Abstract

In recent years there has been great interest in controlling the speed of propagation of electromagnetic waves. In gases and crystals, coherent techniques have been applied to alter the speed of light without changing the physical or chemical structure of the medium. Also, light transmitted by highly disordered solids has exhibited signatures of Anderson localization, indicating the existence of a regime of “stopped” light that is mediated by random elastic scattering. However, to date, light has not been generated in a random medium as a pointlike excitation that is fixed in space from the outset. Here we report experimental evidence for the electrical generation and confinement of light within nanosized volumes of a random dielectric scattering medium in which a population inversion has been established, and discuss the properties of these novel light sources.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  2. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [CrossRef] [PubMed]
  3. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
    [CrossRef] [PubMed]
  4. A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
    [CrossRef] [PubMed]
  5. A. Andre and M. D. Lukin, “Manipulating light pulses via dynamically-controlled photonic bandgap,” Phys. Rev. Lett. 89, 143602 (2002).
    [CrossRef]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef] [PubMed]
  7. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).
  8. J. D. Joannopoulos, Photonic Crystals—Controlling the Flow of Light (Princeton University, Princeton, N.J., 1995).
  9. See for example P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic, London, 1995).
  10. P. W. Anderson, “Absence of diffusion in certain lattices,” Phys. Rev. 109, 1492–1505 (1958).
    [CrossRef]
  11. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
    [CrossRef]
  12. P. W. Anderson, “The question of classical localization: a theory of white paint?” Philos. Mag. B 52, 505–509 (1985).
    [CrossRef]
  13. A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous and liquid electronic semiconductors,” Prog. Semicond. 4, 237–291 (1960).
  14. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
    [CrossRef]
  15. D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple scattering events in disordered media,” Phys. Rev. Lett. 74, 4193–4196 (1995).
    [CrossRef] [PubMed]
  16. A. Z. Genack and N. Garcia, “Observation of photon localization in a three-dimensional disordered system,” Phys. Rev. Lett. 66, 2064–2067 (1991).
    [CrossRef] [PubMed]
  17. A. A. Chabanov and A. Z. Genack, “Photon localization in resonant media,” Phys. Rev. Lett. 87, 153901 (2001).
    [CrossRef] [PubMed]
  18. K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef] [PubMed]
  19. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, Cambridge, U.K., 1999), p. 723.
  20. G. S. Agarwal and S. D. Gupta, “Reciprocity relations for reflected amplitudes,” Opt. Lett. 27, 1205–1207 (2002).
    [CrossRef]
  21. See for example A. Siegman, Lasers (University Science, Sausalito, Calif., 1986).
  22. See for example K. Kamiuto, “Near-field scattering by a small spherical particle embedded in a nonabsorbing medium,” J. Opt. Soc. Am. B 1, 840–844 (1984).
    [CrossRef]
  23. L. M. Zurk, L. Tsang, K. H. Ding, and D. P. Winnebrenner, “Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and nonclustered geometries,” J. Opt. Soc. Am. A 12, 1772–1778 (1995).
    [CrossRef]
  24. P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
    [CrossRef]
  25. S. M. Redmond, “Luminescent instabilities and nonradiative processes in rare earth systems,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 2003).
  26. V. V. Klimov and V. S. Letokhov, “Enhancement and inhibition of spontaneous emission rates in nanobubbles,” Chem. Phys. Lett. 301, 441–448 (1999).
    [CrossRef]
  27. N. Garcia, A. Z. Genack, and A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992).
    [CrossRef]
  28. A. Z. Genack, “Optical transmission in disordered media,” Phys. Rev. Lett. 58, 2043–2046 (1987).
    [CrossRef] [PubMed]
  29. G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A 65, 013807 (2000).
    [CrossRef]
  30. X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59, 6159–6166 (1999).
    [CrossRef]
  31. L. Laversenne, Y. Guyot, C. Goutaudier, M. Th. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mat. 16, 475–483 (2001).
    [CrossRef]
  32. P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, “Spatial-field correlation: the building block of mesoscopic fluctuations,” Phys. Rev. Lett. 88, 123901 (2002).
    [CrossRef] [PubMed]
  33. V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. D. Lagendijk, “Near-field, short range correlation in optical waves transmitted through random media,” Phys. Rev. Lett. 90, 250801 (2003).
    [CrossRef]
  34. P. A. Lee and A. D. Stone, “Universal conductance fluctuations in metals,” Phys. Rev. Lett. 55, 1622–1625 (1985).
    [CrossRef] [PubMed]
  35. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), p. 206.
  36. V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron. 16, 281–283 (1986).
    [CrossRef]
  37. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
    [CrossRef]
  38. S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
    [CrossRef]
  39. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [CrossRef]
  40. R. K. Thareja and A. Mitra, “Random laser action in ZnO,” Appl. Phys. B 71, 181–184 (2000).
    [CrossRef]
  41. B. Li, G. R. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, “Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina,” Opt. Lett. 27, 394–396 (2002).
    [CrossRef]
  42. H. F. Arnoldus and J. T. Foley, “Spatial separation of the traveling and evanescent parts of dipole radiation,” Opt. Lett. 28, 1299–1301 (2003).
    [CrossRef] [PubMed]
  43. C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
    [CrossRef]

