Abstract

The dominant components of the χ(2)(-ω; ω, 0) nonlinear quadratic susceptibility tensor of a poled polymer-based nonlinear organic thin film are measured independently with a Fabry–Pérot interferometric technique. Electro-optic dispersion is obtained from visible wavelengths up to 1.550 μm leading to a wavelength-independent χ333(2)/χ113(2) nonlinear anisotropy ratio close to 5 for the poly(methyl methacrylate) (PMMA) Disperse Red 1 (DR1) copolymer and close to 3 for the PMMA DR1 guest–host blend. Interaction of the chromophores with their environment is pointed out to be at the origin of these anisotropy ratios and is consequently designated as an important feature in electro-optic device design in view of polarization independence or polarization rotation requirements.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
    [CrossRef] [PubMed]
  2. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
    [CrossRef]
  3. A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polarization insensitive electro-optic polymer modulator,” J. Appl. Phys. 87, 3258–3262 (2000).
    [CrossRef]
  4. R. Piron, E. Toussaere, D. Josse, S. Brasselet, and J. Zyss, “Polymer-based microcavity with photoencoded quadratic nonlinearity,” Opt. Lett. 25, 1255–1257 (2000).
    [CrossRef]
  5. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
    [CrossRef]
  6. J. S. Schildkraut, “Determination of the electrooptic coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2841 (1990).
    [CrossRef] [PubMed]
  7. H. Uchiki and T. Kobayashi, “New determination method of electro-optic constants and relevant nonlinear susceptibilities and its application to doped polymer,” J. Appl. Phys. 64, 2625–2629 (1988).
    [CrossRef]
  8. M. Dumont and Y. Lévy, “Measurement of electrooptic properties of organic thin films by attenuated total reflection,” in Nonlinear Optics of Organics and Semiconductors, T. Kobayashi, eds., Vol. 36 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1989), pp. 256–266.
    [CrossRef]
  9. M. J. Shin, H. R. Cho, S. H. Han, and J. W. Wu, “Analysis of a Mach–Zehnder interferometry measurement of the Pockels coefficients in a poled polymer film with a reflection configuration,” J. Appl. Phys. 83, 1848–1853 (1998).
    [CrossRef]
  10. R. Meyrueix, J. Lecomte, and G. Tapolsky, “A Fabry Perot interferometric technique for the electro-optical characterization of nonlinear optical polymers,” Nonlinear Opt. 1, 201–211 (1991).
  11. R. Meyrueix, M. J. Dickens, O. Lemonnier, J. P. Lecomte, and G. Tapolsky, “Fabry–Pérot interferometry applied to the study of piezoelectric and electro-optical properties of a poled NLO polyurethane,” Opt. Commun. 110, 445–455 (1994).
    [CrossRef]
  12. M. Sigelle and R. Hierle, “Determination of the electrooptic coefficients of 3-methyl 4-nitropyridine 1-oxide by an interferometric phase-modulation technique,” J. Appl. Phys. 52, 4199–4204 (1981).
    [CrossRef]
  13. J. L. Oudar and J. Zyss, “Structural dependence of nonlinear-optical properties of methyl-(2, 4-dinitrophenyl)-aminopropanoate crystals,” Phys. Rev. A 26, 2016–2027 (1982).
    [CrossRef]
  14. Disperse Red 1 was supplied by Aldrich, internet address http://www.sigma-aldrich.com.
  15. E. Toussaere and J. Zyss, “Ellipsometry and reflectance of inhomogeneous and anisotropic media: a new computationally efficient approach,” Thin Solid Films 234, 432–438 (1993).
    [CrossRef]
  16. E. Toussaere and J. Zyss, “Variable angle spectroscopic ellipsometry: application to poled polymers for non-linear optics,” Thin Solid Films 234, 454–457 (1993).
    [CrossRef]
  17. R. A. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1977), Chap. 4.
  18. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
    [CrossRef]
  19. K. D. Singer, J. E. Sohn, L. A. King, H. M. Gordon, H. E. Katz, and C. W. Dirk, “Second-order nonlinear-optical properties of donor- and acceptor-substituted aromatic compounds,” J. Opt. Soc. Am. B 6, 1339–1350 (1989).
    [CrossRef]
  20. P. Robin, P. Le Barny, D. Broussoux, J. P. Pocholle, and V. Lemoine, “Optoelectronic devices with nonlinear polymers,” in Organic Molecules for Nonlinear Optics and Photonics, J. Messier, F. Kajzar, and P. Prasad., eds. (Kluwer Academic, Dordrecht, The Netherlands, 1991), pp. 481–488.
  21. C. P. J. M. van der Vorst and S. J. Picken, “Electric field poling of acceptor–donor molecules,” J. Opt. Soc. Am. B 7, 320–325 (1990).
    [CrossRef]
  22. F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Real-time pole and probe assessment of orientational processes in electro-optic polymers,” Appl. Phys. Lett. 67, 2765–2767 (1995).
    [CrossRef]
  23. F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Study of the orientational relaxation dynamics in a nonlinear optical copolymer by means of a pole and probe technique,” J. Appl. Phys. 80, 1773–1778 (1996).
    [CrossRef]

