Abstract

A 266-nm laser-induced fluorescence system was used to study the effect of polarization of the excitation source and geometry of the collection optics on the ratio of the signal from a fluorescence standard, quinine sulfate, and the Raman scatter from water. Although the ratio is sometimes considered to be a constant and is used for intersystem comparisons, our studies showed that the Raman signal and, thus, the ratio can vary by a factor of up to 3.6. These experimental values agree with previous studies by others involving gas and flame Raman spectroscopy and suggest a new calibration method for intersystem comparison of different fluorescence systems.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Coble, C. A. Schultz, and K. Mopper, “Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques,” Mar. Chem. 41, 173–178 (1993).
    [CrossRef]
  2. P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
    [CrossRef]
  3. R. F. Chen and J. L. Bada, “The fluorescence of dissolved organic matter in seawater,” Mar. Chem. 37, 191–221 (1992).
    [CrossRef]
  4. O. F. X. Donard, M. Lamotte, C. Belin, and M. Ewald, “High-sensitivity fluorescence spectroscopy of Mediterranean waters using a conventional or pulsed laser excitation source,” Mar. Chem. 27, 117–136 (1989).
    [CrossRef]
  5. S. Determann, R. Reuter, and R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. Part 2: vertical profiles and relation to water masses,” Deep-Sea Res., Part I 43, 345–360 (1996).
    [CrossRef]
  6. S. Determann, J. M. Lobbes, R. Reuter, and J. Rullkotter, “Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
    [CrossRef]
  7. S. Determann, R. Reuter, P. Wagner, and R. Wilkomm, “Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution,” Deep-Sea Res., Part I 41, 659–675 (1994).
    [CrossRef]
  8. M. Bristow, D. Nielsen, D. Bundy, and R. Furtek, “Use of water Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation,” Appl. Opt. 20, 2889–2906 (1981).
    [CrossRef] [PubMed]
  9. F. E. Hoge, A. Vodacek, and N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
    [CrossRef]
  10. F. E. Hoge, A. Vodacek, R. N. Swift, J. K. Yungel, and N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
    [CrossRef] [PubMed]
  11. R. F. Chen, “In situ fluorescence measurements in coastal waters,” Org. Geochem. 30, 397–409 (1999).
    [CrossRef]
  12. E. J. Rochelle-Newall and T. R. Fisher, “Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton,” Mar. Chem. 77, 7–21 (2002).
    [CrossRef]
  13. B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, and J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
    [CrossRef]
  14. R. Barbini, F. Colao, R. Fantoni, A. Palucci, and S. Ribezzo, “Shipborne laser remote sensing of the Venice lagoon,” Int. J. Remote Sens. 20, 2405–2421 (1999).
    [CrossRef]
  15. W. K. Bischel, D. J. Bamford, and L. E. Jusinski, “Absolute calibration of a fluorescence collection system by Raman scattering in H2,” Appl. Opt. 25, 1215–1221 (1986).
    [CrossRef]
  16. J. Luque, R. J. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).
  17. St. Franke, A. Dinklage, and C. Wilke, “Absolute calibration of laser-induced fluorescence experiments by optical depth correction,” Rev. Sci. Instrum. 72, 2048–2051 (2001).
    [CrossRef]
  18. J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
    [CrossRef]
  19. N. P. Romanov and V. S. Shuklin, “Raman scattering cross-section of liquid water,” Opt. Spectrosc. 38, 1120–1124 (1975).
  20. H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed., Vol. 11 of Topics in Current Physics (Springer-Verlag, Berlin, 1979).
  21. J. R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy (Academic Press, Boston, 1994).
  22. I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, and O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. 43, 645–649 (1977).
  23. Y. Kameda, K. Hosoya, S. Sakamoto, H. Suzuki, T. Usuki, and O. Uemura, “Hydrogen-bonded structure in aqueous sulfuric acid solutions,” J. Mol. Liq. 65/66, 305–308 (1995).
    [CrossRef]
  24. G. W. Faris and R. A. Copeland, “Wavelength dependence of the Raman cross section for liquid water,” Appl. Opt. 36, 2686–2688 (1997).
    [CrossRef] [PubMed]

2002

E. J. Rochelle-Newall and T. R. Fisher, “Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton,” Mar. Chem. 77, 7–21 (2002).
[CrossRef]

J. Luque, R. J. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

2001

St. Franke, A. Dinklage, and C. Wilke, “Absolute calibration of laser-induced fluorescence experiments by optical depth correction,” Rev. Sci. Instrum. 72, 2048–2051 (2001).
[CrossRef]

