Abstract

We report a high-power, kilohertz, collinear phase-matching ultrafast optical parametric amplifier (OPA) that is capable of producing 70-µJ, ∼150-fs infrared laser pulses at wavelengths ranging from 2.9 to 4.0 µm. The OPA system was seeded with a broadband white-light continuum, which was carefully characterized experimentally. The retrieved electric field of the white-light seed pulse was incorporated in a simulation. The simulated results almost perfectly matched the experimental results of our OPA system. We used the simulation further to investigate the interplay between material dispersion and optical nonlinearity in ultrafast OPA systems and to examine the role of white-light seed pulses in such systems.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Reider and T. F. Heinz, “Second-order nonlinear optical effects at surfaces and interfaces: recent advances,” in Photonic Probes of Surfaces, P. Halevi, ed. (North-Holland, Amsterdam, 1995), pp. 413–478.
  2. Y. R. Shen, “Sum frequency generation for vibrational spectroscopy: applications to water interfaces and films of water and ice,” Solid State Commun. 108, 399–406 (1998), and references therein.
    [CrossRef]
  3. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  4. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
    [CrossRef] [PubMed]
  5. V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A: Pure Appl. Opt. 3, R1–R19 (2001).
    [CrossRef]
  6. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, and R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222–2232 (1993).
    [CrossRef]
  7. M. K. Reed, M. K. Steiner-Shepard, M. S. Armas, and D. K. Negus, “Microjoule-energy ultrafast optical parametric amplifiers,” J. Opt. Soc. Am. B 12, 2229–2236 (1995).
    [CrossRef]
  8. K. R. Wilson and V. V. Yakovlev, “Ultrafast rainbow: tunable ultrashort pulses from a solid-state kilohertz system,” J. Opt. Soc. Am. B 14, 444–448 (1997).
    [CrossRef]
  9. V. Petrov, F. Noack, and R. Stolzenberger, “Seeded femtosecond optical parametric amplification in the mid-infrared spectral region above 3 μm,” Appl. Opt. 36, 1164–1172 (1997).
    [CrossRef] [PubMed]
  10. G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid-infrared,” Opt. Lett. 22, 1253–1255 (1997).
    [CrossRef] [PubMed]
  11. U. Emmerichs, S. Wouterson, and H. J. Bakker, “Generation of intense femtosecond optical pulses near 3 μm with a kilohertz repetition rate,” J. Opt. Soc. Am. B 14, 1480–1483 (1997).
    [CrossRef]
  12. S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analy-sis and comparison,” Appl. Phys. B (Suppl.) 70, S247–S252 (2000), and references therein.
    [CrossRef]
  13. M. Nisoli, S. Stagira, S. De Slivestri, O. Svelto, G. Valiulis, and A. Varanavicius, “Parametric generation of high-energy 14.5-fs light pulses at 1.5 μm,” Opt. Lett. 23, 630–632 (1998).
    [CrossRef]
  14. S. R. Greenfield and M. R. Wasielewski, “Near-transform-limited visible and near-IR femtosecond pulses from optical parametric amplification using type II β-barium borate,” Opt. Lett. 20, 1394–1396 (1995).
    [CrossRef] [PubMed]
  15. D. E. Gragson, D. S. Alavi, and G. L. Richmond, “Tunable infrared laser system based on parametric amplification in KTP with a Ti:sapphire amplifier,” Opt. Lett. 20, 1991–1993 (1995).
    [CrossRef] [PubMed]
  16. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  17. S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