2002

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

2000

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polarization insensitive electro-optic polymer modulator,” J. Appl. Phys. 87, 3258–3262 (2000).
[CrossRef]

R. Piron, E. Toussaere, D. Josse, S. Brasselet, and J. Zyss, “Polymer-based microcavity with photoencoded quadratic nonlinearity,” Opt. Lett. 25, 1255–1257 (2000).
[CrossRef]

1998

M. J. Shin, H. R. Cho, S. H. Han, and J. W. Wu, “Analysis of a Mach–Zehnder interferometry measurement of the Pockels coefficients in a poled polymer film with a reflection configuration,” J. Appl. Phys. 83, 1848–1853 (1998).
[CrossRef]

1996

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Study of the orientational relaxation dynamics in a nonlinear optical copolymer by means of a pole and probe technique,” J. Appl. Phys. 80, 1773–1778 (1996).
[CrossRef]

1995

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Real-time pole and probe assessment of orientational processes in electro-optic polymers,” Appl. Phys. Lett. 67, 2765–2767 (1995).
[CrossRef]

1994

R. Meyrueix, M. J. Dickens, O. Lemonnier, J. P. Lecomte, and G. Tapolsky, “Fabry–Pérot interferometry applied to the study of piezoelectric and electro-optical properties of a poled NLO polyurethane,” Opt. Commun. 110, 445–455 (1994).
[CrossRef]

1993

E. Toussaere and J. Zyss, “Ellipsometry and reflectance of inhomogeneous and anisotropic media: a new computationally efficient approach,” Thin Solid Films 234, 432–438 (1993).
[CrossRef]

E. Toussaere and J. Zyss, “Variable angle spectroscopic ellipsometry: application to poled polymers for non-linear optics,” Thin Solid Films 234, 454–457 (1993).
[CrossRef]

1991

R. Meyrueix, J. Lecomte, and G. Tapolsky, “A Fabry Perot interferometric technique for the electro-optical characterization of nonlinear optical polymers,” Nonlinear Opt. 1, 201–211 (1991).

1990

1989

1988

H. Uchiki and T. Kobayashi, “New determination method of electro-optic constants and relevant nonlinear susceptibilities and its application to doped polymer,” J. Appl. Phys. 64, 2625–2629 (1988).
[CrossRef]

1987

1982

J. L. Oudar and J. Zyss, “Structural dependence of nonlinear-optical properties of methyl-(2, 4-dinitrophenyl)-aminopropanoate crystals,” Phys. Rev. A 26, 2016–2027 (1982).
[CrossRef]

1981

M. Sigelle and R. Hierle, “Determination of the electrooptic coefficients of 3-methyl 4-nitropyridine 1-oxide by an interferometric phase-modulation technique,” J. Appl. Phys. 52, 4199–4204 (1981).
[CrossRef]

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Brasselet, S.

Cho, H. R.

