Abstract

Ultrafast pulsed laser deposition was used to successfully deposit atomically smooth 5-μm-thick As2S3 films. The as-deposited films were photosensitive at wavelengths close to the band edge (≈520 nm), and waveguides could be directly patterned into them by photodarkening using an argon-ion or frequency-doubled Nd:YAG laser. The linear and nonlinear optical properties of the films were measured as well as the photosensitivity of the material. The optical losses in photodarkened waveguides were <0.2 dB/cm at wavelengths beyond 1200 nm and <0.1 dB/cm in as-deposited films. The third-order nonlinearity, n2,As2S3, was measured using both four-wave mixing and the Z-scan technique and varied with wavelength from 100 to 200 times fused silica (n2,Silica3×10-16 cm2/W) between 1500 nm and 1100 nm with low nonlinear absorption.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. Mater. Devices Syst. 3, 142–148 (1997).
    [CrossRef]
  2. A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B 52, 347–362 (1985).
    [CrossRef]
  3. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000).
    [CrossRef]
  4. Ka. Tanaka, Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, ed. (Ohmsha, Tokyo, 1982), p. 227.
  5. S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986).
    [CrossRef]
  6. Ke. Tanaka, “Photoinduced structural changes in chalcogenide glasses,” Rev. Solid State Sci. 4, 641–659 (1990).
  7. A. Zakery, C. W. Slinger, P. J. S. Ewen, A. P. Firth, and A. E. Owen, “Chalcogenide gratings produced by the metal photodissolution effect,” J. Phys. D: Appl. Phys. 21, S78–S81 (1988).
    [CrossRef]
  8. C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodoped chalcogenides as potential infrared holographic media,” Appl. Opt. 1, 2490–2498 (1992).
    [CrossRef]
  9. J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17, 1184–1191 (1999).
    [CrossRef]
  10. S. Ramachandran and S. G. Bishop, “Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,” Appl. Phys. Lett. 74, 13–15 (1999).
    [CrossRef]
  11. K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63, 1601–1603 (1993).
    [CrossRef]
  12. D. S. Gill, R. W. Eason, C. Zaldo, H. N. Rutt, and N. A. Vainos, “Characterization of Ga-La-S chalcogenide glass thin-film optical waveguides, fabricated by pulsed laser deposition,” J. Non-Cryst. Solids 191, 321–326 (1995).
    [CrossRef]
  13. A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
    [CrossRef]
  14. A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part II: Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999).
    [CrossRef]
  15. A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, “Nonlinear As-S chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation,” Appl. Surf. Sci. 197–198, 481–485 (2002).
    [CrossRef]
  16. A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodarkening in As-S films and its application in grating fabrication,” J. Non-Cryst. Solids 198–200, 769–773 (1996).
    [CrossRef]
  17. J. P. DeNeufville, Amorphous and Liquid Semiconductors, J. Stuke and W. Brenig, eds. (Taylor and Francis, London, 1974), p. 1351.
  18. Ka. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243–245 (1975).
    [CrossRef]
  19. R. Swanepoel, “Determining refractive index and thickness of thin films from wavelength measurements only,” J. Opt. Soc. Am. A 2, 1339–1343 (1985).
    [CrossRef]
  20. D. Goldschmidt, “Determination of the absorption edge of a thin film from transmission measurements,” J. Opt. Soc. Am. A 1, 275–277 (1984).
    [CrossRef]
  21. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979), p. 289.
  22. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  23. G. M. Carter, “Excited-state dynamics and temporally resolved nonresonant nonlinear-optical processes in polydiacetylenes,” J. Opt. Soc. Am. B 4, 1018–1022 (1987).
    [CrossRef]
  24. M. Samoc, A. Samoc, B. Luther-Davies, Z. Bao, L. Yu, and U. Scherf, “Femtosecond Z-scan and degenerate four-wave mixing measurements of real and imaginary parts of the third-order nonlinearity of soluble conjugated polymers,” J. Opt. Soc. Am. B 15, 817–825 (1998).
    [CrossRef]
  25. F. P. Strohkendl, L. R. Dalton, R. W. Hellwarth, H. W. Sarkas, and Z. H. Kafafi, “Phase-mismatched degenerate four-wave mixing: complex third-order susceptibility tensor elements of C 60 at 768 nm,” J. Opt. Soc. Am. B 14, 92–98 (1997).
    [CrossRef]
  26. A. Zakery, “Optical constants of As-S chalcogenide glasses,” Iran. J. Sci. Technol. 20, 189–205 (1996).
  27. K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
    [CrossRef]
  28. F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
    [CrossRef]

