Abstract

We study coherent backscattering (CBS) of resonant light by cold atomic vapors, both experimentally and theoretically. The theory predicts a drastic reduction of the CBS enhancement factor when a degenerate internal structure is present in the ground state. We test this prediction in experiments using different atoms and various transitions.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Mesoscopic quantum physics,” Les Houches Summer School Proceedings, Vol. LXI, E. Akkermans, G. Montambaux, J.-L. Pichard, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1996).
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  4. Photonic Crystals and Light Localization in the 21st Century, C. M. Soukoulis, ed. (Kluwer, Dordrecht, The Netherlands, 2001).
  5. “Diffuse waves in complex media,” NATO Science Series: C, Mathematical and Physical Sciences, Vol. 531, J. P. Fouque, ed. (Kluwer, Dordrecht, The Netherlands, 1999).
  6. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
    [CrossRef]
  7. F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light?” Nature 398, 206–207 (1999).
    [CrossRef]
  8. J. Gómez Rivas, R. Sprik, A. Lagendijk, L. D. Noordam, and C. W. Rella, “Static and dynamic transport of light close to the Anderson localization transition,” Phys. Rev. E 63, 046613 (2001).
    [CrossRef]
  9. G. Labeyrie, F. de Tomasi, J.-C. Bernard, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms,” Phys. Rev. Lett. 83, 5266–5269 (1999).
    [CrossRef]
  10. G. Labeyrie, C. A. Müller, D. S. Wiersma, Ch. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B: Quantum Semiclassical Opt. 2, 672–685 (2000).
    [CrossRef]
  11. Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniatura, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
    [CrossRef] [PubMed]
  12. G. Labeyrie, Ch. Miniatura, C. A. Müller, O. Sigwarth, D. Delande, and R. Kaiser, “Hanle effect in coherent backscattering,” Phys. Rev. Lett. 89, 163901 (2002).
    [CrossRef] [PubMed]
  13. G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by an inhomogeneous cloud of cold atoms,” Phys. Rev. A 67, 033814 (2003).
    [CrossRef]
  14. P. Kulatunga, C. I. Sukenik, S. Balik, M. D. Havey, D. V. Kupriyanov, and I. M. Sokolov, “Measurement of correlated multiple light scattering in ultracold atomic 85Rb,” Phys. Rev. A 68, 033816 (2003).
    [CrossRef]
  15. T. Jonckheere, C. A. Müller, R. Kaiser, Ch. Miniatura, and D. Delande, “Multiple scattering of light by atoms in the weak localization regime,” Phys. Rev. Lett. 85, 4269–4272 (2000).
    [CrossRef] [PubMed]
  16. C. A. Müller, T. Jonckheere, C. Miniatura, and D. Delande, “Weak localization of light by cold atoms: The impact of quantum internal structure,” Phys. Rev. A 64, 053804 (2001).
    [CrossRef]
  17. C. A. Müller and Ch. Miniatura, “Multiple scattering of light by atoms with internal degeneracy,” J. Phys. A 35, 10163–10188 (2002).
    [CrossRef]
  18. D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light in atomic systems: Application to weak localization in an ensemble of cold alkali metal atoms,” Phys. Rev. A 67, 013814 (2003).
    [CrossRef]
  19. G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms: theory meets experiment,” Europhys. Lett. 61, 327–333 (2003).
    [CrossRef]
  20. A. Lagendijk and B. A. van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996).
    [CrossRef]
  21. M. C. W. van Rossum and Th. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
    [CrossRef]
  22. M. J. Rakovic, G. W. Kattawar, M. Mehrbeolu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399 (1999).
    [CrossRef]

2003 (4)

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by an inhomogeneous cloud of cold atoms,” Phys. Rev. A 67, 033814 (2003).
[CrossRef]

P. Kulatunga, C. I. Sukenik, S. Balik, M. D. Havey, D. V. Kupriyanov, and I. M. Sokolov, “Measurement of correlated multiple light scattering in ultracold atomic 85Rb,” Phys. Rev. A 68, 033816 (2003).
[CrossRef]

D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light in atomic systems: Application to weak localization in an ensemble of cold alkali metal atoms,” Phys. Rev. A 67, 013814 (2003).
[CrossRef]

