Abstract

We investigated energy-transfer processes associated with clustered sites of Er3+ ions in LiNbO3 crystals leading to upconverted blue-green fluorescence and cross relaxation with the analyses of fluorescence transients measured by site-selective excitations. We found two clustered sites with distinct lifetimes of 3 and 16 μs at room temperature for the green fluorescing levels (4S3/2), which were much shorter than the lifetimes of isolated sites (27 μs) that are due to nonradiative energy-transfer processes. The green upconverted fluorescence originates from the energy transfer of one clustered site in the 4I7/2 levels, and/or of the other clustered site in the 4I11/2 levels. Our analyses verified that the fluorescence efficiencies of Er3+ ions in the clustered sites are significantly decreased because of their interionic nonradiative energy transfers. Therefore, the formation of clustered sites in Er3+-doped LiNbO3 crystals gives rise to deleterious effects on laser and amplifier applications.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
    [CrossRef]
  2. H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
    [CrossRef]
  3. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
    [CrossRef]
  4. L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91, 3955–3980 (2002).
    [CrossRef]
  5. C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
    [CrossRef]
  6. R. Wessel, R. Ricken, K. Rochhausen, H. Suche, and W. Söhler, “Supermode stabilized coupled-cavity 5- and 10-GHz mode-locked Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Quantum Electron. 36, 394–399 (2000).
    [CrossRef]
  7. D. M. Gill, J. C. Wright, and L. McCaughan, “Site characterization of rare-earth-doped LiNbO3 using total site selective spectroscopy,” Appl. Phys. Lett. 64, 2483–2485 (1994).
    [CrossRef]
  8. D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53, 2334–2344 (1996).
    [CrossRef]
  9. W. Q. Shi, M. Bass, and M. Birnbaum, “Effects of energy transfer among Er3+ ions on the fluorescence decay and lasing properties of heavily doped Er:Y3Al5O12,” J. Opt. Soc. Am. B 7, 1456–1462 (1990).
    [CrossRef]
  10. M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
    [CrossRef]
  11. R. Buisson and J. C. Vial, “Transfer inside pairs of Pr3+ in LaF3 studied by up-conversion fluorescence,” J. Phys. (Paris) Lett. 42, L115–L118 (1981).
    [CrossRef]
  12. E. Montoya, O. Espeso, and L. E. Bausá, “Cooperative luminescence in Yb3+:LiNbO3,” J. Lumin. 87–89, 1036–1038 (2000).
    [CrossRef]
  13. J. J. Ju, T. Y. Kwon, S. I. Yun, M. Cha, and H. J. Seo, “Mechanisms of upconverted fluorescence in an Er3+ doped LiNbO3 single crystal,” Appl. Phys. Lett. 69, 1358–1360 (1996).
    [CrossRef]

2002 (2)

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91, 3955–3980 (2002).
[CrossRef]

H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
[CrossRef]

2000 (3)

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

R. Wessel, R. Ricken, K. Rochhausen, H. Suche, and W. Söhler, “Supermode stabilized coupled-cavity 5- and 10-GHz mode-locked Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Quantum Electron. 36, 394–399 (2000).
[CrossRef]

E. Montoya, O. Espeso, and L. E. Bausá, “Cooperative luminescence in Yb3+:LiNbO3,” J. Lumin. 87–89, 1036–1038 (2000).
[CrossRef]

1997 (1)

N. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
[CrossRef]

1996 (3)

J. J. Ju, T. Y. Kwon, S. I. Yun, M. Cha, and H. J. Seo, “Mechanisms of upconverted fluorescence in an Er3+ doped LiNbO3 single crystal,” Appl. Phys. Lett. 69, 1358–1360 (1996).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[CrossRef]

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53, 2334–2344 (1996).
[CrossRef]

1994 (1)

D. M. Gill, J. C. Wright, and L. McCaughan, “Site characterization of rare-earth-doped LiNbO3 using total site selective spectroscopy,” Appl. Phys. Lett. 64, 2483–2485 (1994).
[CrossRef]

1990 (1)

1981 (1)

R. Buisson and J. C. Vial, “Transfer inside pairs of Pr3+ in LaF3 studied by up-conversion fluorescence,” J. Phys. (Paris) Lett. 42, L115–L118 (1981).
[CrossRef]

1971 (1)

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
[CrossRef]

Balsamo, S.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

Bass, M.

Bausá, L. E.

E. Montoya, O. Espeso, and L. E. Bausá, “Cooperative luminescence in Yb3+:LiNbO3,” J. Lumin. 87–89, 1036–1038 (2000).
[CrossRef]

Becker, C.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

Birnbaum, M.

Buisson, R.

R. Buisson and J. C. Vial, “Transfer inside pairs of Pr3+ in LaF3 studied by up-conversion fluorescence,” J. Phys. (Paris) Lett. 42, L115–L118 (1981).
[CrossRef]

Cha, M.