2002 (1)

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, “Nonlinear As-S chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation,” Appl. Surf. Sci. 197–198, 481–485 (2002).
[CrossRef]

2000 (1)

1999 (4)

J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17, 1184–1191 (1999).
[CrossRef]

S. Ramachandran and S. G. Bishop, “Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,” Appl. Phys. Lett. 74, 13–15 (1999).
[CrossRef]

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part II: Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999).
[CrossRef]

1998 (3)

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

M. Samoc, A. Samoc, B. Luther-Davies, Z. Bao, L. Yu, and U. Scherf, “Femtosecond Z-scan and degenerate four-wave mixing measurements of real and imaginary parts of the third-order nonlinearity of soluble conjugated polymers,” J. Opt. Soc. Am. B 15, 817–825 (1998).
[CrossRef]

1997 (2)

F. P. Strohkendl, L. R. Dalton, R. W. Hellwarth, H. W. Sarkas, and Z. H. Kafafi, “Phase-mismatched degenerate four-wave mixing: complex third-order susceptibility tensor elements of C 60 at 768 nm,” J. Opt. Soc. Am. B 14, 92–98 (1997).
[CrossRef]

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. Mater. Devices Syst. 3, 142–148 (1997).
[CrossRef]

1996 (2)

A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodarkening in As-S films and its application in grating fabrication,” J. Non-Cryst. Solids 198–200, 769–773 (1996).
[CrossRef]

A. Zakery, “Optical constants of As-S chalcogenide glasses,” Iran. J. Sci. Technol. 20, 189–205 (1996).

1995 (1)

D. S. Gill, R. W. Eason, C. Zaldo, H. N. Rutt, and N. A. Vainos, “Characterization of Ga-La-S chalcogenide glass thin-film optical waveguides, fabricated by pulsed laser deposition,” J. Non-Cryst. Solids 191, 321–326 (1995).
[CrossRef]

1993 (1)

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63, 1601–1603 (1993).
[CrossRef]

1992 (1)

C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodoped chalcogenides as potential infrared holographic media,” Appl. Opt. 1, 2490–2498 (1992).
[CrossRef]

1990 (2)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Ke. Tanaka, “Photoinduced structural changes in chalcogenide glasses,” Rev. Solid State Sci. 4, 641–659 (1990).

1988 (1)

A. Zakery, C. W. Slinger, P. J. S. Ewen, A. P. Firth, and A. E. Owen, “Chalcogenide gratings produced by the metal photodissolution effect,” J. Phys. D: Appl. Phys. 21, S78–S81 (1988).
[CrossRef]

1987 (1)

1986 (1)

S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986).
[CrossRef]

1985 (2)

A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B 52, 347–362 (1985).
[CrossRef]

R. Swanepoel, “Determining refractive index and thickness of thin films from wavelength measurements only,” J. Opt. Soc. Am. A 2, 1339–1343 (1985).
[CrossRef]

1984 (1)

1975 (1)

Ka. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243–245 (1975).
[CrossRef]

Aggarwal, I. D.

Asobe, M.

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. Mater. Devices Syst. 3, 142–148 (1997).
[CrossRef]

Bao, Z.

Barthelemy, A.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

Bishop, S. G.

S. Ramachandran and S. G. Bishop, “Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,” Appl. Phys. Lett. 74, 13–15 (1999).
[CrossRef]

Cardinal, T.

Carter, G. M.

Cerqua-Richardson, K. A.

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

Charters, R. B.

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, “Nonlinear As-S chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation,” Appl. Surf. Sci. 197–198, 481–485 (2002).
[CrossRef]

Cheong, S. W.

Dalton, L. R.

De Angelis, C.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

Deol, R. S.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63, 1601–1603 (1993).
[CrossRef]

Duguay, M. A.

Eason, R. W.

D. S. Gill, R. W. Eason, C. Zaldo, H. N. Rutt, and N. A. Vainos, “Characterization of Ga-La-S chalcogenide glass thin-film optical waveguides, fabricated by pulsed laser deposition,” J. Non-Cryst. Solids 191, 321–326 (1995).
[CrossRef]

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63, 1601–1603 (1993).
[CrossRef]

Elliott, S. R.