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms: theory meets experiment,” Europhys. Lett. 61, 327–333 (2003).
[CrossRef]

2002 (3)

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniatura, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

G. Labeyrie, Ch. Miniatura, C. A. Müller, O. Sigwarth, D. Delande, and R. Kaiser, “Hanle effect in coherent backscattering,” Phys. Rev. Lett. 89, 163901 (2002).
[CrossRef] [PubMed]

C. A. Müller and Ch. Miniatura, “Multiple scattering of light by atoms with internal degeneracy,” J. Phys. A 35, 10163–10188 (2002).
[CrossRef]

2001 (2)

J. Gómez Rivas, R. Sprik, A. Lagendijk, L. D. Noordam, and C. W. Rella, “Static and dynamic transport of light close to the Anderson localization transition,” Phys. Rev. E 63, 046613 (2001).
[CrossRef]

C. A. Müller, T. Jonckheere, C. Miniatura, and D. Delande, “Weak localization of light by cold atoms: The impact of quantum internal structure,” Phys. Rev. A 64, 053804 (2001).
[CrossRef]

2000 (2)

G. Labeyrie, C. A. Müller, D. S. Wiersma, Ch. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B: Quantum Semiclassical Opt. 2, 672–685 (2000).
[CrossRef]

T. Jonckheere, C. A. Müller, R. Kaiser, Ch. Miniatura, and D. Delande, “Multiple scattering of light by atoms in the weak localization regime,” Phys. Rev. Lett. 85, 4269–4272 (2000).
[CrossRef] [PubMed]

1999 (4)

M. C. W. van Rossum and Th. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
[CrossRef]

M. J. Rakovic, G. W. Kattawar, M. Mehrbeolu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399 (1999).
[CrossRef]

G. Labeyrie, F. de Tomasi, J.-C. Bernard, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms,” Phys. Rev. Lett. 83, 5266–5269 (1999).
[CrossRef]

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light?” Nature 398, 206–207 (1999).
[CrossRef]

1997 (1)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

1996 (1)

A. Lagendijk and B. A. van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996).
[CrossRef]

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Balik, S.

P. Kulatunga, C. I. Sukenik, S. Balik, M. D. Havey, D. V. Kupriyanov, and I. M. Sokolov, “Measurement of correlated multiple light scattering in ultracold atomic 85Rb,” Phys. Rev. A 68, 033816 (2003).
[CrossRef]

Bartolini, P.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Bernard, J. C.

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniatura, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

Bernard, J.-C.

G. Labeyrie, F. de Tomasi, J.-C. Bernard, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms,” Phys. Rev. Lett. 83, 5266–5269 (1999).
[CrossRef]

Bidel, Y.

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniatura, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

Cameron, B. D.

Cote, G. L.

de Tomasi, F.

G. Labeyrie, F. de Tomasi, J.-C. Bernard, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms,” Phys. Rev. Lett. 83, 5266–5269 (1999).
[CrossRef]

Delande, D.

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by an inhomogeneous cloud of cold atoms,” Phys. Rev. A 67, 033814 (2003).
[CrossRef]

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms: theory meets experiment,” Europhys. Lett. 61, 327–333 (2003).
[CrossRef]

G. Labeyrie, Ch. Miniatura, C. A. Müller, O. Sigwarth, D. Delande, and R. Kaiser, “Hanle effect in coherent backscattering,” Phys. Rev. Lett. 89, 163901 (2002).
[CrossRef] [PubMed]

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniatura, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

C. A. Müller, T. Jonckheere, C. Miniatura, and D. Delande, “Weak localization of light by cold atoms: The impact of quantum internal structure,” Phys. Rev. A 64, 053804 (2001).
[CrossRef]

T. Jonckheere, C. A. Müller, R. Kaiser, Ch. Miniatura, and D. Delande, “Multiple scattering of light by atoms in the weak localization regime,” Phys. Rev. Lett. 85, 4269–4272 (2000).
[CrossRef] [PubMed]

Gómez Rivas, J.

J. Gómez Rivas, R. Sprik, A. Lagendijk, L. D. Noordam, and C. W. Rella, “Static and dynamic transport of light close to the Anderson localization transition,” Phys. Rev. E 63, 046613 (2001).
[CrossRef]

Havey, M. D.