2003 (3)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. D. Lagendijk, “Near-field, short range correlation in optical waves transmitted through random media,” Phys. Rev. Lett. 90, 250801 (2003).
[CrossRef]

H. F. Arnoldus and J. T. Foley, “Spatial separation of the traveling and evanescent parts of dipole radiation,” Opt. Lett. 28, 1299–1301 (2003).
[CrossRef] [PubMed]

2002 (6)

B. Li, G. R. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, “Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina,” Opt. Lett. 27, 394–396 (2002).
[CrossRef]

P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, “Spatial-field correlation: the building block of mesoscopic fluctuations,” Phys. Rev. Lett. 88, 123901 (2002).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

A. Andre and M. D. Lukin, “Manipulating light pulses via dynamically-controlled photonic bandgap,” Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef]

G. S. Agarwal and S. D. Gupta, “Reciprocity relations for reflected amplitudes,” Opt. Lett. 27, 1205–1207 (2002).
[CrossRef]

2001 (4)

A. A. Chabanov and A. Z. Genack, “Photon localization in resonant media,” Phys. Rev. Lett. 87, 153901 (2001).
[CrossRef] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. Laversenne, Y. Guyot, C. Goutaudier, M. Th. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mat. 16, 475–483 (2001).
[CrossRef]

C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
[CrossRef]

2000 (3)

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A 65, 013807 (2000).
[CrossRef]

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

R. K. Thareja and A. Mitra, “Random laser action in ZnO,” Appl. Phys. B 71, 181–184 (2000).
[CrossRef]

1999 (5)

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

V. V. Klimov and V. S. Letokhov, “Enhancement and inhibition of spontaneous emission rates in nanobubbles,” Chem. Phys. Lett. 301, 441–448 (1999).
[CrossRef]

X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59, 6159–6166 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

1997 (1)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

1995 (2)

D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple scattering events in disordered media,” Phys. Rev. Lett. 74, 4193–4196 (1995).
[CrossRef] [PubMed]

L. M. Zurk, L. Tsang, K. H. Ding, and D. P. Winnebrenner, “Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and nonclustered geometries,” J. Opt. Soc. Am. A 12, 1772–1778 (1995).
[CrossRef]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

1992 (1)

N. Garcia, A. Z. Genack, and A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992).
[CrossRef]

1991 (2)

A. Z. Genack and N. Garcia, “Observation of photon localization in a three-dimensional disordered system,” Phys. Rev. Lett. 66, 2064–2067 (1991).
[CrossRef] [PubMed]

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

1987 (1)

A. Z. Genack, “Optical transmission in disordered media,” Phys. Rev. Lett. 58, 2043–2046 (1987).
[CrossRef] [PubMed]

1986 (1)

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron. 16, 281–283 (1986).
[CrossRef]

1985 (2)

P. A. Lee and A. D. Stone, “Universal conductance fluctuations in metals,” Phys. Rev. Lett. 55, 1622–1625 (1985).
[CrossRef] [PubMed]

P. W. Anderson, “The question of classical localization: a theory of white paint?” Philos. Mag. B 52, 505–509 (1985).
[CrossRef]

1984 (2)

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
[CrossRef]

See for example K. Kamiuto, “Near-field scattering by a small spherical particle embedded in a nonabsorbing medium,” J. Opt. Soc. Am. B 1, 840–844 (1984).
[CrossRef]

1960 (1)

A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous and liquid electronic semiconductors,” Prog. Semicond. 4, 237–291 (1960).