S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986).
[CrossRef]

Ewen, P. J. S.

A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodarkening in As-S films and its application in grating fabrication,” J. Non-Cryst. Solids 198–200, 769–773 (1996).
[CrossRef]

C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodoped chalcogenides as potential infrared holographic media,” Appl. Opt. 1, 2490–2498 (1992).
[CrossRef]

A. Zakery, C. W. Slinger, P. J. S. Ewen, A. P. Firth, and A. E. Owen, “Chalcogenide gratings produced by the metal photodissolution effect,” J. Phys. D: Appl. Phys. 21, S78–S81 (1988).
[CrossRef]

A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B 52, 347–362 (1985).
[CrossRef]

Firth, A. P.

A. Zakery, C. W. Slinger, P. J. S. Ewen, A. P. Firth, and A. E. Owen, “Chalcogenide gratings produced by the metal photodissolution effect,” J. Phys. D: Appl. Phys. 21, S78–S81 (1988).
[CrossRef]

A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B 52, 347–362 (1985).
[CrossRef]

Galstian, T. V.

Gamaly, E. G.

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, “Nonlinear As-S chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation,” Appl. Surf. Sci. 197–198, 481–485 (2002).
[CrossRef]

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part II: Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999).
[CrossRef]

Gill, D. S.

D. S. Gill, R. W. Eason, C. Zaldo, H. N. Rutt, and N. A. Vainos, “Characterization of Ga-La-S chalcogenide glass thin-film optical waveguides, fabricated by pulsed laser deposition,” J. Non-Cryst. Solids 191, 321–326 (1995).
[CrossRef]

Goldschmidt, D.

Grevatt, T.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63, 1601–1603 (1993).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Hellwarth, R. W.

Hwang, H. Y.

Joshi, S.

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

Kafafi, Z. H.

Katsufuji, T.

Knystautas, E. J.

Lawrence, B.

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

Leneindre, L.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

Lenz, G.

Lines, M. E.

Lucas, J.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

Luther-Davies, B.

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, “Nonlinear As-S chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation,” Appl. Surf. Sci. 197–198, 481–485 (2002).
[CrossRef]

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part II: Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999).
[CrossRef]

M. Samoc, A. Samoc, B. Luther-Davies, Z. Bao, L. Yu, and U. Scherf, “Femtosecond Z-scan and degenerate four-wave mixing measurements of real and imaginary parts of the third-order nonlinearity of soluble conjugated polymers,” J. Opt. Soc. Am. B 15, 817–825 (1998).
[CrossRef]

McKinley, J. M.

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

Meneghini, C.

Owen, A. E.

A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodarkening in As-S films and its application in grating fabrication,” J. Non-Cryst. Solids 198–200, 769–773 (1996).
[CrossRef]

C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodoped chalcogenides as potential infrared holographic media,” Appl. Opt. 1, 2490–2498 (1992).
[CrossRef]

A. Zakery, C. W. Slinger, P. J. S. Ewen, A. P. Firth, and A. E. Owen, “Chalcogenide gratings produced by the metal photodissolution effect,” J. Phys. D: Appl. Phys. 21, S78–S81 (1988).
[CrossRef]

A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B 52, 347–362 (1985).
[CrossRef]

Quemard, C.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

Ramachandran, S.

S. Ramachandran and S. G. Bishop, “Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,” Appl. Phys. Lett. 74, 13–15 (1999).
[CrossRef]

Richardson, K. A.

Rode, A. V.

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, “Nonlinear As-S chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation,” Appl. Surf. Sci. 197–198, 481–485 (2002).
[CrossRef]

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part II: Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999).
[CrossRef]

Rutt, H. N.

D. S. Gill, R. W. Eason, C. Zaldo, H. N. Rutt, and N. A. Vainos, “Characterization of Ga-La-S chalcogenide glass thin-film optical waveguides, fabricated by pulsed laser deposition,” J. Non-Cryst. Solids 191, 321–326 (1995).
[CrossRef]

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63, 1601–1603 (1993).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Samoc, A.

Samoc, M.

