Abstract

The coupling dependence between a wire waveguide and a two-dimensional photonic crystal waveguide on a shared connection structure was analyzed theoretically. By calculating the transmittance at the connecting point for various sample geometries, we found the structure to have high coupling efficiency and fabrication tolerance. The maximum transmittance can be as high as 95% for a wavelength near 1.55 µm within our investigation when the structure of the connecting point is well designed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
    [CrossRef] [PubMed]
  2. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
    [CrossRef] [PubMed]
  3. A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
    [CrossRef]
  4. O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30, 1787–1793 (1994).
    [CrossRef]
  5. O. Mitomi, K. Kasaya, Y. Tohmori, Y. Sakai, M. Okamoto, and S. Matsumoto, “Optical spot-size converters for low-loss coupling between fibers and optoelectronic semiconductor devices,” J. Lightwave Technol. 14, 1714–1720 (1996).
    [CrossRef]
  6. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000).
    [CrossRef]
  7. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
    [CrossRef]
  8. A. Mekis and J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19, 861–865 (2001).
    [CrossRef]
  9. E. Miyai, M. Okano, M. Mochizuki, and S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002).
    [CrossRef]
  10. Y. Tanaka, T. Asano, Y. Akahane, B. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
    [CrossRef]

2003

Y. Tanaka, T. Asano, Y. Akahane, B. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
[CrossRef]

2002

E. Miyai, M. Okano, M. Mochizuki, and S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002).
[CrossRef]

2001

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

A. Mekis and J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19, 861–865 (2001).
[CrossRef]

2000

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000).
[CrossRef]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

1996

O. Mitomi, K. Kasaya, Y. Tohmori, Y. Sakai, M. Okamoto, and S. Matsumoto, “Optical spot-size converters for low-loss coupling between fibers and optoelectronic semiconductor devices,” J. Lightwave Technol. 14, 1714–1720 (1996).
[CrossRef]

1994

O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30, 1787–1793 (1994).
[CrossRef]

Adibi, A.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000).
[CrossRef]

Akahane, Y.

Y. Tanaka, T. Asano, Y. Akahane, B. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
[CrossRef]

Asano, T.

Y. Tanaka, T. Asano, Y. Akahane, B. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
[CrossRef]

Chutinan, A.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Imada, M.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Kasaya, K.

O. Mitomi, K. Kasaya, Y. Tohmori, Y. Sakai, M. Okamoto, and S. Matsumoto, “Optical spot-size converters for low-loss coupling between fibers and optoelectronic semiconductor devices,” J. Lightwave Technol. 14, 1714–1720 (1996).
[CrossRef]

O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30, 1787–1793 (1994).
[CrossRef]

Lee, R. K.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000).
[CrossRef]

Matsumoto, S.

O. Mitomi, K. Kasaya, Y. Tohmori, Y. Sakai, M. Okamoto, and S. Matsumoto, “Optical spot-size converters for low-loss coupling between fibers and optoelectronic semiconductor devices,” J. Lightwave Technol. 14, 1714–1720 (1996).
[CrossRef]

Mekis, A.

Mitomi, O.

O. Mitomi, K. Kasaya, Y. Tohmori, Y. Sakai, M. Okamoto, and S. Matsumoto, “Optical spot-size converters for low-loss coupling between fibers and optoelectronic semiconductor devices,” J. Lightwave Technol. 14, 1714–1720 (1996).
[CrossRef]

O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30, 1787–1793 (1994).
[CrossRef]

Miyai, E.

E. Miyai, M. Okano, M. Mochizuki, and S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002).
[CrossRef]

Miyazawa, H.

O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30, 1787–1793 (1994).
[CrossRef]

Mochizuki, M.

E. Miyai, M. Okano, M. Mochizuki, and S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002).
[CrossRef]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
[CrossRef]

Noda, S.

Y. Tanaka, T. Asano, Y. Akahane, B. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
[CrossRef]

E. Miyai, M. Okano, M. Mochizuki, and S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002).
[CrossRef]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Okamoto, M.