M. J. Shin, H. R. Cho, S. H. Han, and J. W. Wu, “Analysis of a Mach–Zehnder interferometry measurement of the Pockels coefficients in a poled polymer film with a reflection configuration,” J. Appl. Phys. 83, 1848–1853 (1998).
[CrossRef]

Dalton, L. R.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Dickens, M. J.

R. Meyrueix, M. J. Dickens, O. Lemonnier, J. P. Lecomte, and G. Tapolsky, “Fabry–Pérot interferometry applied to the study of piezoelectric and electro-optical properties of a poled NLO polyurethane,” Opt. Commun. 110, 445–455 (1994).
[CrossRef]

Dirk, C. W.

Donval, A.

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polarization insensitive electro-optic polymer modulator,” J. Appl. Phys. 87, 3258–3262 (2000).
[CrossRef]

Erben, C.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Gill, D. M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Gopalan, P.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Gordon, H. M.

Han, S. H.

M. J. Shin, H. R. Cho, S. H. Han, and J. W. Wu, “Analysis of a Mach–Zehnder interferometry measurement of the Pockels coefficients in a poled polymer film with a reflection configuration,” J. Appl. Phys. 83, 1848–1853 (1998).
[CrossRef]

Heber, J. D.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Hierle, R.

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polarization insensitive electro-optic polymer modulator,” J. Appl. Phys. 87, 3258–3262 (2000).
[CrossRef]

M. Sigelle and R. Hierle, “Determination of the electrooptic coefficients of 3-methyl 4-nitropyridine 1-oxide by an interferometric phase-modulation technique,” J. Appl. Phys. 52, 4199–4204 (1981).
[CrossRef]

Josse, D.

Katz, H. E.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

K. D. Singer, J. E. Sohn, L. A. King, H. M. Gordon, H. E. Katz, and C. W. Dirk, “Second-order nonlinear-optical properties of donor- and acceptor-substituted aromatic compounds,” J. Opt. Soc. Am. B 6, 1339–1350 (1989).
[CrossRef]

King, L. A.

Kobayashi, T.

H. Uchiki and T. Kobayashi, “New determination method of electro-optic constants and relevant nonlinear susceptibilities and its application to doped polymer,” J. Appl. Phys. 64, 2625–2629 (1988).
[CrossRef]

Kuzyk, M. G.

Lecomte, J.

R. Meyrueix, J. Lecomte, and G. Tapolsky, “A Fabry Perot interferometric technique for the electro-optical characterization of nonlinear optical polymers,” Nonlinear Opt. 1, 201–211 (1991).

Lecomte, J. P.

R. Meyrueix, M. J. Dickens, O. Lemonnier, J. P. Lecomte, and G. Tapolsky, “Fabry–Pérot interferometry applied to the study of piezoelectric and electro-optical properties of a poled NLO polyurethane,” Opt. Commun. 110, 445–455 (1994).
[CrossRef]

Lee, M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Lemonnier, O.

R. Meyrueix, M. J. Dickens, O. Lemonnier, J. P. Lecomte, and G. Tapolsky, “Fabry–Pérot interferometry applied to the study of piezoelectric and electro-optical properties of a poled NLO polyurethane,” Opt. Commun. 110, 445–455 (1994).
[CrossRef]

Levenson, R.

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Study of the orientational relaxation dynamics in a nonlinear optical copolymer by means of a pole and probe technique,” J. Appl. Phys. 80, 1773–1778 (1996).
[CrossRef]

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Real-time pole and probe assessment of orientational processes in electro-optic polymers,” Appl. Phys. Lett. 67, 2765–2767 (1995).
[CrossRef]

Liang, J.

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Study of the orientational relaxation dynamics in a nonlinear optical copolymer by means of a pole and probe technique,” J. Appl. Phys. 80, 1773–1778 (1996).
[CrossRef]

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Real-time pole and probe assessment of orientational processes in electro-optic polymers,” Appl. Phys. Lett. 67, 2765–2767 (1995).
[CrossRef]

Man, H. T.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

McGee, D. J.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Meyrueix, R.