1999

R. F. Chen, “In situ fluorescence measurements in coastal waters,” Org. Geochem. 30, 397–409 (1999).
[CrossRef]

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and S. Ribezzo, “Shipborne laser remote sensing of the Venice lagoon,” Int. J. Remote Sens. 20, 2405–2421 (1999).
[CrossRef]

1998

S. Determann, J. M. Lobbes, R. Reuter, and J. Rullkotter, “Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
[CrossRef]

1997

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, and J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

G. W. Faris and R. A. Copeland, “Wavelength dependence of the Raman cross section for liquid water,” Appl. Opt. 36, 2686–2688 (1997).
[CrossRef] [PubMed]

1996

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
[CrossRef]

S. Determann, R. Reuter, and R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. Part 2: vertical profiles and relation to water masses,” Deep-Sea Res., Part I 43, 345–360 (1996).
[CrossRef]

J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

1995

1994

S. Determann, R. Reuter, P. Wagner, and R. Wilkomm, “Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution,” Deep-Sea Res., Part I 41, 659–675 (1994).
[CrossRef]

1993

P. G. Coble, C. A. Schultz, and K. Mopper, “Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques,” Mar. Chem. 41, 173–178 (1993).
[CrossRef]

F. E. Hoge, A. Vodacek, and N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

1992

R. F. Chen and J. L. Bada, “The fluorescence of dissolved organic matter in seawater,” Mar. Chem. 37, 191–221 (1992).
[CrossRef]

1989

O. F. X. Donard, M. Lamotte, C. Belin, and M. Ewald, “High-sensitivity fluorescence spectroscopy of Mediterranean waters using a conventional or pulsed laser excitation source,” Mar. Chem. 27, 117–136 (1989).
[CrossRef]

1986

1981

1977

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, and O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. 43, 645–649 (1977).

1975

N. P. Romanov and V. S. Shuklin, “Raman scattering cross-section of liquid water,” Opt. Spectrosc. 38, 1120–1124 (1975).

Babin, M.

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, and J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

Bada, J. L.

R. F. Chen and J. L. Bada, “The fluorescence of dissolved organic matter in seawater,” Mar. Chem. 37, 191–221 (1992).
[CrossRef]

Bamford, D. J.

Barbini, R.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and S. Ribezzo, “Shipborne laser remote sensing of the Venice lagoon,” Int. J. Remote Sens. 20, 2405–2421 (1999).
[CrossRef]

Belin, C.

O. F. X. Donard, M. Lamotte, C. Belin, and M. Ewald, “High-sensitivity fluorescence spectroscopy of Mediterranean waters using a conventional or pulsed laser excitation source,” Mar. Chem. 27, 117–136 (1989).
[CrossRef]

Bischel, W. K.

Blough, N. V.

F. E. Hoge, A. Vodacek, R. N. Swift, J. K. Yungel, and N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
[CrossRef] [PubMed]

F. E. Hoge, A. Vodacek, and N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

Bristow, M.

Bundy, D.

Chen, R. F.

R. F. Chen, “In situ fluorescence measurements in coastal waters,” Org. Geochem. 30, 397–409 (1999).
[CrossRef]

R. F. Chen and J. L. Bada, “The fluorescence of dissolved organic matter in seawater,” Mar. Chem. 37, 191–221 (1992).
[CrossRef]

Coble, P. G.

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
[CrossRef]

P. G. Coble, C. A. Schultz, and K. Mopper, “Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques,” Mar. Chem. 41, 173–178 (1993).
[CrossRef]

Colao, F.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and S. Ribezzo, “Shipborne laser remote sensing of the Venice lagoon,” Int. J. Remote Sens. 20, 2405–2421 (1999).
[CrossRef]

Copeland, R. A.

Crosley, D. R.

J. Luque, R. J. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

Demyanenko, O. P.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, and O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. 43, 645–649 (1977).

Determann, S.

S. Determann, J. M. Lobbes, R. Reuter, and J. Rullkotter, “Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
[CrossRef]

S. Determann, R. Reuter, and R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. Part 2: vertical profiles and relation to water masses,” Deep-Sea Res., Part I 43, 345–360 (1996).
[CrossRef]

S. Determann, R. Reuter, P. Wagner, and R. Wilkomm, “Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution,” Deep-Sea Res., Part I 41, 659–675 (1994).
[CrossRef]

Dinklage, A.

St. Franke, A. Dinklage, and C. Wilke, “Absolute calibration of laser-induced fluorescence experiments by optical depth correction,” Rev. Sci. Instrum. 72, 2048–2051 (2001).
[CrossRef]

Donard, O. F. X.