    [CrossRef]
  18. H. J. Bakker, P. C. M. Planken, and H. G. Muller, “Numerical calculation of optical frequency-conversion processes: a new approach,” J. Opt. Soc. Am. B 6, 1665–1672 (1989), and references therein.
    [CrossRef]
  19. G. M. Gale, M. Cavallari, and F. Hache, “Femtosecond visible optical parametric oscillator,” J. Opt. Soc. Am. B 15, 702–714 (1998).
    [CrossRef]
  20. G. M. Gale, F. Hache, and M. Cavallari, “Broad-bandwidth parametric amplification in the visible: femtosecond experiments and simulations,” IEEE J. Sel. Top. Quantum Electron. 4, 224–229 (1998).
    [CrossRef]
  21. S. Reisner and M. Gutmann, “Numerical treatment of UV-pumped, white-light-seeded single-pass noncollinear parametric amplifiers,” J. Opt. Soc. Am. B 16, 1801–1813 (1999).
    [CrossRef]
  22. D. Pang, R. Zhang, and Q. Wang, “Theoretical analysis of noncollinear phase-matched optical parametric amplifier seeded by a white-light continuum,” Opt. Commun. 196, 293–298 (2001).
    [CrossRef]
  23. J.-C. Wang and J.-K. Wang, “Femtosecond optical parametric amplifiers with collinear phase matching: experiments and full simulation,” presented at the Photonics West, Lasers and Applications in Sciences and Engineering Symposium, San Jose, Calif., January 25–31, 2003.
  24. W. Plass, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV and IR pulses,” Appl. Phys. B 54, 199–201 (1992).
    [CrossRef]
  25. E. J. Canto-Said, P. Simon, C. Jordan, and G. Marowsky, “Surface second-harmonic generation in Si(111) for autocor-relation measurements of 248-nm femtosecond pulses,” Opt. Lett. 18, 2038–2040 (1993).
    [CrossRef]
  26. H. P. Li, C. H. Kam, Y. L. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4 crystals in the femtosecond regime,” Appl. Phys. B 70, 385–388 (2000).
    [CrossRef]
  27. D. L. Fenimore, K. L. Schepler, U. B. Ramabadran, and S. R. McPherson, “Infrared corrected Sellmeier coefficients for potassium titanyl arsenate,” J. Opt. Soc. Am. B 12, 794–796 (1995).
    [CrossRef]
  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, New York, 1992).
  29. P. Hamm, R. A. Kaindl, and J. Stenger, “Noise suppression in femtosecond mid-infrared light sources,” Opt. Lett. 25, 1798–1800 (2000).
    [CrossRef]
  30. R. R. Alfano, The Supercontinuum Laser Source (Springer-Verlag, New York, 1989).
  31. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
    [CrossRef] [PubMed]
  32. G. Yang and Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,” Opt. Lett. 9, 510–512 (1984).
    [CrossRef] [PubMed]
  33. S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media,” Opt. Lett. 23, 379–381 (1998).
    [CrossRef]
  34. J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Quantum Electron. 8, 651–659 (2002).
    [CrossRef]
  35. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
    [CrossRef]
  36. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: Simulations and experiments,” Opt. Express 10, 1215–1221 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  37. W. L. Wolfe and G. J. Zissis, The Infrared Handbook (Environmental Research Institute of Michigan, Detroit, Mich., 1993).
  38. M. Nisoli, S. De Slivestri, V. Magni, O. Svelto, R. Danielius, A. Piskarskas, G. Valiulis, and A. Varanavicius, “Highly efficient parametric conversion of femtosecond Ti:sapphire laser pulses at 1 kHz,” Opt. Lett. 19, 1973–1975 (1994).
    [CrossRef] [PubMed]