R. Meyrueix, M. J. Dickens, O. Lemonnier, J. P. Lecomte, and G. Tapolsky, “Fabry–Pérot interferometry applied to the study of piezoelectric and electro-optical properties of a poled NLO polyurethane,” Opt. Commun. 110, 445–455 (1994).
[CrossRef]

R. Meyrueix, J. Lecomte, and G. Tapolsky, “A Fabry Perot interferometric technique for the electro-optical characterization of nonlinear optical polymers,” Nonlinear Opt. 1, 201–211 (1991).

Michelotti, F.

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Study of the orientational relaxation dynamics in a nonlinear optical copolymer by means of a pole and probe technique,” J. Appl. Phys. 80, 1773–1778 (1996).
[CrossRef]

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Real-time pole and probe assessment of orientational processes in electro-optic polymers,” Appl. Phys. Lett. 67, 2765–2767 (1995).
[CrossRef]

Oudar, J. L.

J. L. Oudar and J. Zyss, “Structural dependence of nonlinear-optical properties of methyl-(2, 4-dinitrophenyl)-aminopropanoate crystals,” Phys. Rev. A 26, 2016–2027 (1982).
[CrossRef]

Picken, S. J.

Piron, R.

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Schildkraut, J. S.

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Shin, M. J.

M. J. Shin, H. R. Cho, S. H. Han, and J. W. Wu, “Analysis of a Mach–Zehnder interferometry measurement of the Pockels coefficients in a poled polymer film with a reflection configuration,” J. Appl. Phys. 83, 1848–1853 (1998).
[CrossRef]

Sigelle, M.

M. Sigelle and R. Hierle, “Determination of the electrooptic coefficients of 3-methyl 4-nitropyridine 1-oxide by an interferometric phase-modulation technique,” J. Appl. Phys. 52, 4199–4204 (1981).
[CrossRef]

Singer, K. D.

Sohn, J. E.

Steier, W. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Tapolsky, G.

R. Meyrueix, M. J. Dickens, O. Lemonnier, J. P. Lecomte, and G. Tapolsky, “Fabry–Pérot interferometry applied to the study of piezoelectric and electro-optical properties of a poled NLO polyurethane,” Opt. Commun. 110, 445–455 (1994).
[CrossRef]

R. Meyrueix, J. Lecomte, and G. Tapolsky, “A Fabry Perot interferometric technique for the electro-optical characterization of nonlinear optical polymers,” Nonlinear Opt. 1, 201–211 (1991).

Teng, C. C.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

Toussaere, E.

R. Piron, E. Toussaere, D. Josse, S. Brasselet, and J. Zyss, “Polymer-based microcavity with photoencoded quadratic nonlinearity,” Opt. Lett. 25, 1255–1257 (2000).
[CrossRef]

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polarization insensitive electro-optic polymer modulator,” J. Appl. Phys. 87, 3258–3262 (2000).
[CrossRef]

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Study of the orientational relaxation dynamics in a nonlinear optical copolymer by means of a pole and probe technique,” J. Appl. Phys. 80, 1773–1778 (1996).
[CrossRef]

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Real-time pole and probe assessment of orientational processes in electro-optic polymers,” Appl. Phys. Lett. 67, 2765–2767 (1995).
[CrossRef]

E. Toussaere and J. Zyss, “Ellipsometry and reflectance of inhomogeneous and anisotropic media: a new computationally efficient approach,” Thin Solid Films 234, 432–438 (1993).
[CrossRef]

E. Toussaere and J. Zyss, “Variable angle spectroscopic ellipsometry: application to poled polymers for non-linear optics,” Thin Solid Films 234, 454–457 (1993).
[CrossRef]

Uchiki, H.

H. Uchiki and T. Kobayashi, “New determination method of electro-optic constants and relevant nonlinear susceptibilities and its application to doped polymer,” J. Appl. Phys. 64, 2625–2629 (1988).
[CrossRef]

van der Vorst, C. P. J. M.

Wu, J. W.