O. F. X. Donard, M. Lamotte, C. Belin, and M. Ewald, “High-sensitivity fluorescence spectroscopy of Mediterranean waters using a conventional or pulsed laser excitation source,” Mar. Chem. 27, 117–136 (1989).
[CrossRef]

Ewald, M.

O. F. X. Donard, M. Lamotte, C. Belin, and M. Ewald, “High-sensitivity fluorescence spectroscopy of Mediterranean waters using a conventional or pulsed laser excitation source,” Mar. Chem. 27, 117–136 (1989).
[CrossRef]

Fantoni, R.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and S. Ribezzo, “Shipborne laser remote sensing of the Venice lagoon,” Int. J. Remote Sens. 20, 2405–2421 (1999).
[CrossRef]

Faris, G. W.

Fisher, T. R.

E. J. Rochelle-Newall and T. R. Fisher, “Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton,” Mar. Chem. 77, 7–21 (2002).
[CrossRef]

Franke, St.

St. Franke, A. Dinklage, and C. Wilke, “Absolute calibration of laser-induced fluorescence experiments by optical depth correction,” Rev. Sci. Instrum. 72, 2048–2051 (2001).
[CrossRef]

Furtek, R.

Heuermann, R.

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, and J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

Hoge, F. E.

F. E. Hoge, A. Vodacek, R. N. Swift, J. K. Yungel, and N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
[CrossRef] [PubMed]

F. E. Hoge, A. Vodacek, and N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

Hosoya, K.

Y. Kameda, K. Hosoya, S. Sakamoto, H. Suzuki, T. Usuki, and O. Uemura, “Hydrogen-bonded structure in aqueous sulfuric acid solutions,” J. Mol. Liq. 65/66, 305–308 (1995).
[CrossRef]

Jeffries, J. B.

J. Luque, R. J. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

Jusinski, L. E.

Kameda, Y.

Y. Kameda, K. Hosoya, S. Sakamoto, H. Suzuki, T. Usuki, and O. Uemura, “Hydrogen-bonded structure in aqueous sulfuric acid solutions,” J. Mol. Liq. 65/66, 305–308 (1995).
[CrossRef]

Klein-Douwel, R. J. H.

J. Luque, R. J. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

Klimenko, V. A.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, and O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. 43, 645–649 (1977).

Kondilenko, I. I.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, and O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. 43, 645–649 (1977).

Korotkov, P. A.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, and O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. 43, 645–649 (1977).

Lamotte, M.

O. F. X. Donard, M. Lamotte, C. Belin, and M. Ewald, “High-sensitivity fluorescence spectroscopy of Mediterranean waters using a conventional or pulsed laser excitation source,” Mar. Chem. 27, 117–136 (1989).
[CrossRef]

Lobbes, J. M.

S. Determann, J. M. Lobbes, R. Reuter, and J. Rullkotter, “Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
[CrossRef]

Luque, J.

J. Luque, R. J. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

Mopper, K.

P. G. Coble, C. A. Schultz, and K. Mopper, “Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques,” Mar. Chem. 41, 173–178 (1993).
[CrossRef]

Nieke, B.

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, and J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

Nielsen, D.

Palucci, A.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and S. Ribezzo, “Shipborne laser remote sensing of the Venice lagoon,” Int. J. Remote Sens. 20, 2405–2421 (1999).
[CrossRef]

Reuter, R.

S. Determann, J. M. Lobbes, R. Reuter, and J. Rullkotter, “Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
[CrossRef]

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, and J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

S. Determann, R. Reuter, and R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. Part 2: vertical profiles and relation to water masses,” Deep-Sea Res., Part I 43, 345–360 (1996).
[CrossRef]

S. Determann, R. Reuter, P. Wagner, and R. Wilkomm, “Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution,” Deep-Sea Res., Part I 41, 659–675 (1994).
[CrossRef]

Ribezzo, S.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and S. Ribezzo, “Shipborne laser remote sensing of the Venice lagoon,” Int. J. Remote Sens. 20, 2405–2421 (1999).
[CrossRef]

Rochelle-Newall, E. J.

E. J. Rochelle-Newall and T. R. Fisher, “Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton,” Mar. Chem. 77, 7–21 (2002).
[CrossRef]

Romanov, N. P.

N. P. Romanov and V. S. Shuklin, “Raman scattering cross-section of liquid water,” Opt. Spectrosc. 38, 1120–1124 (1975).

Rullkotter, J.

S. Determann, J. M. Lobbes, R. Reuter, and J. Rullkotter, “Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
[CrossRef]

Sakamoto, S.

