Abstract

Random laser action is demonstrated in organic–inorganic, disordered hybrid materials consisting of ZnO semiconductor nanoparticles dispersed in an optically inert polymer matrix. The ZnO particles provide both the gain and the strong scattering power that leads to light trapping due to multiple elastic scattering, whereas the polymer matrix offers ease of material fabrication and processability in view of potential applications. Excitation of the nanohybrids by a laser pulse with duration shorter than the ZnO photoluminescence lifetime leads to a dramatic increase in the emitted light intensity accompanied by a significant spectral and temporal narrowing above a certain threshold of the excitation energy density. Critical laser and material parameters that influence the observed laser-like emission behavior are investigated in a series of nanocomposites.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
    [CrossRef]
  2. N. B. Lawandy, “Paint-on lasers light the way for new technologies,” Photonics Spectra, July, 119–124 (1994).
  3. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  4. M. Siddique, R. R. Alfano, G. A. Berger, M. Kempe, and A. Z. Genack, “Time-resolved studies of stimulated emission from colloidal dye solutions,” Opt. Lett. 21, 450–452 (1996).
    [CrossRef] [PubMed]
  5. S. John, “Localization of light,” Phys. Today 44, 32–40 (1991).
    [CrossRef]
  6. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
    [CrossRef]
  7. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
    [CrossRef]
  8. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [CrossRef]
  9. G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24, 306–308 (1999).
    [CrossRef]
  10. H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
    [CrossRef]
  11. H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76, 2997–2999 (2000).
    [CrossRef]
  12. H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
    [CrossRef] [PubMed]
  13. D. S. Wiersma, “The smallest random laser,” Nature 406, 132–133 (2000).
    [CrossRef] [PubMed]
  14. G. Zacharakis, G. Heliotis, G. Filippidis, D. Anglos, and T. G. Papazoglou, “Investigation of the laser-like behavior of polymeric scattering gain media under subpicosecond laser excitation,” Appl. Opt. 38, 6087–6092 (2000).
    [CrossRef]
  15. S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
    [CrossRef]
  16. Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
    [CrossRef]
  17. E. Gross, D. Kovalev, N. Künzner, J. Diener, F. Koch, and M. Fujii, “Stimulated light emission in dense fog confined inside a porous glass matrix,” Phys. Rev. Lett. 89, 267401 (2002).
    [CrossRef] [PubMed]
  18. G. Zacharakis, N. Papadogiannis, G. Filippidis, and T. G. Papazoglou, “Photon statistics of laser-like emission from polymeric scattering gain media,” Opt. Lett. 25, 923–925 (2000).
    [CrossRef]
  19. H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
    [CrossRef] [PubMed]
  20. C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
    [CrossRef]
  21. X. Jiang and C. M. Soukoulis, “Time-dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
    [CrossRef] [PubMed]
  22. Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000).
    [CrossRef]
  23. C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamicresponse and relaxation oscillations in random lasers,” Phys. Rev. B 65, 041103 (2002).
    [CrossRef]
  24. S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1924–1926 (2002).
    [CrossRef]
  25. Absorption spectra of neat polymer films measured in our laboratory show that PDMS and PMMA have a much lower, though nonnegligible, optical density at 248 nm compared with PS and epoxy. This is in agreement with absorption coefficient data for PMMA26 (100 cm−1) and PS27 (6290 cm−1). Moreover, at 355 nm, spectra show that PDMS, PMMA, and PS have negligible absorbance.
  26. M. Bolle and S. Lazare, “Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet laser radiation,” J. Appl. Phys. 73, 3516–3524 (1993).
    [CrossRef]
  27. S. Lazare and V. Granier, “Excimer laser light induced ablation and reactions at polymer surfaces as measured with a quartz-crystal microbalance,” J. Appl. Phys. 63, 2110–2115 (1988).
    [CrossRef]
  28. P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
    [CrossRef] [PubMed]
  29. G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24, 306–308 (1999).
    [CrossRef]
  30. F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256, 424–430 (1996).
    [CrossRef]
  31. S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56, R4363–R4366 (1997).
    [CrossRef]
  32. S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
    [CrossRef]
  33. R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random lasing in π-conjugated films and infiltrated opals,” Adv. Mater. 13, 760–764 (2001).
    [CrossRef]

2002 (3)

C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamicresponse and relaxation oscillations in random lasers,” Phys. Rev. B 65, 041103 (2002).
[CrossRef]

S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1924–1926 (2002).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, J. Diener, F. Koch, and M. Fujii, “Stimulated light emission in dense fog confined inside a porous glass matrix,” Phys. Rev. Lett. 89, 267401 (2002).
[CrossRef] [PubMed]

2001 (4)

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[CrossRef]

R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random lasing in π-conjugated films and infiltrated opals,” Adv. Mater. 13, 760–764 (2001).
[CrossRef]