1958 (1)

P. W. Anderson, “Absence of diffusion in certain lattices,” Phys. Rev. 109, 1492–1505 (1958).
[CrossRef]

Agarwal, G. S.

Aigouy, L.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Aliev, F.

V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. D. Lagendijk, “Near-field, short range correlation in optical waves transmitted through random media,” Phys. Rev. Lett. 90, 250801 (2003).
[CrossRef]

Anderson, P. W.

P. W. Anderson, “The question of classical localization: a theory of white paint?” Philos. Mag. B 52, 505–509 (1985).
[CrossRef]

P. W. Anderson, “Absence of diffusion in certain lattices,” Phys. Rev. 109, 1492–1505 (1958).
[CrossRef]

Andre, A.

A. Andre and M. D. Lukin, “Manipulating light pulses via dynamically-controlled photonic bandgap,” Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef]

Arnoldus, H. F.

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Bartolini, P.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Baughman, R. H.

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

Bayram, S. B.

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A 65, 013807 (2000).
[CrossRef]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Boller, K.-J.

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Boulon, G.

L. Laversenne, Y. Guyot, C. Goutaudier, M. Th. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mat. 16, 475–483 (2001).
[CrossRef]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Briskina, C. M.

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron. 16, 281–283 (1986).
[CrossRef]

Cao, H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Cazayous, M.

V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. D. Lagendijk, “Near-field, short range correlation in optical waves transmitted through random media,” Phys. Rev. Lett. 90, 250801 (2003).
[CrossRef]

Chabanov, A. A.

A. A. Chabanov and A. Z. Genack, “Photon localization in resonant media,” Phys. Rev. Lett. 87, 153901 (2001).
[CrossRef] [PubMed]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Cohen-Adad, M. Th.

L. Laversenne, Y. Guyot, C. Goutaudier, M. Th. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mat. 16, 475–483 (2001).
[CrossRef]

Colocci, M.

V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. D. Lagendijk, “Near-field, short range correlation in optical waves transmitted through random media,” Phys. Rev. Lett. 90, 250801 (2003).
[CrossRef]

Ding, K. H.

Ducourtieux, S.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Emiliani, V.

V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. D. Lagendijk, “Near-field, short range correlation in optical waves transmitted through random media,” Phys. Rev. Lett. 90, 250801 (2003).
[CrossRef]

Foley, J. T.

Frolov, S. V.

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

Gadenne, P.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Garcia, N.

N. Garcia, A. Z. Genack, and A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992).
[CrossRef]

A. Z. Genack and N. Garcia, “Observation of photon localization in a three-dimensional disordered system,” Phys. Rev. Lett. 66, 2064–2067 (1991).
[CrossRef] [PubMed]

Genack, A. Z.

P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, “Spatial-field correlation: the building block of mesoscopic fluctuations,” Phys. Rev. Lett. 88, 123901 (2002).
[CrossRef] [PubMed]

A. A. Chabanov and A. Z. Genack, “Photon localization in resonant media,” Phys. Rev. Lett. 87, 153901 (2001).
[CrossRef] [PubMed]

N. Garcia, A. Z. Genack, and A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992).
[CrossRef]

A. Z. Genack and N. Garcia, “Observation of photon localization in a three-dimensional disordered system,” Phys. Rev. Lett. 66, 2064–2067 (1991).
[CrossRef] [PubMed]

A. Z. Genack, “Optical transmission in disordered media,” Phys. Rev. Lett. 58, 2043–2046 (1987).
[CrossRef] [PubMed]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Goutaudier, C.

L. Laversenne, Y. Guyot, C. Goutaudier, M. Th. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mat. 16, 475–483 (2001).
[CrossRef]

Gresillon, S.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Gupta, S. D.

Guyot, Y.