2002 (3)

2001 (2)

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A: Pure Appl. Opt. 3, R1–R19 (2001).
[CrossRef]

D. Pang, R. Zhang, and Q. Wang, “Theoretical analysis of noncollinear phase-matched optical parametric amplifier seeded by a white-light continuum,” Opt. Commun. 196, 293–298 (2001).
[CrossRef]

2000 (3)

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analy-sis and comparison,” Appl. Phys. B (Suppl.) 70, S247–S252 (2000), and references therein.
[CrossRef]

H. P. Li, C. H. Kam, Y. L. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4 crystals in the femtosecond regime,” Appl. Phys. B 70, 385–388 (2000).
[CrossRef]

P. Hamm, R. A. Kaindl, and J. Stenger, “Noise suppression in femtosecond mid-infrared light sources,” Opt. Lett. 25, 1798–1800 (2000).
[CrossRef]

1999 (2)

S. Reisner and M. Gutmann, “Numerical treatment of UV-pumped, white-light-seeded single-pass noncollinear parametric amplifiers,” J. Opt. Soc. Am. B 16, 1801–1813 (1999).
[CrossRef]

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[CrossRef] [PubMed]

1998 (5)

Y. R. Shen, “Sum frequency generation for vibrational spectroscopy: applications to water interfaces and films of water and ice,” Solid State Commun. 108, 399–406 (1998), and references therein.
[CrossRef]

G. M. Gale, F. Hache, and M. Cavallari, “Broad-bandwidth parametric amplification in the visible: femtosecond experiments and simulations,” IEEE J. Sel. Top. Quantum Electron. 4, 224–229 (1998).
[CrossRef]

G. M. Gale, M. Cavallari, and F. Hache, “Femtosecond visible optical parametric oscillator,” J. Opt. Soc. Am. B 15, 702–714 (1998).
[CrossRef]

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media,” Opt. Lett. 23, 379–381 (1998).
[CrossRef]

M. Nisoli, S. Stagira, S. De Slivestri, O. Svelto, G. Valiulis, and A. Varanavicius, “Parametric generation of high-energy 14.5-fs light pulses at 1.5 μm,” Opt. Lett. 23, 630–632 (1998).
[CrossRef]

1997 (4)

1995 (4)

1994 (1)

1993 (2)

1992 (1)

W. Plass, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV and IR pulses,” Appl. Phys. B 54, 199–201 (1992).
[CrossRef]

1989 (1)

1984 (1)

1983 (1)

1968 (1)

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Alavi, D. S.

Armas, M. S.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bakker, H. J.

Banfi, G. P.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Canto-Said, E. J.

Cavallari, M.

G. M. Gale, F. Hache, and M. Cavallari, “Broad-bandwidth parametric amplification in the visible: femtosecond experiments and simulations,” IEEE J. Sel. Top. Quantum Electron. 4, 224–229 (1998).
[CrossRef]

G. M. Gale, M. Cavallari, and F. Hache, “Femtosecond visible optical parametric oscillator,” J. Opt. Soc. Am. B 15, 702–714 (1998).
[CrossRef]

Chirkin, A. S.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Clement, T. S.

Coen, S.

Cussat-Blanc, S.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analy-sis and comparison,” Appl. Phys. B (Suppl.) 70, S247–S252 (2000), and references therein.
[CrossRef]

Danielius, R.

De Slivestri, S.

Di Trapani, P.

Diddams, S. A.

Drabovich, K. N.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Dudley, J. M.

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[CrossRef] [PubMed]

Eaton, H. K.

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[CrossRef] [PubMed]

Eichhorn, G.

W. Plass, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV and IR pulses,” Appl. Phys. B 54, 199–201 (1992).
[CrossRef]

Emmerichs, U.

Fenimore, D. L.

Fork, R. L.

Freysz, E.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analy-sis and comparison,” Appl. Phys. B (Suppl.) 70, S247–S252 (2000), and references therein.
[CrossRef]

Gale, G. M.

Gallot, G.

Gragson, D. E.

Greenfield, S. R.

Gu, X.

Gutmann, M.

Hache, F.

Hamm, P.

Heuer, W.

W. Plass, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV and IR pulses,” Appl. Phys. B 54, 199–201 (1992).
[CrossRef]

Hirlimann, C.

Ivanov, A.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analy-sis and comparison,” Appl. Phys. B (Suppl.) 70, S247–S252 (2000), and references therein.
[CrossRef]

Ji, W.

