna, P. Rotella, S. Raghavan, A. Stintz, M. M. Hayat, S. J. Tyo, and S. W. Kennerly, “Bias-dependent tunable response of normal incidence long wave infrared quantum dot detectors,” in Proceedings of IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 754–755.

H. Stark and J. Woods, Probability and Random Processes with Applications to Signal Processing, 3rd ed. (Prentice-Hall, Englewood Cliffs, N.J., 2002).

J. Luenberger, Optimization by Vector Space Methods (Wiley, New York, 1967).

D. Bimberg, M. Grundmann, and N. N. Ledenstov, Quantum Dot Heterostructures, 1st ed. (Wiley, New York, 1999).

G. V. Winckel and S. Krishna, “A theoretical model for bias dependent shift of absorption spectra in quantum well infrared photodetectors,” in Proceedings of IEEE/LEOS Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 756–757.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Band structure and (b) room-temperature photoluminescence for a 10-layer InAs/In0.15Ga0.85As DWELL heterostructure.

Fig. 2
Fig. 2

Bias-dependent (a) spectral response and (b) activation energy for a 10-layer InAs/In0.15Ga0.85As DWELL detector. The cut-off energy is also shown in (b). The structures on the spectra are not fluctuations but rather reflect the atmospheric absorption over this wavelength range.

Fig. 3
Fig. 3

Variation of the peak operating wavelength (from a Gaussian fit) from a 10-layer InAs/In0.15Ga0.85As DWELL detector as a function of the applied bias.

Fig. 4
Fig. 4

(a) Schematic of the projection step: approximation of any desired responsivity by forming an optimal linear superposition of the QDIP responsivities at different biases. (b) Schematic of our reconstruction algorithm, combining the bias-dependent output from the QD sensors to get the desired responsivity.

Fig. 5
Fig. 5

Bias-dependent spectral response of (a) QDIP 1198 (b) QDIP 1199. The numbers in the legends correspond to the applied bias voltages (volts) of the detectors.

Fig. 6
Fig. 6

Examples of the simulated tuned (normalized) responsivity generated by the postprocessing technique. Three responsivities are shown corresponding to wide (3.0 µm), medium (1.0 µm), and narrow (0.5 µm) FWHMs at different center wavelengths λ0.

Fig. 7
Fig. 7

Attained spectral resolution (FWHM) as a function of desired center wavelength and spectral bandwidth (linewidth parameter): (a) for the two QDIP 1198; (b) QDIP 1199 detectors reported in Ref. 31. Note that the vertical axis is inverted, so the highest spectral resolution (lowest line width) is at the top.

Fig. 8
Fig. 8

Spectral response at a desired linewidth (FWHM) of 0.5 µm as a function of desired center frequency for the two QDIP detectors reported in Ref. 31. A band with FWHM <1 µm can be achieved for most of the tuning parameter values (center wavelength) of 3–8 mm, especially for the QDIP 1199 device. For the tuning parameter values between 3.0 and 4.5 with the QDIP 1199 device, FWHM <0.5 can be achieved [also see Fig. 7(b)].

Fig. 9
Fig. 9

Spectral reconstruction with the algorithm: (a) Reconstruction of blackbody spectrum by use of triangular filters of parameter (FWHM) 0.5 µm. (b) Reconstruction of 3-mm polystyrene spectrum by use of triangular filters of parameter (FWHM) 0.5 µm. (c) Same as (a) but with FWHM=0.25 µm. (d) Same as (b) but with FWHM=0.25 µm.

Fig. 10
Fig. 10

Example filter approximation: triangular filters with a desired FWHM of 0.5 µm and with centers of (a) 4.0 µm (a bad approximation) and (b) 7.65 µm (a good approximation).

Fig. 11
Fig. 11

Example filter approximation: triangular filters with a desired FWHM of 0.25 µm and centers of (a) 4.0 µm (a bad approximation) and (b) 7.65 µm (a good approximation).

Tables (3)

Tables Icon

Table 1 Parameters Used for the Three Simulated Sensing Modes

Tables Icon

Table 2 Seven-Band Multispectral Reconstruction

Tables Icon

Table 3 Three-Band Multispectral Reconstruction

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Yˆ=i=1MwiYi
w=[w1,, wM]T,
(R; M)=λminλmaxi=1MwiRVi(λ)-R(λ)2dλ,
Rˆ(λ)=i=1MwiRi(λ).
|Yˆ-Y|2=λminλmaxG(λ)R(λ)-i=1MwiRVi(λ)dλ2λminλmaxG(λ)R(λ)-i=1MwiRVi(λ)dλ2.
|Yˆ-Y|2λminλmaxG2(λ)dλλminλmaxR(λ)-i=1MwiRi(λ)2dλ.
(R; M; α)=λminλmaxi=1MwiRVi(λ)-R(λ)2+αd2dλ2 i=1MwiRVi(λ)2dλ,
(R; M, α)ΔλL-1k=1LR(λk)-i=1MwiRi(λk)2+αi=1Mwi[-Ri(λk-1)+2Ri(λk)-Ri(λk+1)]2,
A=RV1(λ1)RV2(λ1)RVM(λ1)RV1(λ2)RV2(λ2)RVM(λ2)RV1(λL)RV2(λL)RVM(λL),
(R; M, α)ΔλL-1[R-Aw2+αQAw2],
w=(ATA+αATQTQA)-1ATR,

Metrics