D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light in atomic systems: Application to weak localization in an ensemble of cold alkali metal atoms,” Phys. Rev. A 67, 013814 (2003).
[CrossRef]

P. Kulatunga, C. I. Sukenik, S. Balik, M. D. Havey, D. V. Kupriyanov, and I. M. Sokolov, “Measurement of correlated multiple light scattering in ultracold atomic 85Rb,” Phys. Rev. A 68, 033816 (2003).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Jonckheere, T.

C. A. Müller, T. Jonckheere, C. Miniatura, and D. Delande, “Weak localization of light by cold atoms: The impact of quantum internal structure,” Phys. Rev. A 64, 053804 (2001).
[CrossRef]

T. Jonckheere, C. A. Müller, R. Kaiser, Ch. Miniatura, and D. Delande, “Multiple scattering of light by atoms in the weak localization regime,” Phys. Rev. Lett. 85, 4269–4272 (2000).
[CrossRef] [PubMed]

Kaiser, R.

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by an inhomogeneous cloud of cold atoms,” Phys. Rev. A 67, 033814 (2003).
[CrossRef]

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms: theory meets experiment,” Europhys. Lett. 61, 327–333 (2003).
[CrossRef]

G. Labeyrie, Ch. Miniatura, C. A. Müller, O. Sigwarth, D. Delande, and R. Kaiser, “Hanle effect in coherent backscattering,” Phys. Rev. Lett. 89, 163901 (2002).
[CrossRef] [PubMed]

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniatura, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

G. Labeyrie, C. A. Müller, D. S. Wiersma, Ch. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B: Quantum Semiclassical Opt. 2, 672–685 (2000).
[CrossRef]

T. Jonckheere, C. A. Müller, R. Kaiser, Ch. Miniatura, and D. Delande, “Multiple scattering of light by atoms in the weak localization regime,” Phys. Rev. Lett. 85, 4269–4272 (2000).
[CrossRef] [PubMed]

G. Labeyrie, F. de Tomasi, J.-C. Bernard, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms,” Phys. Rev. Lett. 83, 5266–5269 (1999).
[CrossRef]

Kattawar, G. W.

Klappauf, B.

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniatura, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

Kulatunga, P.

P. Kulatunga, C. I. Sukenik, S. Balik, M. D. Havey, D. V. Kupriyanov, and I. M. Sokolov, “Measurement of correlated multiple light scattering in ultracold atomic 85Rb,” Phys. Rev. A 68, 033816 (2003).
[CrossRef]

D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light in atomic systems: Application to weak localization in an ensemble of cold alkali metal atoms,” Phys. Rev. A 67, 013814 (2003).
[CrossRef]

Kupriyanov, D. V.

D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light in atomic systems: Application to weak localization in an ensemble of cold alkali metal atoms,” Phys. Rev. A 67, 013814 (2003).
[CrossRef]

P. Kulatunga, C. I. Sukenik, S. Balik, M. D. Havey, D. V. Kupriyanov, and I. M. Sokolov, “Measurement of correlated multiple light scattering in ultracold atomic 85Rb,” Phys. Rev. A 68, 033816 (2003).
[CrossRef]

Labeyrie, G.

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by an inhomogeneous cloud of cold atoms,” Phys. Rev. A 67, 033814 (2003).
[CrossRef]

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms: theory meets experiment,” Europhys. Lett. 61, 327–333 (2003).
[CrossRef]

G. Labeyrie, Ch. Miniatura, C. A. Müller, O. Sigwarth, D. Delande, and R. Kaiser, “Hanle effect in coherent backscattering,” Phys. Rev. Lett. 89, 163901 (2002).
[CrossRef] [PubMed]

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniatura, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

G. Labeyrie, C. A. Müller, D. S. Wiersma, Ch. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B: Quantum Semiclassical Opt. 2, 672–685 (2000).
[CrossRef]

G. Labeyrie, F. de Tomasi, J.-C. Bernard, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms,” Phys. Rev. Lett. 83, 5266–5269 (1999).
[CrossRef]

Lagendijk, A.

