Abstract

As the interest in utilizing fluoropolymers in a greater number of value-added photonic applications continues to grow, so does the necessity for accurate and broadband characterization of their optical properties. This paper provides the canonical optical properties of the refractive index and the extinction coefficient for two perfluorocyclobutyl-based polymers over the spectral range from approximately 0.13 μm to 33 μm, including their respective Sellmeier coefficients. In addition, the data are used to compare Sellmeier versus Cauchy fits to dispersion data in order to elucidate the potential pitfalls in computing system-level design criterion, such as bandwidth.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Resnick and W. Buck, in Modern Fluoropolymers, J. Scheirs, ed. (Wiley, New York, 1997), Chap. 22, pp. 397–419.
  2. N. Sugiyama, in Modern Fluoropolymers, J. Scheirs, ed. (Wiley, New York, 1997), Chap. 28, pp. 541–555.
  3. L. Eldad and L. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
    [CrossRef]
  4. D. A. Babb, B. Ezzell, K. Clement, W. Richey, and A. Kennedy, J. Polym. Sci., Part A: Polym. Chem. 31, 3465 (1993).
    [CrossRef]
  5. E. Wagener, http://www.tetramertechnologies.com (personal communication, 2003).
  6. M. Oh, H. Lee, J. Ahn, and S. Han, “Asymmetric x-junction thermooptic switches based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10, 813–815 (1998).
    [CrossRef]
  7. H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
    [CrossRef]
  8. B. Lee, M. Kwon, J. Yoon, and S. Shin, “Fabrication of polymeric large-core waveguides for optical interconnects using rubber molding process,” IEEE Photon. Technol. Lett. 102, 62–64 (2000).
  9. H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
    [CrossRef]
  10. H. Ma, A. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339–1365 (2002).
    [CrossRef]
  11. D. Smith, S. Chen, S. Kuman, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585–1589 (2002).
    [CrossRef]
  12. R. Traiphol, H. Shah, D. Smith, and D. Perahia, “Bulk and interfacial studies of a new and versatile semifluorinated lyotropic liquid crystalline polymer,” Macromolecules 34, 3954–3961 (2001).
    [CrossRef]
  13. J. A. Woollam Co., Inc., 645 M St., Suite 102, Lincoln, Neb. 68508; (http://www.jawoollam.com).
  14. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
    [CrossRef]
  15. T. Tiwald, J. A. Woollam Company, 645 M St., Suite 102, Lincoln, Neb. 68508 (personal communication, 2003).
  16. G. H. Sigel, “Optical absorption in glasses,” Glass I: Interaction with Electromagnetic Radiation, Vol. 13 of Treatise on Materials Science and Engineering (Academic, New York, 1978), pp. 5–89.
  17. R. Nubling and J. Harrington, “Hollow waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 34, 372–380 (1996).
    [CrossRef]
  18. J. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–228 (2000).
    [CrossRef]
  19. D. Smith, D. Babb, H. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. Boone, C. Langhoff, and M. Radler, “Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials,” J. Fluorine Chem. 104, 109–117 (2000).
    [CrossRef]
  20. R. Nubling and J. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997).
    [CrossRef] [PubMed]
  21. C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
    [CrossRef]
  22. J. Jin, S. Kumar, S. Foulger, D. Smith, H. Liu, B. Mojazza, P. Go, and A. Shep, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 43, 609–610 (2002).
  23. J. Ballato, D. Smith, S. Foulger, and E. Wagener, eds., Design and Fabrication of Planar Optical Waveguide Devices and Materials, Proc. SPIE 4805, 1–8 (2003).
  24. W. Tropf, M. Thomas, and T. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Chap. 33, pp. 33.3–33.101. For the GeO2-doped SiO2 glass, the dispersion curve was computed using Eq. (2), where the n(λ) function, whose second derivative is taken with respect to λ, was a combination of the SiO2 and GeO2 refractive indices following the rule of mixing. In other words, n(λ)=0.96 nsilica(λ)+0.04 ngermania(λ), where the Sellmeier forms of nsilica and ngermania were used (per the above reference).

