Abstract

Random laser action is demonstrated in organic–inorganic, disordered hybrid materials consisting of ZnO semiconductor nanoparticles dispersed in an optically inert polymer matrix. The ZnO particles provide both the gain and the strong scattering power that leads to light trapping due to multiple elastic scattering, whereas the polymer matrix offers ease of material fabrication and processability in view of potential applications. Excitation of the nanohybrids by a laser pulse with duration shorter than the ZnO photoluminescence lifetime leads to a dramatic increase in the emitted light intensity accompanied by a significant spectral and temporal narrowing above a certain threshold of the excitation energy density. Critical laser and material parameters that influence the observed laser-like emission behavior are investigated in a series of nanocomposites.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription