Abstract

One of the current challenges in laser optics is to take advantage of the resonant modes within particles to obtain high-quality microcavities with low threshold. We present a study of the effect that the internal resonances of individual particles have on the emitted intensity, and demonstrate how optimal tuning of the size and separation of the particles can enhance the quality factor by more than four orders of magnitude. The potential applications of this work on the design of an optimal microcavity and on a random laser are discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  2. E. Wolf, ed., Progress in Optics, Vol. XLI (Elsevier North-Holland, Amsterdam, 2000).
  3. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–477 (1980).
    [Crossref]
  4. H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Spectral properties of lasing microdroplets,” J. Opt. Soc. Am. B 9, 43–50 (1992).
    [Crossref]
  5. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998).
    [Crossref]
  6. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
    [Crossref] [PubMed]
  7. J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
    [Crossref]
  8. H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3614 (2000).
    [Crossref] [PubMed]
  9. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
    [Crossref] [PubMed]
  10. P. M. Visser, K. Allart, and D. Lenstra, “Dielectric structures with bound modes for microcavity lasers,” Phys. Rev. E 65, 056604 (2002).
    [Crossref]
  11. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  12. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
    [Crossref]
  13. M. Siddique, R. R. Alfano, G. A. Berger, M. Kempe, and A. Z. Genack, “Time-resolved studies of stimulated emission from colloidal dye solutions,” Opt. Lett. 21, 450–452 (1996).
    [Crossref] [PubMed]
  14. S. John, “Localization of light,” Phys. Today 44, 32–40 (1991).
    [Crossref]
  15. D. S. Wiersma, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
    [Crossref]
  16. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
    [Crossref]
  17. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [Crossref]
  18. H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
    [Crossref]
  19. S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
    [Crossref]
  20. Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
    [Crossref]
  21. G. Zacharakis, N. Papadogiannis, G. Filippidis, and T. G. Papazoglou, “Photon statistics of laserlike emission from polymeric scattering gain media,” Opt. Lett. 25, 923–925 (2000).
    [Crossref]
  22. X. Jiang and C. M. Soukoulis, “Time-dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
    [Crossref] [PubMed]
  23. C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
    [Crossref]
  24. Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000).
    [Crossref]
  25. A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
    [Crossref] [PubMed]
  26. S. John and G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A 54, 3642–3652 (1996).
    [Crossref] [PubMed]
  27. J. R. Arias-Gonzalez and M. Nieto-Vesperinas, “Near-field distributions of resonant modes in small dielectric objects on flat surfaces,” Opt. Lett. 25, 782–784 (2000).
    [Crossref]
  28. J. R. Arias-Gonzalez and M. Nieto-Vesperinas, “Radiation pressure over dielectric and metallic nanocylinders on surfaces: polarization dependence and plasmon resonance conditions,” Opt. Lett. 27, 2149–2151 (2002).
    [Crossref]
  29. M. Lester, J. R. Arias-Gonzalez, and M. Nieto-Vesperinas, “Fundamentals and model of photonic-force microscopy,” Opt. Lett. 26, 707–709 (2001).
    [Crossref]
  30. J. R. Arias-Gonzalez, M. Nieto-Vesperinas, and M. Lester, “Modeling photonic-force microscopy with metallic particles under plasmon eigenmode excitation,” Phys. Rev. B 65, 115402 (2002).
    [Crossref]
  31. J. M. Soto-Crespo and M. Nieto-Vesperinas, “Scattering from very rough random surfaces and deep reflection gratings,” J. Opt. Soc. Am. A 6, 367–384 (1989).
    [Crossref]
  32. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255–307 (1990).
    [Crossref]
  33. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Pergamon, New York, 1996).
  34. Z. Chen, A. Taflove, and V. Backman, “Equivalent volume-averaged light scattering behavior of randomly inhomogeneous dielectric spheres in the resonant range,” Opt. Lett. 28, 765–767 (2003).
    [Crossref] [PubMed]
  35. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic, New York, 1995).
  36. J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (Adam Hilger, Bristol, 1991).
  37. J. A. Sanchez-Gil and M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8, 1270–1286 (1991).
    [Crossref]
  38. J. Ripoll, A. Madrazo, and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a body over a random rough surface,” Opt. Commun. 142, 173–178 (1997).
    [Crossref]
  39. T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quant. Spectrosc. Radiat. Transf. 60, 411–423 (1998).
    [Crossref]
  40. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  41. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  42. H.-B. Lin, A. L. Huston, J. D. Eversole, and A. J. Campillo, “Internal scattering effects on microdroplet resonant emission structure,” Opt. Lett. 17, 970–972 (1992).
    [Crossref] [PubMed]
  43. P. R. Conwell, P. W. Barber, and C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
    [Crossref]
  44. B. A. Hunter, M. A. Box, and B. Maier, “Resonance structure in weakly absorbing spheres,” J. Opt. Soc. Am. A 5, 1281–1286 (1988).
    [Crossref]