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
[CrossRef]

2000 (8)

X. Jiang and C. M. Soukoulis, “Time-dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
[CrossRef] [PubMed]

Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000).
[CrossRef]

H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[CrossRef]

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76, 2997–2999 (2000).
[CrossRef]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[CrossRef] [PubMed]

D. S. Wiersma, “The smallest random laser,” Nature 406, 132–133 (2000).
[CrossRef] [PubMed]

G. Zacharakis, G. Heliotis, G. Filippidis, D. Anglos, and T. G. Papazoglou, “Investigation of the laser-like behavior of polymeric scattering gain media under subpicosecond laser excitation,” Appl. Opt. 38, 6087–6092 (2000).
[CrossRef]

G. Zacharakis, N. Papadogiannis, G. Filippidis, and T. G. Papazoglou, “Photon statistics of laser-like emission from polymeric scattering gain media,” Opt. Lett. 25, 923–925 (2000).
[CrossRef]

1999 (5)

G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24, 306–308 (1999).
[CrossRef]

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24, 306–308 (1999).
[CrossRef]

1998 (1)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[CrossRef]

1997 (1)

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56, R4363–R4366 (1997).
[CrossRef]

1996 (3)

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256, 424–430 (1996).
[CrossRef]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[CrossRef]

M. Siddique, R. R. Alfano, G. A. Berger, M. Kempe, and A. Z. Genack, “Time-resolved studies of stimulated emission from colloidal dye solutions,” Opt. Lett. 21, 450–452 (1996).
[CrossRef] [PubMed]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

1993 (1)

M. Bolle and S. Lazare, “Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet laser radiation,” J. Appl. Phys. 73, 3516–3524 (1993).
[CrossRef]

1991 (1)

S. John, “Localization of light,” Phys. Today 44, 32–40 (1991).
[CrossRef]

1988 (1)

S. Lazare and V. Granier, “Excimer laser light induced ablation and reactions at polymer surfaces as measured with a quartz-crystal microbalance,” J. Appl. Phys. 63, 2110–2115 (1988).
[CrossRef]

1985 (1)

P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[CrossRef] [PubMed]

1968 (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Alfano, R. R.

Anglos, D.

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Baughman, R. H.

S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
[CrossRef]

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

Berger, G. A.

Bolle, M.

M. Bolle and S. Lazare, “Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet laser radiation,” J. Appl. Phys. 73, 3516–3524 (1993).
[CrossRef]

Burin, A. L.

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[CrossRef]

Cao, C. Q.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

Cao, H.

C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamicresponse and relaxation oscillations in random lasers,” Phys. Rev. B 65, 041103 (2002).
[CrossRef]

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[CrossRef]

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[CrossRef] [PubMed]

H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[CrossRef]

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76, 2997–2999 (2000).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[CrossRef]

Chang, R. P. H.

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[CrossRef]

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76, 2997–2999 (2000).
[CrossRef]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[CrossRef] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[CrossRef]

Chang, S.-H.

H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[CrossRef]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[CrossRef] [PubMed]

Cheong, H. D.

S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1924–1926 (2002).
[CrossRef]

Chipouline, A.

R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random lasing in π-conjugated films and infiltrated opals,” Adv. Mater. 13, 760–764 (2001).
[CrossRef]

Dai, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[CrossRef]

Díaz-García, M. A.

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256, 424–430 (1996).
[CrossRef]

Diener, J.

E. Gross, D. Kovalev, N. Künzner, J. Diener, F. Koch, and M. Fujii, “Stimulated light emission in dense fog confined inside a porous glass matrix,” Phys. Rev. Lett. 89, 267401 (2002).
[CrossRef] [PubMed]

Filippidis, G.

Frolov, S. V.

S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
[CrossRef]

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56, R4363–R4366 (1997).
[CrossRef]

Fujii, M.

E. Gross, D. Kovalev, N. Künzner, J. Diener, F. Koch, and M. Fujii, “Stimulated light emission in dense fog confined inside a porous glass matrix,” Phys. Rev. Lett. 89, 267401 (2002).
[CrossRef] [PubMed]

Genack, A. Z.

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Granier, V.

S. Lazare and V. Granier, “Excimer laser light induced ablation and reactions at polymer surfaces as measured with a quartz-crystal microbalance,” J. Appl. Phys. 63, 2110–2115 (1988).
[CrossRef]

Gross, E.

E. Gross, D. Kovalev, N. Künzner, J. Diener, F. Koch, and M. Fujii, “Stimulated light emission in dense fog confined inside a porous glass matrix,” Phys. Rev. Lett. 89, 267401 (2002).
[CrossRef] [PubMed]

Heeger, A. J.

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256, 424–430 (1996).
[CrossRef]

Heliotis, G.