Y. Kameda, K. Hosoya, S. Sakamoto, H. Suzuki, T. Usuki, and O. Uemura, “Hydrogen-bonded structure in aqueous sulfuric acid solutions,” J. Mol. Liq. 65/66, 305–308 (1995).
[CrossRef]

Schultz, C. A.

P. G. Coble, C. A. Schultz, and K. Mopper, “Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques,” Mar. Chem. 41, 173–178 (1993).
[CrossRef]

Shuklin, V. S.

N. P. Romanov and V. S. Shuklin, “Raman scattering cross-section of liquid water,” Opt. Spectrosc. 38, 1120–1124 (1975).

Smith, G. P.

J. Luque, R. J. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

Suzuki, H.

Y. Kameda, K. Hosoya, S. Sakamoto, H. Suzuki, T. Usuki, and O. Uemura, “Hydrogen-bonded structure in aqueous sulfuric acid solutions,” J. Mol. Liq. 65/66, 305–308 (1995).
[CrossRef]

Swift, R. N.

Therriault, J. C.

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, and J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

Uemura, O.

Y. Kameda, K. Hosoya, S. Sakamoto, H. Suzuki, T. Usuki, and O. Uemura, “Hydrogen-bonded structure in aqueous sulfuric acid solutions,” J. Mol. Liq. 65/66, 305–308 (1995).
[CrossRef]

Usuki, T.

Y. Kameda, K. Hosoya, S. Sakamoto, H. Suzuki, T. Usuki, and O. Uemura, “Hydrogen-bonded structure in aqueous sulfuric acid solutions,” J. Mol. Liq. 65/66, 305–308 (1995).
[CrossRef]

Vodacek, A.

F. E. Hoge, A. Vodacek, R. N. Swift, J. K. Yungel, and N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995).
[CrossRef] [PubMed]

F. E. Hoge, A. Vodacek, and N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

Wagner, P.

S. Determann, R. Reuter, P. Wagner, and R. Wilkomm, “Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution,” Deep-Sea Res., Part I 41, 659–675 (1994).
[CrossRef]

Wang, H.

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, and J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

Wilke, C.

St. Franke, A. Dinklage, and C. Wilke, “Absolute calibration of laser-induced fluorescence experiments by optical depth correction,” Rev. Sci. Instrum. 72, 2048–2051 (2001).
[CrossRef]

Wilkomm, R.

S. Determann, R. Reuter, P. Wagner, and R. Wilkomm, “Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution,” Deep-Sea Res., Part I 41, 659–675 (1994).
[CrossRef]

Willkomm, R.

S. Determann, R. Reuter, and R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. Part 2: vertical profiles and relation to water masses,” Deep-Sea Res., Part I 43, 345–360 (1996).
[CrossRef]

Yungel, J. K.

Appl. Opt.

Appl. Phys. B

J. Luque, R. J. H. Klein-Douwel, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

Cont. Shelf Res.

B. Nieke, R. Reuter, R. Heuermann, H. Wang, M. Babin, and J. C. Therriault, “Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence Estuary (case 2 waters),” Cont. Shelf Res. 17, 235–252 (1997).
[CrossRef]

Deep-Sea Res., Part I

S. Determann, R. Reuter, P. Wagner, and R. Wilkomm, “Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution,” Deep-Sea Res., Part I 41, 659–675 (1994).
[CrossRef]

S. Determann, R. Reuter, and R. Willkomm, “Fluorescent matter in the eastern Atlantic Ocean. Part 2: vertical profiles and relation to water masses,” Deep-Sea Res., Part I 43, 345–360 (1996).
[CrossRef]

Int. J. Remote Sens.

R. Barbini, F. Colao, R. Fantoni, A. Palucci, and S. Ribezzo, “Shipborne laser remote sensing of the Venice lagoon,” Int. J. Remote Sens. 20, 2405–2421 (1999).
[CrossRef]

J. Mol. Liq.

Y. Kameda, K. Hosoya, S. Sakamoto, H. Suzuki, T. Usuki, and O. Uemura, “Hydrogen-bonded structure in aqueous sulfuric acid solutions,” J. Mol. Liq. 65/66, 305–308 (1995).
[CrossRef]

Limnol. Oceanogr.

F. E. Hoge, A. Vodacek, and N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993).
[CrossRef]

Mar. Chem.