2003 (1)

2002 (3)

J. R. Arias-Gonzalez, M. Nieto-Vesperinas, and M. Lester, “Modeling photonic-force microscopy with metallic particles under plasmon eigenmode excitation,” Phys. Rev. B 65, 115402 (2002).
[Crossref]

J. R. Arias-Gonzalez and M. Nieto-Vesperinas, “Radiation pressure over dielectric and metallic nanocylinders on surfaces: polarization dependence and plasmon resonance conditions,” Opt. Lett. 27, 2149–2151 (2002).
[Crossref]

P. M. Visser, K. Allart, and D. Lenstra, “Dielectric structures with bound modes for microcavity lasers,” Phys. Rev. E 65, 056604 (2002).
[Crossref]

2001 (4)

M. Lester, J. R. Arias-Gonzalez, and M. Nieto-Vesperinas, “Fundamentals and model of photonic-force microscopy,” Opt. Lett. 26, 707–709 (2001).
[Crossref]

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
[Crossref] [PubMed]

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[Crossref]

C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
[Crossref]

2000 (6)

Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000).
[Crossref]

G. Zacharakis, N. Papadogiannis, G. Filippidis, and T. G. Papazoglou, “Photon statistics of laserlike emission from polymeric scattering gain media,” Opt. Lett. 25, 923–925 (2000).
[Crossref]

X. Jiang and C. M. Soukoulis, “Time-dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
[Crossref] [PubMed]

J. R. Arias-Gonzalez and M. Nieto-Vesperinas, “Near-field distributions of resonant modes in small dielectric objects on flat surfaces,” Opt. Lett. 25, 782–784 (2000).
[Crossref]

H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3614 (2000).
[Crossref] [PubMed]

H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[Crossref]

1999 (2)

S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

1998 (3)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[Crossref]

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998).
[Crossref]

T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quant. Spectrosc. Radiat. Transf. 60, 411–423 (1998).
[Crossref]

1997 (1)

J. Ripoll, A. Madrazo, and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a body over a random rough surface,” Opt. Commun. 142, 173–178 (1997).
[Crossref]

1996 (4)

S. John and G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A 54, 3642–3652 (1996).
[Crossref] [PubMed]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

M. Siddique, R. R. Alfano, G. A. Berger, M. Kempe, and A. Z. Genack, “Time-resolved studies of stimulated emission from colloidal dye solutions,” Opt. Lett. 21, 450–452 (1996).
[Crossref] [PubMed]

D. S. Wiersma, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[Crossref]

1995 (1)

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

1992 (2)

1991 (2)

1990 (1)

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255–307 (1990).
[Crossref]

1989 (1)

1988 (1)

1984 (1)

1981 (1)

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[Crossref]

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–477 (1980).
[Crossref]

1968 (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Alfano, R. R.

Allart, K.

P. M. Visser, K. Allart, and D. Lenstra, “Dielectric structures with bound modes for microcavity lasers,” Phys. Rev. E 65, 056604 (2002).
[Crossref]

An, K.

H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3614 (2000).
[Crossref] [PubMed]

Arias-Gonzalez, J. R.

Backman, V.

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Barber, P. W.

P. R. Conwell, P. W. Barber, and C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
[Crossref]

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[Crossref]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–477 (1980).
[Crossref]

Baughman, R. H.

S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
[Crossref]

Benner, R. E.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–477 (1980).
[Crossref]

Berger, G. A.

Box, M. A.

Burin, A. L.

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[Crossref]

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
[Crossref] [PubMed]

Campillo, A. J.

Cao, H.