O. Mitomi, K. Kasaya, Y. Tohmori, Y. Sakai, M. Okamoto, and S. Matsumoto, “Optical spot-size converters for low-loss coupling between fibers and optoelectronic semiconductor devices,” J. Lightwave Technol. 14, 1714–1720 (1996).
[CrossRef]

Okano, M.

E. Miyai, M. Okano, M. Mochizuki, and S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002).
[CrossRef]

Sakai, Y.

O. Mitomi, K. Kasaya, Y. Tohmori, Y. Sakai, M. Okamoto, and S. Matsumoto, “Optical spot-size converters for low-loss coupling between fibers and optoelectronic semiconductor devices,” J. Lightwave Technol. 14, 1714–1720 (1996).
[CrossRef]

Scherer, A.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000).
[CrossRef]

Song, B.

Y. Tanaka, T. Asano, Y. Akahane, B. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
[CrossRef]

Tanaka, Y.

Y. Tanaka, T. Asano, Y. Akahane, B. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
[CrossRef]

Tohmori, Y.

O. Mitomi, K. Kasaya, Y. Tohmori, Y. Sakai, M. Okamoto, and S. Matsumoto, “Optical spot-size converters for low-loss coupling between fibers and optoelectronic semiconductor devices,” J. Lightwave Technol. 14, 1714–1720 (1996).
[CrossRef]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Xu, Y.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000).
[CrossRef]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Yariv, A.

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1554–1564 (2000).
[CrossRef]

Appl. Phys. Lett.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690–2692 (2001).
[CrossRef]

E. Miyai, M. Okano, M. Mochizuki, and S. Noda, “Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide,” Appl. Phys. Lett. 81, 3729–3731 (2002).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, B. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661–1663 (2003).
[CrossRef]

IEEE J. Quantum Electron.

O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30, 1787–1793 (1994).
[CrossRef]

J. Lightwave Technol.

Nature

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Phys. Rev. B

A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B 64, 033308 (2001).
[CrossRef]

Science

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic image of two air-hole configurations. (a) Type A structure, (b) type B structure. In both cases, the distance from the end facet of the slab to the center of the nearest air holes is given by s+a/2, where s is the shift parameter. The widths of the PC waveguide and the wire waveguide are 1.152a and 0.974a, respectively.

Fig. 2
Fig. 2

(a) s dependence of transmission spectra for the type A structure. (b) s dependence of transmission spectra for the type B structure.

Fig. 3
Fig. 3

(a) Magnetic field distribution in the vicinity of the connecting point for s=0.1a and f=0.283 for the type A structure. (b) Magnetic field distribution in the vicinity of the connecting point for s=0.2a and f=0.273 for the type A structure. The fields are calculated by cw excitation in a plane at the middle of slab thickness.

Fig. 4
Fig. 4

Schematic image of triangular interface. The shift parameter t is defined as the width of the triangular region at the connecting point. The length of the triangular region is fixed at a.

Fig. 5
Fig. 5

(a) t dependence of transmittance for s=0 for the type A structure. (b) t dependence of transmittance for s=0 for the type B structure.

Fig. 6
Fig. 6

(a) t dependence of transmittance for s=-0.1a for the type A structure. (b) t dependence of transmittance for s=0.3a for the type B structure.

Fig. 7
Fig. 7

(a) t dependence of transmittance for s=0.2a for the type A structure. (b) t dependence of transmittance for s=-0.1a for the type B structure.

Fig. 8
Fig. 8

Magnetic field distribution in the vicinity of the connecting point of the type B structure for s=0, t=5dx, and f=0.275. The fields are taken in a plane at the middle of slab thickness.

Fig. 9
Fig. 9

Transmission spectra for the narrow wire, the wide wire, and the wire with triangular interface. Each calculation is performed for the shift parameter s=0 for the type B structure. The widths of the narrow wire and the wide wire are 0.974a and 2.057a, respectively. The triangular interface is for t=5dx.

Fig. 10
Fig. 10

Magnetic field distribution in the vicinity of the connecting point of the type A structure for s=0.2a, t=7dx, and f=0.295. The fields are taken in a plane at the middle of slab thickness.

Metrics