M. J. Shin, H. R. Cho, S. H. Han, and J. W. Wu, “Analysis of a Mach–Zehnder interferometry measurement of the Pockels coefficients in a poled polymer film with a reflection configuration,” J. Appl. Phys. 83, 1848–1853 (1998).
[CrossRef]

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Zyss, J.

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polarization insensitive electro-optic polymer modulator,” J. Appl. Phys. 87, 3258–3262 (2000).
[CrossRef]

R. Piron, E. Toussaere, D. Josse, S. Brasselet, and J. Zyss, “Polymer-based microcavity with photoencoded quadratic nonlinearity,” Opt. Lett. 25, 1255–1257 (2000).
[CrossRef]

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Study of the orientational relaxation dynamics in a nonlinear optical copolymer by means of a pole and probe technique,” J. Appl. Phys. 80, 1773–1778 (1996).
[CrossRef]

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Real-time pole and probe assessment of orientational processes in electro-optic polymers,” Appl. Phys. Lett. 67, 2765–2767 (1995).
[CrossRef]

E. Toussaere and J. Zyss, “Variable angle spectroscopic ellipsometry: application to poled polymers for non-linear optics,” Thin Solid Films 234, 454–457 (1993).
[CrossRef]

E. Toussaere and J. Zyss, “Ellipsometry and reflectance of inhomogeneous and anisotropic media: a new computationally efficient approach,” Thin Solid Films 234, 432–438 (1993).
[CrossRef]

J. L. Oudar and J. Zyss, “Structural dependence of nonlinear-optical properties of methyl-(2, 4-dinitrophenyl)-aminopropanoate crystals,” Phys. Rev. A 26, 2016–2027 (1982).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Real-time pole and probe assessment of orientational processes in electro-optic polymers,” Appl. Phys. Lett. 67, 2765–2767 (1995).
[CrossRef]

J. Appl. Phys.

F. Michelotti, E. Toussaere, R. Levenson, J. Liang, and J. Zyss, “Study of the orientational relaxation dynamics in a nonlinear optical copolymer by means of a pole and probe technique,” J. Appl. Phys. 80, 1773–1778 (1996).
[CrossRef]

M. Sigelle and R. Hierle, “Determination of the electrooptic coefficients of 3-methyl 4-nitropyridine 1-oxide by an interferometric phase-modulation technique,” J. Appl. Phys. 52, 4199–4204 (1981).
[CrossRef]

H. Uchiki and T. Kobayashi, “New determination method of electro-optic constants and relevant nonlinear susceptibilities and its application to doped polymer,” J. Appl. Phys. 64, 2625–2629 (1988).
[CrossRef]

M. J. Shin, H. R. Cho, S. H. Han, and J. W. Wu, “Analysis of a Mach–Zehnder interferometry measurement of the Pockels coefficients in a poled polymer film with a reflection configuration,” J. Appl. Phys. 83, 1848–1853 (1998).
[CrossRef]

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, “Polarization insensitive electro-optic polymer modulator,” J. Appl. Phys. 87, 3258–3262 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Nonlinear Opt.

R. Meyrueix, J. Lecomte, and G. Tapolsky, “A Fabry Perot interferometric technique for the electro-optical characterization of nonlinear optical polymers,” Nonlinear Opt. 1, 201–211 (1991).

Opt. Commun.

R. Meyrueix, M. J. Dickens, O. Lemonnier, J. P. Lecomte, and G. Tapolsky, “Fabry–Pérot interferometry applied to the study of piezoelectric and electro-optical properties of a poled NLO polyurethane,” Opt. Commun. 110, 445–455 (1994).
[CrossRef]

Opt. Lett.

Phys. Rev. A

J. L. Oudar and J. Zyss, “Structural dependence of nonlinear-optical properties of methyl-(2, 4-dinitrophenyl)-aminopropanoate crystals,” Phys. Rev. A 26, 2016–2027 (1982).
[CrossRef]

Science

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, “Broadband modulation of light by using an electro-optic polymer,” Science 298, 1401–1403 (2002).
[CrossRef] [PubMed]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000).
[CrossRef]

Thin Solid Films

E. Toussaere and J. Zyss, “Ellipsometry and reflectance of inhomogeneous and anisotropic media: a new computationally efficient approach,” Thin Solid Films 234, 432–438 (1993).
[CrossRef]

E. Toussaere and J. Zyss, “Variable angle spectroscopic ellipsometry: application to poled polymers for non-linear optics,” Thin Solid Films 234, 454–457 (1993).
[CrossRef]

Other

R. A. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, New York, 1977), Chap. 4.

Disperse Red 1 was supplied by Aldrich, internet address http://www.sigma-aldrich.com.