Hide, F.

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256, 424–430 (1996).
[CrossRef]

Ho, K. M.

Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000).
[CrossRef]

Ho, S. T.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[CrossRef] [PubMed]

H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[CrossRef]

Hong, S.

S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1924–1926 (2002).
[CrossRef]

Jang, H. M.

S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1924–1926 (2002).
[CrossRef]

Jiang, X.

C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamicresponse and relaxation oscillations in random lasers,” Phys. Rev. B 65, 041103 (2002).
[CrossRef]

X. Jiang and C. M. Soukoulis, “Time-dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
[CrossRef] [PubMed]

John, S.

S. John, “Localization of light,” Phys. Today 44, 32–40 (1991).
[CrossRef]

Joo, T.

S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1924–1926 (2002).
[CrossRef]

Jung, S. W.

S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1924–1926 (2002).
[CrossRef]

Kempe, M.

Koch, F.

E. Gross, D. Kovalev, N. Künzner, J. Diener, F. Koch, and M. Fujii, “Stimulated light emission in dense fog confined inside a porous glass matrix,” Phys. Rev. Lett. 89, 267401 (2002).
[CrossRef] [PubMed]

Kovalev, D.

E. Gross, D. Kovalev, N. Künzner, J. Diener, F. Koch, and M. Fujii, “Stimulated light emission in dense fog confined inside a porous glass matrix,” Phys. Rev. Lett. 89, 267401 (2002).
[CrossRef] [PubMed]

Kumar, P.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

Künzner, N.

E. Gross, D. Kovalev, N. Künzner, J. Diener, F. Koch, and M. Fujii, “Stimulated light emission in dense fog confined inside a porous glass matrix,” Phys. Rev. Lett. 89, 267401 (2002).
[CrossRef] [PubMed]

Lagendijk, A.

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Lazare, S.

M. Bolle and S. Lazare, “Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet laser radiation,” J. Appl. Phys. 73, 3516–3524 (1993).
[CrossRef]

S. Lazare and V. Granier, “Excimer laser light induced ablation and reactions at polymer surfaces as measured with a quartz-crystal microbalance,” J. Appl. Phys. 63, 2110–2115 (1988).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Li, Q.

Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000).
[CrossRef]

Ling, Y.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[CrossRef]

Liu, X.

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[CrossRef]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[CrossRef] [PubMed]

Maret, G.

P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[CrossRef] [PubMed]

Ong, H. C.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[CrossRef]

Papadogiannis, N.

Papazoglou, T. G.

Park, W. I.

S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1924–1926 (2002).
[CrossRef]

Polson, R. C.

R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random lasing in π-conjugated films and infiltrated opals,” Adv. Mater. 13, 760–764 (2001).
[CrossRef]

Ratner, M. A.

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Schwartz, B. J.

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256, 424–430 (1996).
[CrossRef]

Sebbah, P.

C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
[CrossRef]

Seelig, E. W.

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76, 2997–2999 (2000).
[CrossRef]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[CrossRef] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Shkunov, M.

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56, R4363–R4366 (1997).
[CrossRef]

Siddique, M.

Soukoulis, C. M.

C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamicresponse and relaxation oscillations in random lasers,” Phys. Rev. B 65, 041103 (2002).
[CrossRef]

X. Jiang and C. M. Soukoulis, “Time-dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
[CrossRef] [PubMed]

Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000).
[CrossRef]

Tomita, M.

van Soest, G.

Vanneste, C.

C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
[CrossRef]

Vardeny, Z. V.

R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random lasing in π-conjugated films and infiltrated opals,” Adv. Mater. 13, 760–764 (2001).
[CrossRef]

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
[CrossRef]

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56, R4363–R4366 (1997).
[CrossRef]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, “The smallest random laser,” Nature 406, 132–133 (2000).
[CrossRef] [PubMed]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[CrossRef]

Wolf, P.-E.

P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[CrossRef] [PubMed]

Wu, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[CrossRef]

Xu, J. Y.

C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamicresponse and relaxation oscillations in random lasers,” Phys. Rev. B 65, 041103 (2002).
[CrossRef]

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[CrossRef] [PubMed]

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76, 2997–2999 (2000).
[CrossRef]

H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[CrossRef]

Yi, G.-C.

S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1924–1926 (2002).
[CrossRef]

Yoshino, K.

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56, R4363–R4366 (1997).
[CrossRef]

Zacharakis, G.

Zakhidov, A.

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

Zakhidov, A. A.