J. J. Ju, T. Y. Kwon, S. I. Yun, M. Cha, and H. J. Seo, “Mechanisms of upconverted fluorescence in an Er3+ doped LiNbO3 single crystal,” Appl. Phys. Lett. 69, 1358–1360 (1996).
[CrossRef]

Espeso, O.

E. Montoya, O. Espeso, and L. E. Bausá, “Cooperative luminescence in Yb3+:LiNbO3,” J. Lumin. 87–89, 1036–1038 (2000).
[CrossRef]

Gill, D. M.

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53, 2334–2344 (1996).
[CrossRef]

D. M. Gill, J. C. Wright, and L. McCaughan, “Site characterization of rare-earth-doped LiNbO3 using total site selective spectroscopy,” Appl. Phys. Lett. 64, 2483–2485 (1994).
[CrossRef]

Han, H.-S.

H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
[CrossRef]

Hebbink, G. A.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91, 3955–3980 (2002).
[CrossRef]

Hofstraat, J. W.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91, 3955–3980 (2002).
[CrossRef]

Ju, J. J.

J. J. Ju, T. Y. Kwon, S. I. Yun, M. Cha, and H. J. Seo, “Mechanisms of upconverted fluorescence in an Er3+ doped LiNbO3 single crystal,” Appl. Phys. Lett. 69, 1358–1360 (1996).
[CrossRef]

Klink, S. I.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91, 3955–3980 (2002).
[CrossRef]

Koper, R. J. I. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[CrossRef]

Kwon, T. Y.

J. J. Ju, T. Y. Kwon, S. I. Yun, M. Cha, and H. J. Seo, “Mechanisms of upconverted fluorescence in an Er3+ doped LiNbO3 single crystal,” Appl. Phys. Lett. 69, 1358–1360 (1996).
[CrossRef]

McCaughan, L.

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53, 2334–2344 (1996).
[CrossRef]

D. M. Gill, J. C. Wright, and L. McCaughan, “Site characterization of rare-earth-doped LiNbO3 using total site selective spectroscopy,” Appl. Phys. Lett. 64, 2483–2485 (1994).
[CrossRef]

Montoya, E.

E. Montoya, O. Espeso, and L. E. Bausá, “Cooperative luminescence in Yb3+:LiNbO3,” J. Lumin. 87–89, 1036–1038 (2000).
[CrossRef]

Montrosset, I.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

Oesselke, T.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

Pandavenes, J.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

Park, N.

H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
[CrossRef]

Polman, A.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91, 3955–3980 (2002).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[CrossRef]

Polman, N. A.

N. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
[CrossRef]

Reinhoudt, D. N.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91, 3955–3980 (2002).
[CrossRef]

Ricken, R.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

R. Wessel, R. Ricken, K. Rochhausen, H. Suche, and W. Söhler, “Supermode stabilized coupled-cavity 5- and 10-GHz mode-locked Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Quantum Electron. 36, 394–399 (2000).
[CrossRef]

Rochhausen, K.

R. Wessel, R. Ricken, K. Rochhausen, H. Suche, and W. Söhler, “Supermode stabilized coupled-cavity 5- and 10-GHz mode-locked Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Quantum Electron. 36, 394–399 (2000).
[CrossRef]

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

Schreiber, G.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

Sciancalepore, D.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

Seo, H. J.

J. J. Ju, T. Y. Kwon, S. I. Yun, M. Cha, and H. J. Seo, “Mechanisms of upconverted fluorescence in an Er3+ doped LiNbO3 single crystal,” Appl. Phys. Lett. 69, 1358–1360 (1996).
[CrossRef]

Seo, S.-Y.

H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
[CrossRef]

Shi, W. Q.

Shin, J. H.

H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
[CrossRef]

Slooff, L. H.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91, 3955–3980 (2002).
[CrossRef]

Smit, M. K.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[CrossRef]

Söhler, W.

R. Wessel, R. Ricken, K. Rochhausen, H. Suche, and W. Söhler, “Supermode stabilized coupled-cavity 5- and 10-GHz mode-locked Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Quantum Electron. 36, 394–399 (2000).
[CrossRef]

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

Suche, H.

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

R. Wessel, R. Ricken, K. Rochhausen, H. Suche, and W. Söhler, “Supermode stabilized coupled-cavity 5- and 10-GHz mode-locked Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Quantum Electron. 36, 394–399 (2000).
[CrossRef]

van Blaaderen, A.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91, 3955–3980 (2002).
[CrossRef]

van Dam, C.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[CrossRef]

van den Hoven, G. N.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[CrossRef]

van Uffelen, J. W. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[CrossRef]

Van Veggel, F. C. J. M.

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91, 3955–3980 (2002).
[CrossRef]

Vial, J. C.