H. P. Li, C. H. Kam, Y. L. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4 crystals in the femtosecond regime,” Appl. Phys. B 70, 385–388 (2000).
[CrossRef]

Jordan, C.

Kaindl, R. A.

Kam, C. H.

H. P. Li, C. H. Kam, Y. L. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4 crystals in the femtosecond regime,” Appl. Phys. B 70, 385–388 (2000).
[CrossRef]

Khokhlov, R. V.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Kimmel, M.

Kovrigin, A. I.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Lam, Y. L.

H. P. Li, C. H. Kam, Y. L. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4 crystals in the femtosecond regime,” Appl. Phys. B 70, 385–388 (2000).
[CrossRef]

Li, H. P.

H. P. Li, C. H. Kam, Y. L. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4 crystals in the femtosecond regime,” Appl. Phys. B 70, 385–388 (2000).
[CrossRef]

Lupinski, D.

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analy-sis and comparison,” Appl. Phys. B (Suppl.) 70, S247–S252 (2000), and references therein.
[CrossRef]

Magni, V.

Marowsky, G.

McPherson, S. R.

Muller, H. G.

Negus, D. K.

Nisoli, M.

Noack, F.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A: Pure Appl. Opt. 3, R1–R19 (2001).
[CrossRef]

V. Petrov, F. Noack, and R. Stolzenberger, “Seeded femtosecond optical parametric amplification in the mid-infrared spectral region above 3 μm,” Appl. Opt. 36, 1164–1172 (1997).
[CrossRef] [PubMed]

O’Shea, P.

Pang, D.

D. Pang, R. Zhang, and Q. Wang, “Theoretical analysis of noncollinear phase-matched optical parametric amplifier seeded by a white-light continuum,” Opt. Commun. 196, 293–298 (2001).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Petrov, V.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A: Pure Appl. Opt. 3, R1–R19 (2001).
[CrossRef]

V. Petrov, F. Noack, and R. Stolzenberger, “Seeded femtosecond optical parametric amplification in the mid-infrared spectral region above 3 μm,” Appl. Opt. 36, 1164–1172 (1997).
[CrossRef] [PubMed]

Piskarskas, A.

Planken, P. C. M.

Plass, W.

W. Plass, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV and IR pulses,” Appl. Phys. B 54, 199–201 (1992).
[CrossRef]

Ramabadran, U. B.

Reed, M. K.

Reisner, S.

Richmond, G. L.

Righini, R.

Rotermund, F.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A: Pure Appl. Opt. 3, R1–R19 (2001).
[CrossRef]

Rottke, H.

W. Plass, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV and IR pulses,” Appl. Phys. B 54, 199–201 (1992).
[CrossRef]

Sander, R.

Schepler, K. L.

Shank, C. V.

Shen, Y. R.

Y. R. Shen, “Sum frequency generation for vibrational spectroscopy: applications to water interfaces and films of water and ice,” Solid State Commun. 108, 399–406 (1998), and references therein.
[CrossRef]

G. Yang and Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,” Opt. Lett. 9, 510–512 (1984).
[CrossRef] [PubMed]

Shreenath, A. P.

Simon, P.

Stabinis, A.

Stagira, S.

Steiner-Shepard, M. K.

Stenger, J.

Stolzenberger, R.

Sukhorukov, A. P.

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

Svelto, O.

Tomlinson, W. J.

Trebino, R.

Valiulis, G.

Varanavicius, A.

Wang, Q.

D. Pang, R. Zhang, and Q. Wang, “Theoretical analysis of noncollinear phase-matched optical parametric amplifier seeded by a white-light continuum,” Opt. Commun. 196, 293–298 (2001).
[CrossRef]

Wasielewski, M. R.

Wilson, K. R.

Windeler, R. S.

Wouterson, S.

Xu, L.

Yakovlev, V. V.

Yang, G.

Yen, R.