L. Laversenne, Y. Guyot, C. Goutaudier, M. Th. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mat. 16, 475–483 (2001).
[CrossRef]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Hinklin, T.

B. Li, G. R. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, “Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina,” Opt. Lett. 27, 394–396 (2002).
[CrossRef]

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A 65, 013807 (2000).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Hu, B.

P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, “Spatial-field correlation: the building block of mesoscopic fluctuations,” Phys. Rev. Lett. 88, 123901 (2002).
[CrossRef] [PubMed]

Imamoglu, A.

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Intonti, F.

V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. D. Lagendijk, “Near-field, short range correlation in optical waves transmitted through random media,” Phys. Rev. Lett. 90, 250801 (2003).
[CrossRef]

Ioffe, A. F.

A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous and liquid electronic semiconductors,” Prog. Semicond. 4, 237–291 (1960).

Jiang, X.

X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59, 6159–6166 (1999).
[CrossRef]

John, S.

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
[CrossRef]

Kamiuto, K.

See for example K. Kamiuto, “Near-field scattering by a small spherical particle embedded in a nonabsorbing medium,” J. Opt. Soc. Am. B 1, 840–844 (1984).
[CrossRef]

Klimov, V. V.

V. V. Klimov and V. S. Letokhov, “Enhancement and inhibition of spontaneous emission rates in nanobubbles,” Chem. Phys. Lett. 301, 441–448 (1999).
[CrossRef]

Kocharovskaya, O.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

Lagendijk, A.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple scattering events in disordered media,” Phys. Rev. Lett. 74, 4193–4196 (1995).
[CrossRef] [PubMed]

Lagendijk, A. D.

V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. D. Lagendijk, “Near-field, short range correlation in optical waves transmitted through random media,” Phys. Rev. Lett. 90, 250801 (2003).
[CrossRef]

Laine, R. M.

B. Li, G. R. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, “Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina,” Opt. Lett. 27, 394–396 (2002).
[CrossRef]

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A 65, 013807 (2000).
[CrossRef]

Laversenne, L.

L. Laversenne, Y. Guyot, C. Goutaudier, M. Th. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mat. 16, 475–483 (2001).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Lee, P. A.

P. A. Lee and A. D. Stone, “Universal conductance fluctuations in metals,” Phys. Rev. Lett. 55, 1622–1625 (1985).
[CrossRef] [PubMed]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Letokhov, V. S.

V. V. Klimov and V. S. Letokhov, “Enhancement and inhibition of spontaneous emission rates in nanobubbles,” Chem. Phys. Lett. 301, 441–448 (1999).
[CrossRef]

Li, B.

Lisyansky, A. A.

N. Garcia, A. Z. Genack, and A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992).
[CrossRef]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Lukin, M. D.

A. Andre and M. D. Lukin, “Manipulating light pulses via dynamically-controlled photonic bandgap,” Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef]

Markushev, V. M.

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron. 16, 281–283 (1986).
[CrossRef]

Matsko, A. B.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

Mitra, A.

R. K. Thareja and A. Mitra, “Random laser action in ZnO,” Appl. Phys. B 71, 181–184 (2000).
[CrossRef]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Pnini, R.

P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, “Spatial-field correlation: the building block of mesoscopic fluctuations,” Phys. Rev. Lett. 88, 123901 (2002).
[CrossRef] [PubMed]

Quelin, X.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Rand, S. C.

B. Li, G. R. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, “Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina,” Opt. Lett. 27, 394–396 (2002).
[CrossRef]

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A 65, 013807 (2000).
[CrossRef]

Regel, A. R.

A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous and liquid electronic semiconductors,” Prog. Semicond. 4, 237–291 (1960).

Righini, R.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Rivoal, J. C.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Rostovtsev, Y. V.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

Sarychev, A.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Scully, M. O.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

Sebbah, P.

P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, “Spatial-field correlation: the building block of mesoscopic fluctuations,” Phys. Rev. Lett. 88, 123901 (2002).
[CrossRef] [PubMed]

C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
[CrossRef]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Shalaev, V.

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Shapiro, B.

P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, “Spatial-field correlation: the building block of mesoscopic fluctuations,” Phys. Rev. Lett. 88, 123901 (2002).
[CrossRef] [PubMed]

Soukoulis, C. M.