E. J. Rochelle-Newall and T. R. Fisher, “Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton,” Mar. Chem. 77, 7–21 (2002).
[CrossRef]

S. Determann, J. M. Lobbes, R. Reuter, and J. Rullkotter, “Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria,” Mar. Chem. 62, 137–156 (1998).
[CrossRef]

P. G. Coble, C. A. Schultz, and K. Mopper, “Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques,” Mar. Chem. 41, 173–178 (1993).
[CrossRef]

P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Mar. Chem. 51, 325–346 (1996).
[CrossRef]

R. F. Chen and J. L. Bada, “The fluorescence of dissolved organic matter in seawater,” Mar. Chem. 37, 191–221 (1992).
[CrossRef]

O. F. X. Donard, M. Lamotte, C. Belin, and M. Ewald, “High-sensitivity fluorescence spectroscopy of Mediterranean waters using a conventional or pulsed laser excitation source,” Mar. Chem. 27, 117–136 (1989).
[CrossRef]

Opt. Spectrosc.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, and O. P. Demyanenko, “Transverse cross section of the Raman scattering of the ν1 vibration of the water molecule in the liquid and gaseous states,” Opt. Spectrosc. 43, 645–649 (1977).

N. P. Romanov and V. S. Shuklin, “Raman scattering cross-section of liquid water,” Opt. Spectrosc. 38, 1120–1124 (1975).

Org. Geochem.

R. F. Chen, “In situ fluorescence measurements in coastal waters,” Org. Geochem. 30, 397–409 (1999).
[CrossRef]

Rev. Sci. Instrum.

St. Franke, A. Dinklage, and C. Wilke, “Absolute calibration of laser-induced fluorescence experiments by optical depth correction,” Rev. Sci. Instrum. 72, 2048–2051 (2001).
[CrossRef]

Other

H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed., Vol. 11 of Topics in Current Physics (Springer-Verlag, Berlin, 1979).

J. R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy (Academic Press, Boston, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the coordinate system chosen to describe the Raman scattering process.

Fig. 2
Fig. 2

Schematic of the experimental setup of the laboratory LIF system that uses an UV tunable dye laser or a fixed 266-nm wavelength laser for excitation. PRF, pulse repetition frequency.

Fig. 3
Fig. 3

Schematic of the LIF system showing the rotation of polarization angle βo and variable collection angle α.

Fig. 4
Fig. 4

Corrected LIF spectra of quinine sulfate as a function of polarization angle βo of the laser beam, with horizontal polarization being 0° and vertical polarization being 90°.

Fig. 5
Fig. 5

Enlarged view of the Raman scatter signal and the fluorescence signal from Fig. 4 as a function of polarization angle βo.

Fig. 6
Fig. 6

Theoretical and experimental values of the Raman scatter signal as a function of polarization angle βo of the excitation beam.

Fig. 7
Fig. 7

Theoretical and experimental values of the Raman scatter signal as a function of collection angle α for vertically (βo=90°) and horizontally (βo=0°) polarized light.

Fig. 8
Fig. 8

Theoretical average Raman scatter cross section normalized to the differential Raman scatter at 90°, dσ/dΩ (90°), as a function of polarization angle βo for various f-numbers of the collection system.

Fig. 9
Fig. 9

Raman ratio (ratio of the Raman scatter signal for vertical polarization compared with horizontal polarization) plotted as a function of the f-number of the system and the associated collection half-angle θc.

Fig. 10
Fig. 10

Correction factor (Z/Ωc)-1 plotted as a function of collection half-angle θc for various polarization angles βo.

Tables (1)

Tables Icon

Table 1 Fluorescence-to-Raman Scatter Signal Ratio R Calculated for Various Concentrations of Quinine Sulfate for Fixed and Tunable Laser LIF Systems

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

dσdΩ (β)=dσdΩ (90°)(A+B sin2 β),
cos β=O  P,
O=sin θ cos φXˆ+sin θ sin φ Yˆ+cos θZˆ,
P=sin βoYˆ+cos βoZˆ,
σ(βo, θc)=dσdΩ (90°)0θc02π{A+B[1-(sin θ sin ϕ sin βo+cos θ cos βo)2]}×sin θdθ dϕ.
σ(βo, θc)=dσdΩ (90°)Z,
Z=Ωc-{2πB/3[sin2 βo(1-cos θc-1/2 cos θcsin2 θc)+cos2 βo(1-cos3 θc)]},
dσRdΩ (90°)=σR(βo, θc)/Z.
σR(90°)=dσRdΩ (90°)Ωc=σR(βo, θc)Ωc/Z.
IR(90°)=IR(βo, θc)Ωc/Z.
dσFdΩ (90°)=σF(βo, θc)/ΩC,
R=IF(90°)IR(90°)=IF(βo, θc)IR(βo, θc)/ZΩc-1.

Metrics