Zacharias, H.

W. Plass, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV and IR pulses,” Appl. Phys. B 54, 199–201 (1992).
[CrossRef]

Zeek, E.

Zhang, R.

D. Pang, R. Zhang, and Q. Wang, “Theoretical analysis of noncollinear phase-matched optical parametric amplifier seeded by a white-light continuum,” Opt. Commun. 196, 293–298 (2001).
[CrossRef]

Zhou, F.

H. P. Li, C. H. Kam, Y. L. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4 crystals in the femtosecond regime,” Appl. Phys. B 70, 385–388 (2000).
[CrossRef]

Zozulya, A. A.

Appl. Opt. (1)

Appl. Phys. B (2)

W. Plass, H. Rottke, W. Heuer, G. Eichhorn, and H. Zacharias, “Surface sum-frequency mixing for auto- and cross-correlation of ultrashort UV and IR pulses,” Appl. Phys. B 54, 199–201 (1992).
[CrossRef]

H. P. Li, C. H. Kam, Y. L. Lam, F. Zhou, and W. Ji, “Nonlinear refraction of undoped and Fe-doped KTiOAsO4 crystals in the femtosecond regime,” Appl. Phys. B 70, 385–388 (2000).
[CrossRef]

Appl. Phys. B (Suppl.) (1)

S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analy-sis and comparison,” Appl. Phys. B (Suppl.) 70, S247–S252 (2000), and references therein.
[CrossRef]

IEEE J. Quantum Electron. (2)

J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Quantum Electron. 8, 651–659 (2002).
[CrossRef]

S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. QE-4, 598–605 (1968).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. M. Gale, F. Hache, and M. Cavallari, “Broad-bandwidth parametric amplification in the visible: femtosecond experiments and simulations,” IEEE J. Sel. Top. Quantum Electron. 4, 224–229 (1998).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A: Pure Appl. Opt. 3, R1–R19 (2001).
[CrossRef]

J. Opt. Soc. Am. B (8)

K. R. Wilson and V. V. Yakovlev, “Ultrafast rainbow: tunable ultrashort pulses from a solid-state kilohertz system,” J. Opt. Soc. Am. B 14, 444–448 (1997).
[CrossRef]

U. Emmerichs, S. Wouterson, and H. J. Bakker, “Generation of intense femtosecond optical pulses near 3 μm with a kilohertz repetition rate,” J. Opt. Soc. Am. B 14, 1480–1483 (1997).
[CrossRef]

G. M. Gale, M. Cavallari, and F. Hache, “Femtosecond visible optical parametric oscillator,” J. Opt. Soc. Am. B 15, 702–714 (1998).
[CrossRef]

S. Reisner and M. Gutmann, “Numerical treatment of UV-pumped, white-light-seeded single-pass noncollinear parametric amplifiers,” J. Opt. Soc. Am. B 16, 1801–1813 (1999).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and H. G. Muller, “Numerical calculation of optical frequency-conversion processes: a new approach,” J. Opt. Soc. Am. B 6, 1665–1672 (1989), and references therein.
[CrossRef]

R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, and R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222–2232 (1993).
[CrossRef]

D. L. Fenimore, K. L. Schepler, U. B. Ramabadran, and S. R. McPherson, “Infrared corrected Sellmeier coefficients for potassium titanyl arsenate,” J. Opt. Soc. Am. B 12, 794–796 (1995).
[CrossRef]

M. K. Reed, M. K. Steiner-Shepard, M. S. Armas, and D. K. Negus, “Microjoule-energy ultrafast optical parametric amplifiers,” J. Opt. Soc. Am. B 12, 2229–2236 (1995).
[CrossRef]

Opt. Commun. (1)

D. Pang, R. Zhang, and Q. Wang, “Theoretical analysis of noncollinear phase-matched optical parametric amplifier seeded by a white-light continuum,” Opt. Commun. 196, 293–298 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (11)