S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
[CrossRef]

Zhang, D. Z.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[CrossRef] [PubMed]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[CrossRef]

Adv. Mater. (1)

R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random lasing in π-conjugated films and infiltrated opals,” Adv. Mater. 13, 760–764 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76, 2997–2999 (2000).
[CrossRef]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[CrossRef]

S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, H. M. Jang, S. Hong, and T. Joo, “Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 80, 1924–1926 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256, 424–430 (1996).
[CrossRef]

J. Appl. Phys. (2)

M. Bolle and S. Lazare, “Characterization of submicrometer periodic structures produced on polymer surfaces with low-fluence ultraviolet laser radiation,” J. Appl. Phys. 73, 3516–3524 (1993).
[CrossRef]

S. Lazare and V. Granier, “Excimer laser light induced ablation and reactions at polymer surfaces as measured with a quartz-crystal microbalance,” J. Appl. Phys. 63, 2110–2115 (1988).
[CrossRef]

Nature (2)

D. S. Wiersma, “The smallest random laser,” Nature 406, 132–133 (2000).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Opt. Commun. (1)

S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[CrossRef]

Phys. Rev. B (3)

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56, R4363–R4366 (1997).
[CrossRef]

S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59, R5284–R5287 (1999).
[CrossRef]

C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamicresponse and relaxation oscillations in random lasers,” Phys. Rev. B 65, 041103 (2002).
[CrossRef]

Phys. Rev. E (2)

H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[CrossRef]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[CrossRef]

Phys. Rev. Lett. (7)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[CrossRef] [PubMed]

E. Gross, D. Kovalev, N. Künzner, J. Diener, F. Koch, and M. Fujii, “Stimulated light emission in dense fog confined inside a porous glass matrix,” Phys. Rev. Lett. 89, 267401 (2002).
[CrossRef] [PubMed]

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[CrossRef] [PubMed]

C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
[CrossRef]

X. Jiang and C. M. Soukoulis, “Time-dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
[CrossRef] [PubMed]

P.-E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985).
[CrossRef] [PubMed]

Phys. Today (1)

S. John, “Localization of light,” Phys. Today 44, 32–40 (1991).
[CrossRef]

Physica B (1)

Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000).
[CrossRef]

Sov. Phys. JETP (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Other (2)

N. B. Lawandy, “Paint-on lasers light the way for new technologies,” Photonics Spectra, July, 119–124 (1994).

Absorption spectra of neat polymer films measured in our laboratory show that PDMS and PMMA have a much lower, though nonnegligible, optical density at 248 nm compared with PS and epoxy. This is in agreement with absorption coefficient data for PMMA26 (100 cm−1) and PS27 (6290 cm−1). Moreover, at 355 nm, spectra show that PDMS, PMMA, and PS have negligible absorbance.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Photoluminescence spectra and quantification of their characteristics for a ZnO–PDMS nanocomposite (30% w/w, 6.7% v/v) illuminated at 248 nm (5-ps pulse duration) at different values of the laser energy density. Spectra are shown at (a) 1.4 mJ/cm2, (b) 2.8 mJ/cm2, and (c) 6.7 mJ/cm2. The emission intensity (d), the emission spectral FWHM (e), and the emission peak wavelength (f) are shown as functions of the excitation energy density. Excitation area, 5 mm2. The solid curve in (d) indicates a slope of 1. The vertical dashed line in (d)–(f) indicates the threshold value of the energy density.

Fig. 2
Fig. 2

Dynamics of photoluminescence emission and quantification of its characteristics for a ZnO–PDMS nanocomposite (30% w/w, 6.7% v/v) illuminated at 248 nm (450-fs pulse duration) at different values of the laser energy density. Decay curves are shown at (a) 2.2 mJ/cm2, (b) 5.6 mJ/cm2, and (c) 12.8 mJ/cm2. The temporal (d) and spectral (e) narrowing of the emission are shown as functions of the excitation energy density. Excitation area, 5 mm2. Below the threshold, the decays correspond to single exponential functions with the decay times shown in (d). Above threshold, the characteristic times in (d) represent the width of the decay curves at 1/e of the maximum intensity.

Fig. 3
Fig. 3

Series of photoluminescence emission spectra obtained from a ZnO–PDMS nanocomposite (40% w/w, 10% v/v) under (a) picosecond (248 nm, 5 ps, 16 mJ/cm2), (b) nanosecond (355 nm, 8 ns, 108 mJ/cm2) excitation.

Fig. 4
Fig. 4

(a) Emission intensity versus excitation energy density (248 nm, 5 ps) for a series of ZnO–PDMS systems with nanoparticle content of 10% w/w (1.8% v/v) (no lasing), 30% w/w (6.7% v/v) (threshold, 2.8 mJ/cm2), 40% w/w (10% v/v) (threshold, 2.4 mJ/cm2) and 50% w/w (14% v/v) (threshold, 2.3 mJ/cm2). Excitation area, 5 mm2. The solid curve indicates a slope of 1. (b) Excitation energy density threshold as a function of the irradiated surface area for the three nanocomposites that showed threshold behavior.

Metrics