X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59, 6159–6166 (1999).
[CrossRef]

Stone, A. D.

P. A. Lee and A. D. Stone, “Universal conductance fluctuations in metals,” Phys. Rev. Lett. 55, 1622–1625 (1985).
[CrossRef] [PubMed]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Thareja, R. K.

R. K. Thareja and A. Mitra, “Random laser action in ZnO,” Appl. Phys. B 71, 181–184 (2000).
[CrossRef]

Tsang, L.

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

van Albada, M. P.

D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple scattering events in disordered media,” Phys. Rev. Lett. 74, 4193–4196 (1995).
[CrossRef] [PubMed]

van Tiggelen, B. A.

D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple scattering events in disordered media,” Phys. Rev. Lett. 74, 4193–4196 (1995).
[CrossRef] [PubMed]

Vanneste, C.

C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
[CrossRef]

Vardeny, Z. V.

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Welch, G. R.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

Wiersma, D. S.

V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. D. Lagendijk, “Near-field, short range correlation in optical waves transmitted through random media,” Phys. Rev. Lett. 90, 250801 (2003).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple scattering events in disordered media,” Phys. Rev. Lett. 74, 4193–4196 (1995).
[CrossRef] [PubMed]

Williams, G. R.

B. Li, G. R. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, “Continuous-wave ultraviolet laser action in strongly scattering Nd-doped alumina,” Opt. Lett. 27, 394–396 (2002).
[CrossRef]

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A 65, 013807 (2000).
[CrossRef]

Winnebrenner, D. P.

Yoshino, K.

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

Zakhidov, A.

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Zibrov, A. S.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

Zolin, V. F.

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron. 16, 281–283 (1986).
[CrossRef]

Zurk, L. M.

Appl. Phys. B (1)

R. K. Thareja and A. Mitra, “Random laser action in ZnO,” Appl. Phys. B 71, 181–184 (2000).
[CrossRef]

Chem. Phys. Lett. (1)

V. V. Klimov and V. S. Letokhov, “Enhancement and inhibition of spontaneous emission rates in nanobubbles,” Chem. Phys. Lett. 301, 441–448 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

See for example K. Kamiuto, “Near-field scattering by a small spherical particle embedded in a nonabsorbing medium,” J. Opt. Soc. Am. B 1, 840–844 (1984).
[CrossRef]

Nature (4)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Opt. Lett. (3)

Opt. Mat. (1)

L. Laversenne, Y. Guyot, C. Goutaudier, M. Th. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mat. 16, 475–483 (2001).
[CrossRef]

Philos. Mag. B (1)

P. W. Anderson, “The question of classical localization: a theory of white paint?” Philos. Mag. B 52, 505–509 (1985).
[CrossRef]

Phys. Rev. (1)

P. W. Anderson, “Absence of diffusion in certain lattices,” Phys. Rev. 109, 1492–1505 (1958).
[CrossRef]

Phys. Rev. A (1)

G. R. Williams, S. B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, “Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors,” Phys. Rev. A 65, 013807 (2000).
[CrossRef]

Phys. Rev. B (3)

X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59, 6159–6166 (1999).
[CrossRef]

N. Garcia, A. Z. Genack, and A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992).
[CrossRef]

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

Phys. Rev. Lett. (15)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro, “Spatial-field correlation: the building block of mesoscopic fluctuations,” Phys. Rev. Lett. 88, 123901 (2002).
[CrossRef] [PubMed]

V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. D. Lagendijk, “Near-field, short range correlation in optical waves transmitted through random media,” Phys. Rev. Lett. 90, 250801 (2003).
[CrossRef]

P. A. Lee and A. D. Stone, “Universal conductance fluctuations in metals,” Phys. Rev. Lett. 55, 1622–1625 (1985).
[CrossRef] [PubMed]

A. Z. Genack, “Optical transmission in disordered media,” Phys. Rev. Lett. 58, 2043–2046 (1987).
[CrossRef] [PubMed]

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
[CrossRef]

D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, “Experimental evidence for recurrent multiple scattering events in disordered media,” Phys. Rev. Lett. 74, 4193–4196 (1995).
[CrossRef] [PubMed]