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, “Nonlinear As-S chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation,” Appl. Surf. Sci. 197–198, 481–485 (2002).
[CrossRef]

M. Samoc, A. Samoc, B. Luther-Davies, Z. Bao, L. Yu, and U. Scherf, “Femtosecond Z-scan and degenerate four-wave mixing measurements of real and imaginary parts of the third-order nonlinearity of soluble conjugated polymers,” J. Opt. Soc. Am. B 15, 817–825 (1998).
[CrossRef]

Sanghera, J. S.

Sarkas, H. W.

Scherf, U.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Slinger, C. W.

C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodoped chalcogenides as potential infrared holographic media,” Appl. Opt. 1, 2490–2498 (1992).
[CrossRef]

A. Zakery, C. W. Slinger, P. J. S. Ewen, A. P. Firth, and A. E. Owen, “Chalcogenide gratings produced by the metal photodissolution effect,” J. Phys. D: Appl. Phys. 21, S78–S81 (1988).
[CrossRef]

Slusher, R. E.

Smektala, F.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

Spalter, S.

Strohkendl, F. P.

Swanepoel, R.

Tanaka, Ka.

Ka. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243–245 (1975).
[CrossRef]

Tanaka, Ke.

Ke. Tanaka, “Photoinduced structural changes in chalcogenide glasses,” Rev. Solid State Sci. 4, 641–659 (1990).

Vainos, N. A.

D. S. Gill, R. W. Eason, C. Zaldo, H. N. Rutt, and N. A. Vainos, “Characterization of Ga-La-S chalcogenide glass thin-film optical waveguides, fabricated by pulsed laser deposition,” J. Non-Cryst. Solids 191, 321–326 (1995).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Viens, J.-F.

Villeneuve, A.

J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17, 1184–1191 (1999).
[CrossRef]

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wylangowski, G.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63, 1601–1603 (1993).
[CrossRef]

Youden, K. E.

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63, 1601–1603 (1993).
[CrossRef]

Yu, L.

Zakery, A.

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, “Nonlinear As-S chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation,” Appl. Surf. Sci. 197–198, 481–485 (2002).
[CrossRef]

A. Zakery, “Optical constants of As-S chalcogenide glasses,” Iran. J. Sci. Technol. 20, 189–205 (1996).

A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodarkening in As-S films and its application in grating fabrication,” J. Non-Cryst. Solids 198–200, 769–773 (1996).
[CrossRef]

C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodoped chalcogenides as potential infrared holographic media,” Appl. Opt. 1, 2490–2498 (1992).
[CrossRef]

A. Zakery, C. W. Slinger, P. J. S. Ewen, A. P. Firth, and A. E. Owen, “Chalcogenide gratings produced by the metal photodissolution effect,” J. Phys. D: Appl. Phys. 21, S78–S81 (1988).
[CrossRef]

Zaldo, C.

D. S. Gill, R. W. Eason, C. Zaldo, H. N. Rutt, and N. A. Vainos, “Characterization of Ga-La-S chalcogenide glass thin-film optical waveguides, fabricated by pulsed laser deposition,” J. Non-Cryst. Solids 191, 321–326 (1995).
[CrossRef]

Zimmermann, J.

Appl. Opt. (1)

C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodoped chalcogenides as potential infrared holographic media,” Appl. Opt. 1, 2490–2498 (1992).
[CrossRef]

Appl. Phys. Lett. (3)

S. Ramachandran and S. G. Bishop, “Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,” Appl. Phys. Lett. 74, 13–15 (1999).
[CrossRef]

K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, “Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides,” Appl. Phys. Lett. 63, 1601–1603 (1993).
[CrossRef]

Ka. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243–245 (1975).
[CrossRef]

Appl. Surf. Sci. (1)

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, “Nonlinear As-S chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation,” Appl. Surf. Sci. 197–198, 481–485 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Iran. J. Sci. Technol. (1)

A. Zakery, “Optical constants of As-S chalcogenide glasses,” Iran. J. Sci. Technol. 20, 189–205 (1996).

J. Appl. Phys. (2)

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
[CrossRef]

A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. Part II: Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (4)

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239, 139–142 (1998).
[CrossRef]

D. S. Gill, R. W. Eason, C. Zaldo, H. N. Rutt, and N. A. Vainos, “Characterization of Ga-La-S chalcogenide glass thin-film optical waveguides, fabricated by pulsed laser deposition,” J. Non-Cryst. Solids 191, 321–326 (1995).
[CrossRef]