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
[Crossref] [PubMed]

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[Crossref]

H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[Crossref]

Chang, R. K.

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[Crossref]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–477 (1980).
[Crossref]

Chang, R. P. H.

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
[Crossref] [PubMed]

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[Crossref]

Chang, S.-H.

H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[Crossref]

Chen, Z.

Chough, Y.-T.

H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3614 (2000).
[Crossref] [PubMed]

Comberg, U.

T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quant. Spectrosc. Radiat. Transf. 60, 411–423 (1998).
[Crossref]

Conwell, P. R.

Dai, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[Crossref]

Dorain, P. B.

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[Crossref]

Eversole, J. D.

Filippidis, G.

Frolov, S. V.

S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
[Crossref]

Genack, A. Z.

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
[Crossref] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
[Crossref] [PubMed]

Ho, K. M.

Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000).
[Crossref]

Ho, S. T.

H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[Crossref]

Hunter, B. A.

Huston, A. L.

Ilchenko, V. S.

Jiang, X.

X. Jiang and C. M. Soukoulis, “Time-dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
[Crossref] [PubMed]

John, S.

S. John and G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A 54, 3642–3652 (1996).
[Crossref] [PubMed]

S. John, “Localization of light,” Phys. Today 44, 32–40 (1991).
[Crossref]

Kempe, M.

Kimble, H. J.

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Lefevre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
[Crossref] [PubMed]

Lenstra, D.

P. M. Visser, K. Allart, and D. Lenstra, “Dielectric structures with bound modes for microcavity lasers,” Phys. Rev. E 65, 056604 (2002).
[Crossref]

Lester, M.

J. R. Arias-Gonzalez, M. Nieto-Vesperinas, and M. Lester, “Modeling photonic-force microscopy with metallic particles under plasmon eigenmode excitation,” Phys. Rev. B 65, 115402 (2002).
[Crossref]

M. Lester, J. R. Arias-Gonzalez, and M. Nieto-Vesperinas, “Fundamentals and model of photonic-force microscopy,” Opt. Lett. 26, 707–709 (2001).
[Crossref]

Letokhov, V. S.

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Li, Q.

Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000).
[Crossref]

Lin, H.-B.

Ling, Y.

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[Crossref]

Liu, X.

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[Crossref]

Mabuchi, H.

Madrazo, A.

J. Ripoll, A. Madrazo, and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a body over a random rough surface,” Opt. Commun. 142, 173–178 (1997).
[Crossref]

Maier, B.

Maradudin, A. A.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255–307 (1990).
[Crossref]

McGurn, A. R.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255–307 (1990).
[Crossref]

Mendez, E. R.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255–307 (1990).
[Crossref]

Michel, T.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255–307 (1990).
[Crossref]

Moon, H.-J.

H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3614 (2000).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

Ong, H. C.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[Crossref]

Owen, J. F.

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[Crossref]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–477 (1980).
[Crossref]

Pang, G.

S. John and G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A 54, 3642–3652 (1996).
[Crossref] [PubMed]

Papadogiannis, N.

Papazoglou, T. G.

Raimond, J.-M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
[Crossref] [PubMed]

Ratner, M. A.

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
[Crossref] [PubMed]

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[Crossref]

Ripoll, J.

J. Ripoll, A. Madrazo, and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a body over a random rough surface,” Opt. Commun. 142, 173–178 (1997).
[Crossref]

Rushforth, C. K.

Sanchez-Gil, J. A.

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
[Crossref] [PubMed]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Sebbah, P.

C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
[Crossref]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Siddique, M.

Soto-Crespo, J. M.

Soukoulis, C. M.

Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000).
[Crossref]

X. Jiang and C. M. Soukoulis, “Time-dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
[Crossref] [PubMed]

Streed, E. W.

Taflove, A.

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

Vanneste, C.

C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
[Crossref]

Vardeny, Z. V.

S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
[Crossref]

Vernooy, D. W.

Visser, P. M.

P. M. Visser, K. Allart, and D. Lenstra, “Dielectric structures with bound modes for microcavity lasers,” Phys. Rev. E 65, 056604 (2002).
[Crossref]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Weiss, D. S.

Wiersma, D. S.

D. S. Wiersma, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[Crossref]

Wriedt, T.