J. Gómez Rivas, R. Sprik, A. Lagendijk, L. D. Noordam, and C. W. Rella, “Static and dynamic transport of light close to the Anderson localization transition,” Phys. Rev. E 63, 046613 (2001).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

A. Lagendijk and B. A. van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996).
[CrossRef]

Lenke, R.

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light?” Nature 398, 206–207 (1999).
[CrossRef]

Maret, G.

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light?” Nature 398, 206–207 (1999).
[CrossRef]

Mehrbeolu, M.

Miniatura, C.

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniatura, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

C. A. Müller, T. Jonckheere, C. Miniatura, and D. Delande, “Weak localization of light by cold atoms: The impact of quantum internal structure,” Phys. Rev. A 64, 053804 (2001).
[CrossRef]

Miniatura, Ch.

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by an inhomogeneous cloud of cold atoms,” Phys. Rev. A 67, 033814 (2003).
[CrossRef]

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms: theory meets experiment,” Europhys. Lett. 61, 327–333 (2003).
[CrossRef]

C. A. Müller and Ch. Miniatura, “Multiple scattering of light by atoms with internal degeneracy,” J. Phys. A 35, 10163–10188 (2002).
[CrossRef]

G. Labeyrie, Ch. Miniatura, C. A. Müller, O. Sigwarth, D. Delande, and R. Kaiser, “Hanle effect in coherent backscattering,” Phys. Rev. Lett. 89, 163901 (2002).
[CrossRef] [PubMed]

G. Labeyrie, C. A. Müller, D. S. Wiersma, Ch. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B: Quantum Semiclassical Opt. 2, 672–685 (2000).
[CrossRef]

T. Jonckheere, C. A. Müller, R. Kaiser, Ch. Miniatura, and D. Delande, “Multiple scattering of light by atoms in the weak localization regime,” Phys. Rev. Lett. 85, 4269–4272 (2000).
[CrossRef] [PubMed]

G. Labeyrie, F. de Tomasi, J.-C. Bernard, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms,” Phys. Rev. Lett. 83, 5266–5269 (1999).
[CrossRef]

Müller, C. A.

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms: theory meets experiment,” Europhys. Lett. 61, 327–333 (2003).
[CrossRef]

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by an inhomogeneous cloud of cold atoms,” Phys. Rev. A 67, 033814 (2003).
[CrossRef]

C. A. Müller and Ch. Miniatura, “Multiple scattering of light by atoms with internal degeneracy,” J. Phys. A 35, 10163–10188 (2002).
[CrossRef]

G. Labeyrie, Ch. Miniatura, C. A. Müller, O. Sigwarth, D. Delande, and R. Kaiser, “Hanle effect in coherent backscattering,” Phys. Rev. Lett. 89, 163901 (2002).
[CrossRef] [PubMed]

C. A. Müller, T. Jonckheere, C. Miniatura, and D. Delande, “Weak localization of light by cold atoms: The impact of quantum internal structure,” Phys. Rev. A 64, 053804 (2001).
[CrossRef]

T. Jonckheere, C. A. Müller, R. Kaiser, Ch. Miniatura, and D. Delande, “Multiple scattering of light by atoms in the weak localization regime,” Phys. Rev. Lett. 85, 4269–4272 (2000).
[CrossRef] [PubMed]

G. Labeyrie, C. A. Müller, D. S. Wiersma, Ch. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B: Quantum Semiclassical Opt. 2, 672–685 (2000).
[CrossRef]

G. Labeyrie, F. de Tomasi, J.-C. Bernard, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms,” Phys. Rev. Lett. 83, 5266–5269 (1999).
[CrossRef]

Nieuwenhuizen, Th. M.

M. C. W. van Rossum and Th. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
[CrossRef]

Noordam, L. D.

J. Gómez Rivas, R. Sprik, A. Lagendijk, L. D. Noordam, and C. W. Rella, “Static and dynamic transport of light close to the Anderson localization transition,” Phys. Rev. E 63, 046613 (2001).
[CrossRef]

Rakovic, M. J.

Rastegar, S.

Rella, C. W.