P. Hamm, R. A. Kaindl, and J. Stenger, “Noise suppression in femtosecond mid-infrared light sources,” Opt. Lett. 25, 1798–1800 (2000).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[CrossRef]

G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid-infrared,” Opt. Lett. 22, 1253–1255 (1997).
[CrossRef] [PubMed]

S. A. Diddams, H. K. Eaton, A. A. Zozulya, and T. S. Clement, “Amplitude and phase measurements of femtosecond pulse splitting in nonlinear dispersive media,” Opt. Lett. 23, 379–381 (1998).
[CrossRef]

M. Nisoli, S. Stagira, S. De Slivestri, O. Svelto, G. Valiulis, and A. Varanavicius, “Parametric generation of high-energy 14.5-fs light pulses at 1.5 μm,” Opt. Lett. 23, 630–632 (1998).
[CrossRef]

S. R. Greenfield and M. R. Wasielewski, “Near-transform-limited visible and near-IR femtosecond pulses from optical parametric amplification using type II β-barium borate,” Opt. Lett. 20, 1394–1396 (1995).
[CrossRef] [PubMed]

D. E. Gragson, D. S. Alavi, and G. L. Richmond, “Tunable infrared laser system based on parametric amplification in KTP with a Ti:sapphire amplifier,” Opt. Lett. 20, 1991–1993 (1995).
[CrossRef] [PubMed]

R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
[CrossRef] [PubMed]

G. Yang and Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,” Opt. Lett. 9, 510–512 (1984).
[CrossRef] [PubMed]

E. J. Canto-Said, P. Simon, C. Jordan, and G. Marowsky, “Surface second-harmonic generation in Si(111) for autocor-relation measurements of 248-nm femtosecond pulses,” Opt. Lett. 18, 2038–2040 (1993).
[CrossRef]

M. Nisoli, S. De Slivestri, V. Magni, O. Svelto, R. Danielius, A. Piskarskas, G. Valiulis, and A. Varanavicius, “Highly efficient parametric conversion of femtosecond Ti:sapphire laser pulses at 1 kHz,” Opt. Lett. 19, 1973–1975 (1994).
[CrossRef] [PubMed]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Science (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[CrossRef] [PubMed]

Solid State Commun. (1)

Y. R. Shen, “Sum frequency generation for vibrational spectroscopy: applications to water interfaces and films of water and ice,” Solid State Commun. 108, 399–406 (1998), and references therein.
[CrossRef]

Other (6)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

G. A. Reider and T. F. Heinz, “Second-order nonlinear optical effects at surfaces and interfaces: recent advances,” in Photonic Probes of Surfaces, P. Halevi, ed. (North-Holland, Amsterdam, 1995), pp. 413–478.

J.-C. Wang and J.-K. Wang, “Femtosecond optical parametric amplifiers with collinear phase matching: experiments and full simulation,” presented at the Photonics West, Lasers and Applications in Sciences and Engineering Symposium, San Jose, Calif., January 25–31, 2003.

W. L. Wolfe and G. J. Zissis, The Infrared Handbook (Environmental Research Institute of Michigan, Detroit, Mich., 1993).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, New York, 1992).

R. R. Alfano, The Supercontinuum Laser Source (Springer-Verlag, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the OPA system: PS’s, periscopes; BS1, BS2, beam splitters (R/T=95/5, 15/85, respectively); WP, a zero-order half-wave plate; TFP, thin-film polarizer; ID, iris diaphragm; CM, concave Ag mirror. The white-light generator consists of two convex lenses and a 2-mm sapphire plate. KTA1, the KTA nonlinear optical crystal for the first and second amplification stages; KTA2, that for the third amplification stage. Other abbreviations defined in text.

Fig. 2
Fig. 2

Relative group delay and intensity spectrum of the white-light seed pulse. Experimental data are represented by symbols; curves are retrieved results. Open squares and the dashed curve, the intensity spectrum; filled circles and the solid curve, the relative group delay.