A. Zakery, P. J. S. Ewen, and A. E. Owen, “Photodarkening in As-S films and its application in grating fabrication,” J. Non-Cryst. Solids 198–200, 769–773 (1996).
[CrossRef]

S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71–98 (1986).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (3)

J. Phys. D: Appl. Phys. (1)

A. Zakery, C. W. Slinger, P. J. S. Ewen, A. P. Firth, and A. E. Owen, “Chalcogenide gratings produced by the metal photodissolution effect,” J. Phys. D: Appl. Phys. 21, S78–S81 (1988).
[CrossRef]

Opt. Fiber Technol. Mater. Devices Syst. (1)

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. Mater. Devices Syst. 3, 142–148 (1997).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998).
[CrossRef]

Philos. Mag. B (1)

A. E. Owen, A. P. Firth, and P. J. S. Ewen, “Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors,” Philos. Mag. B 52, 347–362 (1985).
[CrossRef]

Rev. Solid State Sci. (1)

Ke. Tanaka, “Photoinduced structural changes in chalcogenide glasses,” Rev. Solid State Sci. 4, 641–659 (1990).

Other (3)

N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979), p. 289.

J. P. DeNeufville, Amorphous and Liquid Semiconductors, J. Stuke and W. Brenig, eds. (Taylor and Francis, London, 1974), p. 1351.

Ka. Tanaka, Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, ed. (Ohmsha, Tokyo, 1982), p. 227.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Atomic force microscopy image of a 15 μm × 15 μm area of a ML deposited film. Rms roughness of the film was 0.42 nm (the vertical scale is 20 nm/division).

Fig. 2
Fig. 2

Spectral dependence of the refractive index in the Q-switched mode-locked (QSML, squares) laser and mode-locked (ML, circles) laser-deposited films. Empty squares and circles indicate as-deposited films, and the filled ones indicate photodarkened films after illumination. The result of thermal annealing of a ML laser-deposited film is also shown for comparison (triangles).

Fig. 3
Fig. 3

Photodarkening data for laser-deposited (filled squares, circles, and triangles) and thermally evaporated (Ref. 9, empty squares, circles, and triangles) A2S3 films. The squares represent no photodarkening, circles represent erasable photodarkening, and triangles represent permanent photodarkening. The crosses indicate permanent photodarkening of the PMMA-coated films.

Fig. 4
Fig. 4

Scanning electron micrographs of the surface of ML laser deposited films: (a) as deposited; (b) after a few days of storage under the daylight (in the corner is a magnified image of As and S crystals); (c) PMMA-coated after the deposition and stored under daylight. The scale bars are 10 μm in all images. Photodecomposition of the film clearly shows up in (b) as growth of pure crystal arsenic and sulphur on the surface, while the PMMA coating protects against decomposition of the films in (c).

Fig. 5
Fig. 5

Absorption losses determined from PDS measurements for as-deposited (lower) and photodarkened films (upper). The filled triangles were obtained from waveguide propagation measurements at 780 nm, 1300 nm, and 1550 nm (see text).

Fig. 6
Fig. 6

Near-field image of a 800-nm single-mode output of a 3.5 μm × 2.5 μm photoinduced channel waveguide written in the ML laser-deposited films.

Fig. 7
Fig. 7

Spectral dependence of (α×hν)1/2 in ML laser-deposited As2S3 films. The solid line is linear approximation.

Fig. 8
Fig. 8

Open- and closed-aperture Z-scan signals from a 2-mm-thick bulk sample of As2S3 glass measured at 1550 nm. Note the absence of any nonlinear absorption in the open-aperture scan.

Fig. 9
Fig. 9

Nonlinearity versus wavelength obtained from Z-scan measurements.

Fig. 10
Fig. 10

An experimental non-phase-matched DFWM signal from a 4-μm-thick As2S3 film on silica substrate. The curve is a theoretical best-fit curve (laser pulse duration 134 fs; a small contribution of long-lived two-photon absorption induced grating was added).

Fig. 11
Fig. 11

Double-logarithmic plot of power dependencies of the DFWM signals (diamonds, phase matched; squares, non phase matched) from a 4-μm-thick As2S3 film. The line shows a theoretical cubic dependence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α=const×M2(hν-Eg)2hν,

Metrics