J. Gómez Rivas, R. Sprik, A. Lagendijk, L. D. Noordam, and C. W. Rella, “Static and dynamic transport of light close to the Anderson localization transition,” Phys. Rev. E 63, 046613 (2001).
[CrossRef]

Righini, R.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Scheffold, F.

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light?” Nature 398, 206–207 (1999).
[CrossRef]

Sigwarth, O.

G. Labeyrie, Ch. Miniatura, C. A. Müller, O. Sigwarth, D. Delande, and R. Kaiser, “Hanle effect in coherent backscattering,” Phys. Rev. Lett. 89, 163901 (2002).
[CrossRef] [PubMed]

Sokolov, I. M.

P. Kulatunga, C. I. Sukenik, S. Balik, M. D. Havey, D. V. Kupriyanov, and I. M. Sokolov, “Measurement of correlated multiple light scattering in ultracold atomic 85Rb,” Phys. Rev. A 68, 033816 (2003).
[CrossRef]

D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light in atomic systems: Application to weak localization in an ensemble of cold alkali metal atoms,” Phys. Rev. A 67, 013814 (2003).
[CrossRef]

Sprik, R.

J. Gómez Rivas, R. Sprik, A. Lagendijk, L. D. Noordam, and C. W. Rella, “Static and dynamic transport of light close to the Anderson localization transition,” Phys. Rev. E 63, 046613 (2001).
[CrossRef]

Sukenik, C. I.

D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light in atomic systems: Application to weak localization in an ensemble of cold alkali metal atoms,” Phys. Rev. A 67, 013814 (2003).
[CrossRef]

P. Kulatunga, C. I. Sukenik, S. Balik, M. D. Havey, D. V. Kupriyanov, and I. M. Sokolov, “Measurement of correlated multiple light scattering in ultracold atomic 85Rb,” Phys. Rev. A 68, 033816 (2003).
[CrossRef]

Tweer, R.

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light?” Nature 398, 206–207 (1999).
[CrossRef]

van Rossum, M. C. W.

M. C. W. van Rossum and Th. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
[CrossRef]

van Tiggelen, B. A.

A. Lagendijk and B. A. van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996).
[CrossRef]

Wang, L. V.

Wiersma, D. S.

G. Labeyrie, C. A. Müller, D. S. Wiersma, Ch. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B: Quantum Semiclassical Opt. 2, 672–685 (2000).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Wilkowski, D.

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniatura, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Appl. Opt. (1)

Europhys. Lett. (1)

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms: theory meets experiment,” Europhys. Lett. 61, 327–333 (2003).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt. (1)

G. Labeyrie, C. A. Müller, D. S. Wiersma, Ch. Miniatura, and R. Kaiser, “Observation of coherent backscattering of light by cold atoms,” J. Opt. B: Quantum Semiclassical Opt. 2, 672–685 (2000).
[CrossRef]

J. Phys. A (1)

C. A. Müller and Ch. Miniatura, “Multiple scattering of light by atoms with internal degeneracy,” J. Phys. A 35, 10163–10188 (2002).
[CrossRef]

Nature (2)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light?” Nature 398, 206–207 (1999).
[CrossRef]

Phys. Rep. (1)

A. Lagendijk and B. A. van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996).
[CrossRef]

Phys. Rev. A (4)

D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, and M. D. Havey, “Coherent backscattering of light in atomic systems: Application to weak localization in an ensemble of cold alkali metal atoms,” Phys. Rev. A 67, 013814 (2003).
[CrossRef]

C. A. Müller, T. Jonckheere, C. Miniatura, and D. Delande, “Weak localization of light by cold atoms: The impact of quantum internal structure,” Phys. Rev. A 64, 053804 (2001).
[CrossRef]

G. Labeyrie, D. Delande, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by an inhomogeneous cloud of cold atoms,” Phys. Rev. A 67, 033814 (2003).
[CrossRef]

P. Kulatunga, C. I. Sukenik, S. Balik, M. D. Havey, D. V. Kupriyanov, and I. M. Sokolov, “Measurement of correlated multiple light scattering in ultracold atomic 85Rb,” Phys. Rev. A 68, 033816 (2003).
[CrossRef]

Phys. Rev. E (1)