T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quant. Spectrosc. Radiat. Transf. 60, 411–423 (1998).
[Crossref]

Wu, J. Y.

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[Crossref]

Xu, J. Y.

H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[Crossref]

Zacharakis, G.

Zakhidov, A. A.

S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
[Crossref]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[Crossref]

Ann. Phys. (N.Y.) (1)

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255–307 (1990).
[Crossref]

Appl. Phys. Lett. (1)

H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett. 73, 3656–3658 (1998).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

T. Wriedt and U. Comberg, “Comparison of computational scattering methods,” J. Quant. Spectrosc. Radiat. Transf. 60, 411–423 (1998).
[Crossref]

Nature (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Opt. Commun. (2)

S. V. Frolov, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Laser-like emission in opal photonic crystals,” Opt. Commun. 162, 241–246 (1999).
[Crossref]

J. Ripoll, A. Madrazo, and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a body over a random rough surface,” Opt. Commun. 142, 173–178 (1997).
[Crossref]

Opt. Lett. (9)

H.-B. Lin, A. L. Huston, J. D. Eversole, and A. J. Campillo, “Internal scattering effects on microdroplet resonant emission structure,” Opt. Lett. 17, 970–972 (1992).
[Crossref] [PubMed]

M. Siddique, R. R. Alfano, G. A. Berger, M. Kempe, and A. Z. Genack, “Time-resolved studies of stimulated emission from colloidal dye solutions,” Opt. Lett. 21, 450–452 (1996).
[Crossref] [PubMed]

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23, 247–249 (1998).
[Crossref]

D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
[Crossref] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Equivalent volume-averaged light scattering behavior of randomly inhomogeneous dielectric spheres in the resonant range,” Opt. Lett. 28, 765–767 (2003).
[Crossref] [PubMed]

G. Zacharakis, N. Papadogiannis, G. Filippidis, and T. G. Papazoglou, “Photon statistics of laserlike emission from polymeric scattering gain media,” Opt. Lett. 25, 923–925 (2000).
[Crossref]

J. R. Arias-Gonzalez and M. Nieto-Vesperinas, “Near-field distributions of resonant modes in small dielectric objects on flat surfaces,” Opt. Lett. 25, 782–784 (2000).
[Crossref]

J. R. Arias-Gonzalez and M. Nieto-Vesperinas, “Radiation pressure over dielectric and metallic nanocylinders on surfaces: polarization dependence and plasmon resonance conditions,” Opt. Lett. 27, 2149–2151 (2002).
[Crossref]

M. Lester, J. R. Arias-Gonzalez, and M. Nieto-Vesperinas, “Fundamentals and model of photonic-force microscopy,” Opt. Lett. 26, 707–709 (2001).
[Crossref]

Phys. Rev. A (3)

S. John and G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A 54, 3642–3652 (1996).
[Crossref] [PubMed]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[Crossref] [PubMed]

Y. Ling, H. Cao, A. L. Burin, M. A. Ratner, X. Liu, and R. P. H. Chang, “Investigation of random lasers with resonant feedback,” Phys. Rev. A 64, 063808 (2001).
[Crossref]

Phys. Rev. B (1)

J. R. Arias-Gonzalez, M. Nieto-Vesperinas, and M. Lester, “Modeling photonic-force microscopy with metallic particles under plasmon eigenmode excitation,” Phys. Rev. B 65, 115402 (2002).
[Crossref]

Phys. Rev. E (3)

H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000).
[Crossref]

D. S. Wiersma, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[Crossref]

P. M. Visser, K. Allart, and D. Lenstra, “Dielectric structures with bound modes for microcavity lasers,” Phys. Rev. E 65, 056604 (2002).
[Crossref]

Phys. Rev. Lett. (7)

J. F. Owen, P. W. Barber, P. B. Dorain, and R. K. Chang, “Enhancement of fluorescence induced by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1981).
[Crossref]

H.-J. Moon, Y.-T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett. 85, 3161–3614 (2000).
[Crossref] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–477 (1980).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
[Crossref] [PubMed]

X. Jiang and C. M. Soukoulis, “Time-dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
[Crossref] [PubMed]

C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001).
[Crossref]

Phys. Today (1)

S. John, “Localization of light,” Phys. Today 44, 32–40 (1991).
[Crossref]

Physica B (1)

Q. Li, K. M. Ho, and C. M. Soukoulis, “Mode distribution in coherently amplifying random media,” Physica B 296, 78–84 (2000).
[Crossref]

Sov. Phys. JETP (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Other (7)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

E. Wolf, ed., Progress in Optics, Vol. XLI (Elsevier North-Holland, Amsterdam, 2000).

G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic, New York, 1995).