P. Robin, P. Le Barny, D. Broussoux, J. P. Pocholle, and V. Lemoine, “Optoelectronic devices with nonlinear polymers,” in Organic Molecules for Nonlinear Optics and Photonics, J. Messier, F. Kajzar, and P. Prasad., eds. (Kluwer Academic, Dordrecht, The Netherlands, 1991), pp. 481–488.

M. Dumont and Y. Lévy, “Measurement of electrooptic properties of organic thin films by attenuated total reflection,” in Nonlinear Optics of Organics and Semiconductors, T. Kobayashi, eds., Vol. 36 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1989), pp. 256–266.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure of the PMMA DR1 copolymer. X and Y refer to MMA molar fraction and MMA DR1 molar fraction, respectively. In our case X=70 and Y=30.

Fig. 2
Fig. 2

(a) Fabry–Pérot cavity for electro-optic measurements: G, glass substrate; P, polymer thin film; Al, aluminum electrodes. (b) Cartesian coordinate system.

Fig. 3
Fig. 3

Interferometric Fabry–Pérot setup for electro-optic characterization: DL, laser diode; S, sample; W, Wollaston prism; PDS and PDP, photodiodes for S and P polarization; LA, lock-in amplifier; D, rotating driver; V, ac voltage generator; PC, personal computer.

Fig. 4
Fig. 4

Transmissions TS,P0 and TS,PΩ at λ=1.55 μm. The poling field is 63 V/μm. The dots refer to experimental data and the solid curves represent the best theoretical fits. (a) S polarization and (b) P polarization.

Fig. 5
Fig. 5

Electro-optic dispersion normalized to the poling field: (a) r13 coefficient and (b) r33 coefficient. (a) and (b) were fitted by use of the two-level model with λ0=516 nm and λ0=511 nm, respectively.

Fig. 6
Fig. 6

Discretization of the Fabry–Pérot cavity.

Tables (1)

Tables Icon

Table 1 Refractive Index and Electro-Optic Coefficients rm3 (m=1, 3) Versus Wavelength of the PMMA DR1 Copolymer

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

TS,P0(θ)=TS,P(θ, 0),
TS,PΩ(θ)=[TS,P(θ, V0)-TS,P(θ, -V0)]/2,
TS,P[θ, V(t)]=nMnS,P[θ, V(t)]2,22
rm3(ω)fmωfmω3ω02-ω2(ω02-ω2)2,
α(p)=2L3(p)L1(p)-L3(p),
En+En-z=zn+=MnSEn+1+En+1-z=zn+1+,
Dn+Dn-z=zn+=MnPDn+1+Dn+1-z=zn+1+,
MnS,P=1tn,n+1S,Pexp(ik0hnS,PLn)rn,n+1S,Pexp(ik0hnS,PLn)rn,n+1S,Pexp(-ik0hnS,PLn)exp(-ik0hnS,PLn),
hnS=(on-sin2 θ)1/2,hnP=on-onensin2 θ1/2,
rn,n+1S=hnS-hn+1ShnS+hn+1S,tn,n+1S=2hnShnS+hn+1S,
rn,n+1P=onhn+1P-on+1hnPonhn+1P+on+1hnP,
tn,n+1P=hn+1P2+sin2 θhnP2+sin2 θ1/22on+1hnPonhn+1P+on+1hnP.
TS,P(θ, V)=nMnS,P(θ, V)2,22.
opolymer=npolymer21-r13VLpolymer npolymer2,
epolymer=npolymer21-r33VLpolymer npolymer2

Metrics