J. Gómez Rivas, R. Sprik, A. Lagendijk, L. D. Noordam, and C. W. Rella, “Static and dynamic transport of light close to the Anderson localization transition,” Phys. Rev. E 63, 046613 (2001).
[CrossRef]

Phys. Rev. Lett. (6)

G. Labeyrie, F. de Tomasi, J.-C. Bernard, C. A. Müller, Ch. Miniatura, and R. Kaiser, “Coherent backscattering of light by cold atoms,” Phys. Rev. Lett. 83, 5266–5269 (1999).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

T. Jonckheere, C. A. Müller, R. Kaiser, Ch. Miniatura, and D. Delande, “Multiple scattering of light by atoms in the weak localization regime,” Phys. Rev. Lett. 85, 4269–4272 (2000).
[CrossRef] [PubMed]

Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie, C. Miniatura, D. Wilkowski, and R. Kaiser, “Coherent light transport in a cold strontium cloud,” Phys. Rev. Lett. 88, 203902 (2002).
[CrossRef] [PubMed]

G. Labeyrie, Ch. Miniatura, C. A. Müller, O. Sigwarth, D. Delande, and R. Kaiser, “Hanle effect in coherent backscattering,” Phys. Rev. Lett. 89, 163901 (2002).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. C. W. van Rossum and Th. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999).
[CrossRef]

Other (3)

“Mesoscopic quantum physics,” Les Houches Summer School Proceedings, Vol. LXI, E. Akkermans, G. Montambaux, J.-L. Pichard, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1996).

Photonic Crystals and Light Localization in the 21st Century, C. M. Soukoulis, ed. (Kluwer, Dordrecht, The Netherlands, 2001).

“Diffuse waves in complex media,” NATO Science Series: C, Mathematical and Physical Sciences, Vol. 531, J. P. Fouque, ed. (Kluwer, Dordrecht, The Netherlands, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Theoretical CBS enhancement for various transitions and polarization channels. These results are obtained analytically for a semi-infinite medium (all scattering orders included).

Fig. 2
Fig. 2

CBS profiles for Rb85, F=3F=4. We show the CBS profiles (circles, angular averages) in the four standard polarization channels obtained by exciting the F=3F=4 transition of the D2 line of Rb85 (cloud optical thickness b=26). The small enhancement factors observed in all channels is a direct consequence of the atomic internal structure. MC simulations (solid curves) including the parameters of the experiment (no adjustable parameters) show excellent overall agreement.

Fig. 3
Fig. 3

CBS profiles for Sr88, F=0F=1. We plot here the CBS profiles (circles, angular averages) in the four polarization channels obtained with the F=0F=1 transition of Sr88 (cloud optical thickness b=3). In the absence of an internal structure in the ground state, an enhancement factor close to 2 is recovered in the hh channel, as is the case with classical samples.

Fig. 4
Fig. 4

CBS profiles for Rb87, F=2F=3. The observed CBS peaks are very similar to those of Fig. 2 in all polarization channels. The MC simulations (solid curves) show good overall agreement.

Fig. 5
Fig. 5

Role of Raman transitions in CBS enhancement. We plot the CBS peaks obtained in the hh channel with a MC simulation for a uniform, spherical cloud of optical thickness b=10 (F=3F=4 of Rb85). The bold curve corresponds to both Rayleigh and Raman transitions contributing to the interference. The light curve is obtained by assuming no contribution of the Raman processes to the CBS interference and is clearly not consistent with the data in Fig. 2.

Fig. 6
Fig. 6

Anisotropies of the CBS pattern for atomic scatterers in the linlin channel. First row, experiment; second row, theory. First column, F=0F=1 transition of Sr88 (dipole pattern); second column, F=3F=4 transition of Rb85. The CBS peak for Rb85 (right column) is cushion-shaped instead of cloverleaf-shaped as for Sr88 (left column).

Tables (1)

Tables Icon

Table 1 Coherent Backscattering Enhancement Factor

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

dσdΩ=3σtot8π(w1|·*|2+w2|·|2+w3),
wi=110(F+1)(2F+1) (6F2+17F+10)i=1[-4F(F+2)]i=2[F(6F+7)]i=3.
n(r)=n0 exp-r22r02,
b=2πn0σtotr0.

Metrics