Fig. 3
Fig. 3

(a) Constructed and (b) retrieved XFROG traces of the white-light seed pulse.

Fig. 4
Fig. 4

Retrieved electric field of the white-light seed pulse: (a) retrieved intensity (I, solid curve) and phase (ϕ, dashed curve). (b) Intensity spectrum.

Fig. 5
Fig. 5

Experimental and simulation results of the OPA system: (a) output energy (U), (b) pulse width (τ), (c) spectral width (Δf), (d) TBP. Experimental data are represented by filled circles. The simulation results are connected by curves: solid and dashed curves, results with and without third-order nonlinear polarization, respectively.

Fig. 6
Fig. 6

Normalized pulse shape evolution of (a) pump, (b) signal, and (c) idler pulses within the KTA crystal; L, propagation distance.

Fig. 7
Fig. 7

Normalized spectrum evolution of (a) pump, (b) signal, and (c) idler pulses within the KTA crystal; L, propagation distance.

Fig. 8
Fig. 8

Photon density of pump (dotted curve, NP), signal (dashed curve, NS), and idler (solid curve, NI) waves inside the KTA crystal; L, propagation distance.

Fig. 9
Fig. 9

TBP of pump (dotted curve), signal (dashed curve), and idler (solid curve) waves inside the KTA crystal; L, propagation distance.

Fig. 10
Fig. 10

Variations of (a) pulse duration (Δτ/τ0) and (b) photon density (ΔN/N0) of signal (dashed curves) and idler (solid curves) waves at 3 mm caused by variation of the pump intensity (ΔIP/IP0): τ0, pulse duration; N0, photon density with reference pump intensity (IP0). Dotted curves, tangential line of the data at IP0 (ΔIP/IP0=0).

Fig. 11
Fig. 11

Evolution of the pulse duration and the spectral width of signal and idler waves inside the OPA crystal at λidler=3 µm: pulse durations of (a) the signal and (b) the idler waves; spectral widths of (c) the signal and (d) the idler waves. Simulation results with the real, flat-topped, and chirpless white-light seed pulses are represented by solid, dashed, and dotted curves, respectively.

Fig. 12
Fig. 12

(a) Output photon density and (b) pulse duration of the idler wave at several wavelengths with the real (solid curves), flat-topped (dashed curves), and chirpless (dotted curves) white-light seed pulses.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Ej(z, t)=Aj(z, t)exp[i(kjz-ωjt)]+c.c.,
BP(z, ω)z=i2ω2 2kPω2BP(z, ω)-αP2BP(z, ω)+iωPnPcPPNL(z, ω),
BS(z, ω)z=iω1vS-1vPBS(z, ω)+i2ω2 2kSω2BS(z, ω)-αS2BS(z, ω)+iωSnScPSNL(z, ω),
BI(z, ω)z=iω1vI-1vPBI(z, ω)+i2ω2 2kIω2BI(z, ω)-αI2BI(z, ω)+iωInIcPINL(z, ω).
PP(2)(z, ω)=0χeff(2)dωFS(ω)FI(ω-ω)×exp[-ikP(ω)Δz],
PS(2)(z, ω)=0χeff(2)dωFP(ω)FI(ω-ω)×exp[-ikS(ω)Δz],
PI(2)(z, ω)=0χeff(2)dωFP(ω)FS(ω-ω)×exp[-ikI(ω)Δz],
PP(3)(z, ω)=FT32χeff(3)AP(γPP|AP|2+2γPS|AS|2+2γPI|AI|2),
PS(3)(z, ω)=FT32χeff(3)AS(2γSP|AP|2+γSS|AS|2+2γSI|AI|2),
PI(3)(z, ω)=FT32χeff(3)AI(2γIP|AP|2+2γIS|AS|2+γII|AI|2),

Metrics