J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (Adam Hilger, Bristol, 1991).

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Pergamon, New York, 1996).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Values of the dielectric constant and index of refraction inside the scatterers for N1/Nt=0, 30, 70, and 100%, for (a) real, (b) imaginary parts of the dielectric constant 1 and (c) real, (d) imaginary parts of the index of refraction n1.

Fig. 2
Fig. 2

Scattering cross section in log–scale for a single cylinder for s polarization versus population of the excited level N1/Nt in % and wavelength in nm for R=(a) 125, (b) 250, (c) 500, (d) 750, (e) 1000, (f) 1500 nm.

Fig. 3
Fig. 3

Modulus of the scattered electric field for s polarization for the R=250-nm case presented in Fig. 2(b) for N1/Nt=(a) 50%, (b) 90%, corresponding to wavelengths λ=512.5 nm [Mie resonance (n, l)=(5, 1) for n1=2.4] and λ=516.2 nm, respectively. White indicates stronger electric field values.

Fig. 4
Fig. 4

Scattering cross section in log–scale for a single cylinder for s polarization versus N1/Nt and λ for an optimized radius R=243.9 nm for which the Mie resonance (n, l)=(5, 1) is located at the maximum gain wavelength λ=500 nm. The inset shows a normalized value of the real and imaginary parts of the index of refraction for comparison and indicates the location of the (n, l)=(5, 1) resonance.

Fig. 5
Fig. 5

Modulus of the scattered electric field for s polarization for the R=243.9-nm case presented in Fig. 4 for N1/Nt=(a) 60%, (b) 70% corresponding to wavelengths λ=500.0 nm and λ=503.5 nm, respectively. Note how a very small change in N1/Nt causes a dramatic change in the resonance. White indicates stronger electric field values.

Fig. 6
Fig. 6

Scattering cross section in log–scale for two cylinders of R=250 nm and N1/Nt=50% for s polarization versus λ and the distance between their centers d in nanometers.

Fig. 7
Fig. 7

Scattering cross section in log–scale for two cylinders of R=250 nm separated by d=850 nm (see Fig. 6) for s polarization versus N1/Nt. The inset shows a normalized value of the real and imaginary parts of the index of refraction for comparison and indicates the location of the (n, l)=(5, 1) resonance.

Fig. 8
Fig. 8

Modulus of the scattered electric field for s polarization for two cylinders of R=250 nm separated d=850 nm for the N1/Nt=90% case presented in Fig. 7 corresponding to λ=515.9 nm.

Fig. 9
Fig. 9

Q factor (Δω/ω of the resonance peak) for a single cylinder of R=250 nm, solid curve; two cylinders of R=250 nm separated d=850 nm, filled circles; three cylinders of R=250 nm separated d=850 nm, open circles.

Tables (1)

Tables Icon

Table 1 Optical Parameters Used in Eqs. (1) and (2) to Derive the Dielectric Constant in the Presence of Gain

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

laser(r)=n1-3λ34π2 γrad10Δωa10ΔN01(r)Λ(ω, ωa10),
Λ(ω, ωa10)=2(ω-ωa10)/Δωa101+[2(ω-ωa10)/Δωa10]2+i 11+[2(ω-ωa10)/Δωa10]2,
2E0(r)+0 ω2c2E0(r)=0rV,
2E1(r)+1 ω2c2E1(r)=αEpump(r)-δlaser(r) ω2c2E1(r)rV,
E(r)=-i=1MΦi+(r)rVi=1M,
Ei(r)=Epump(r)+Φi-(r)rVi,
Φi+(r)=14π Si[G0(r-r)Ei(r)-G0(r-r)Ei(r)]dS rVi
Φi-(r)=14π Si[Gi(r-r)Ei(r)-miGi(r-r)Ei(r)]dS rVi,
Csc=1M λ2πR 1π 02π |E(r, θ)|2Pincrdθrλ,
Q=Δωresωres,

Metrics