A. Z. Genack and N. Garcia, “Observation of photon localization in a three-dimensional disordered system,” Phys. Rev. Lett. 66, 2064–2067 (1991).
[CrossRef] [PubMed]

A. A. Chabanov and A. Z. Genack, “Photon localization in resonant media,” Phys. Rev. Lett. 87, 153901 (2001).
[CrossRef] [PubMed]

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, “Transporting and time reversing light via atomic coherence,” Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef] [PubMed]

A. Andre and M. D. Lukin, “Manipulating light pulses via dynamically-controlled photonic bandgap,” Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
[CrossRef]

Physica B (1)

P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Physica B 279, 52–55 (2000).
[CrossRef]

Prog. Semicond. (1)

A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous and liquid electronic semiconductors,” Prog. Semicond. 4, 237–291 (1960).

Sov. J. Quantum Electron. (1)

V. M. Markushev, V. F. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron. 16, 281–283 (1986).
[CrossRef]

Other (7)

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), p. 206.

S. M. Redmond, “Luminescent instabilities and nonradiative processes in rare earth systems,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 2003).

See for example A. Siegman, Lasers (University Science, Sausalito, Calif., 1986).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, Cambridge, U.K., 1999), p. 723.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).

J. D. Joannopoulos, Photonic Crystals—Controlling the Flow of Light (Princeton University, Princeton, N.J., 1995).

See for example P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic, London, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Magnitude of the internal electric field (exact 1D model with dependent scattering to all orders). Results shown are for a single (random) configuration of lossless dielectric nanoparticles (r=3.06) with mean diameter ϕ=80±30 nm and mean spacing 15±3 nm at λ=405 nm. (b), (c), (d) Plots of the longitudinal and transverse fields emitted by a dipole at the origin of three uniform, spherical regions compared with corresponding values for a uniform, featureless solid. In regions 1 (r<a), 2 (a<r<b), and 3 (r>b), assumed values were 1=1, 2=2.5, and 3=1, respectively, and for the uniform medium =2.5. The sizes of regions 1 and 2 were a=λ1/4 and b=(λ1+λ2)/4, where λi=λ0/(i)1/2 is the wavelength in region i.

Fig. 2
Fig. 2

(a) Measured transmission through free-standing Yb3+:Y2O3 nanopowder wedges. The inset shows raw data (triangles) versus thickness at 906 nm. The dashed curve gives the (calculated) single-pass absorption for the experimental Yb concentration of N=4.1×1020 ions/cm3 at volume fraction 0.15 plus the experimental off-resonance scattering attenuation. The dotted–dashed curve is the result of diffusion theory (see text). (b) Calculations of attenuation length versus mean free path through lossless dielectric particles (=3.24) of mean diameter 155 nm at λ=907 nm. The inset magnifies the high-density region where Mie-like resonances are evident and the attenuation length diverges as the mean free path approaches zero.

Fig. 3
Fig. 3

Spatial autocorrelations of laser speckle recorded at λ=632.8 nm in transmission through yttria nanopowder (at 0.15 filling fraction). The solid and dashed curves correspond to different spot diameters at the camera (0.48 and 0.68 times the length of the active area, respectively).

Fig. 4
Fig. 4

Measured fluorescence lifetimes (solid curve) and emission intensity (dashed curve) versus current from Nd3+:δ-Al2O3 in the neighborhood of the intensity threshold. Filling fraction and particle size were 0.15 and ϕ30 nm, respectively.

Fig. 5
Fig. 5

Spectral emission intensity recorded by cathodoluminescence from Nd3+:δ-Al2O3 nanopowder at various voltages with the total excitation power held constant.

Fig. 6
Fig. 6

Monte Carlo simulation of electron penetration versus voltage. (a) Distributions of electron locations after elastic scattering brings them to rest (defined as E<50 eV) in alumina of 50% solid density. Note the broadening with voltage, which leads to significant dilution of the average excitation density as voltage increases. (b) Mean electron penetration depth versus voltage from the simulations in (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

|Ei|2=|Et|2+|Er|2+k0-l/2l/2|E|2 Im[r(z)]dz.

Metrics