R. Buisson and J. C. Vial, “Transfer inside pairs of Pr3+ in LaF3 studied by up-conversion fluorescence,” J. Phys. (Paris) Lett. 42, L115–L118 (1981).
[CrossRef]

Weber, M. J.

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
[CrossRef]

Wessel, R.

R. Wessel, R. Ricken, K. Rochhausen, H. Suche, and W. Söhler, “Supermode stabilized coupled-cavity 5- and 10-GHz mode-locked Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Quantum Electron. 36, 394–399 (2000).
[CrossRef]

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

Wright, J. C.

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53, 2334–2344 (1996).
[CrossRef]

D. M. Gill, J. C. Wright, and L. McCaughan, “Site characterization of rare-earth-doped LiNbO3 using total site selective spectroscopy,” Appl. Phys. Lett. 64, 2483–2485 (1994).
[CrossRef]

Yun, S. I.

J. J. Ju, T. Y. Kwon, S. I. Yun, M. Cha, and H. J. Seo, “Mechanisms of upconverted fluorescence in an Er3+ doped LiNbO3 single crystal,” Appl. Phys. Lett. 69, 1358–1360 (1996).
[CrossRef]

Appl. Phys. Lett. (4)

H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002).
[CrossRef]

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[CrossRef]

D. M. Gill, J. C. Wright, and L. McCaughan, “Site characterization of rare-earth-doped LiNbO3 using total site selective spectroscopy,” Appl. Phys. Lett. 64, 2483–2485 (1994).
[CrossRef]

J. J. Ju, T. Y. Kwon, S. I. Yun, M. Cha, and H. J. Seo, “Mechanisms of upconverted fluorescence in an Er3+ doped LiNbO3 single crystal,” Appl. Phys. Lett. 69, 1358–1360 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Wessel, R. Ricken, K. Rochhausen, H. Suche, and W. Söhler, “Supermode stabilized coupled-cavity 5- and 10-GHz mode-locked Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Quantum Electron. 36, 394–399 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiber, W. Söhler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101–113 (2000).
[CrossRef]

J. Appl. Phys. (2)

N. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
[CrossRef]

L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, D. N. Reinhoudt, and J. W. Hofstraat, “Rare-earth doped polymers for planar optical amplifiers,” J. Appl. Phys. 91, 3955–3980 (2002).
[CrossRef]

J. Lumin. (1)

E. Montoya, O. Espeso, and L. E. Bausá, “Cooperative luminescence in Yb3+:LiNbO3,” J. Lumin. 87–89, 1036–1038 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (Paris) Lett. (1)

R. Buisson and J. C. Vial, “Transfer inside pairs of Pr3+ in LaF3 studied by up-conversion fluorescence,” J. Phys. (Paris) Lett. 42, L115–L118 (1981).
[CrossRef]

Phys. Rev. B (2)

M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971).
[CrossRef]

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53, 2334–2344 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Green fluorescence transients for the LiNbO3:Er3+ crystals with various doping concentrations.

Fig. 2
Fig. 2

Green fluorescence transient fits to Eq. (1) and schematic diagram of cross-relaxation mechanisms.

Fig. 3
Fig. 3

Upconverted fluorescence spectra of the LiNbO3:Er3+ (0.37-mol. %) crystal.

Fig. 4
Fig. 4

Pump power dependence of the blue-green upconverted fluorescence of the LiNbO3:Er3+(0.37-mol. %) crystal excited to the 4F9/2 level.

Fig. 5
Fig. 5

Schematic diagram of upconversion mechanisms of the two distinct clustered Er sites in the LiNbO3:Er3+ crystals.

Fig. 6
Fig. 6

Blue upconverted fluorescence transient of the LiNbO3:Er3+ (0.37-mol. %) crystal and fit to Eq. (2).

Fig. 7
Fig. 7

Green upconverted fluorescence transient of the LiNbO3:Er3+ (0.37-mol. %) crystal and fit to the linear superposition of Eqs. (3) and (4).

Tables (3)

Tables Icon

Table 1 Fluorescence Lifetimes of Several Er3+ Energy Levels for the LiNbO3:Er3+ (0.37-mol. %) Crystal

Tables Icon

Table 2 Fit Parameters for the Green Fluorescence Transients in Eq. (1 ) a

Tables Icon

Table 3 Fit Parameters for the Upconverted Fluorescence Transients in Eqs. (2)–(4 ) a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ng(t)=A exp-tτi+B exp-tτc.
N5α=Nd0wtα(w5α-wdα) [exp(-wdαt)-exp(-w5αt)],
N3β=Nd0wtβ(w3β-wdβ) [exp(-wdβt)-exp(-w3βt)],
N3α=Nd0wtαw5αϕ53(w3α-w5α)(wdα-w5α)(w3α-wdα)×[(w5α-w3α)exp(-wdαt)+(wdα-w5α)×exp(-w3αt)+(w3α-wdα)exp(-w5αt)],
wd=wa+wb+wt,

Metrics