2002 (3)

H. Ma, A. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

D. Smith, S. Chen, S. Kuman, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585–1589 (2002).
[CrossRef]

J. Jin, S. Kumar, S. Foulger, D. Smith, H. Liu, B. Mojazza, P. Go, and A. Shep, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 43, 609–610 (2002).

2001 (1)

R. Traiphol, H. Shah, D. Smith, and D. Perahia, “Bulk and interfacial studies of a new and versatile semifluorinated lyotropic liquid crystalline polymer,” Macromolecules 34, 3954–3961 (2001).
[CrossRef]

2000 (6)

L. Eldad and L. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

B. Lee, M. Kwon, J. Yoon, and S. Shin, “Fabrication of polymeric large-core waveguides for optical interconnects using rubber molding process,” IEEE Photon. Technol. Lett. 102, 62–64 (2000).

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

J. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–228 (2000).
[CrossRef]

D. Smith, D. Babb, H. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. Boone, C. Langhoff, and M. Radler, “Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials,” J. Fluorine Chem. 104, 109–117 (2000).
[CrossRef]

1998 (3)

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

M. Oh, H. Lee, J. Ahn, and S. Han, “Asymmetric x-junction thermooptic switches based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10, 813–815 (1998).
[CrossRef]

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

1997 (1)

1996 (1)

R. Nubling and J. Harrington, “Hollow waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 34, 372–380 (1996).
[CrossRef]

1993 (1)

D. A. Babb, B. Ezzell, K. Clement, W. Richey, and A. Kennedy, J. Polym. Sci., Part A: Polym. Chem. 31, 3465 (1993).
[CrossRef]

Ahn, J.

M. Oh, H. Lee, J. Ahn, and S. Han, “Asymmetric x-junction thermooptic switches based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10, 813–815 (1998).
[CrossRef]

Babb, D.

D. Smith, D. Babb, H. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. Boone, C. Langhoff, and M. Radler, “Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials,” J. Fluorine Chem. 104, 109–117 (2000).
[CrossRef]

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

Babb, D. A.

D. A. Babb, B. Ezzell, K. Clement, W. Richey, and A. Kennedy, J. Polym. Sci., Part A: Polym. Chem. 31, 3465 (1993).
[CrossRef]

Ballato, J.

D. Smith, S. Chen, S. Kuman, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585–1589 (2002).
[CrossRef]

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

Boone, H.

D. Smith, D. Babb, H. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. Boone, C. Langhoff, and M. Radler, “Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials,” J. Fluorine Chem. 104, 109–117 (2000).
[CrossRef]

Cheatham, C.

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

Chen, B.

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Chen, S.

D. Smith, S. Chen, S. Kuman, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585–1589 (2002).
[CrossRef]

Clement, K.

D. A. Babb, B. Ezzell, K. Clement, W. Richey, and A. Kennedy, J. Polym. Sci., Part A: Polym. Chem. 31, 3465 (1993).
[CrossRef]

Dalton, L.

H. Ma, A. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

Deguzman, P.

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

Eldad, L.

L. Eldad and L. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

Ezzell, B.

D. A. Babb, B. Ezzell, K. Clement, W. Richey, and A. Kennedy, J. Polym. Sci., Part A: Polym. Chem. 31, 3465 (1993).
[CrossRef]

Foulger, S.

D. Smith, S. Chen, S. Kuman, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585–1589 (2002).
[CrossRef]

J. Jin, S. Kumar, S. Foulger, D. Smith, H. Liu, B. Mojazza, P. Go, and A. Shep, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 43, 609–610 (2002).

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

Go, P.

J. Jin, S. Kumar, S. Foulger, D. Smith, H. Liu, B. Mojazza, P. Go, and A. Shep, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 43, 609–610 (2002).

Han, S.

M. Oh, H. Lee, J. Ahn, and S. Han, “Asymmetric x-junction thermooptic switches based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10, 813–815 (1998).
[CrossRef]

Harrington, J.

J. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–228 (2000).
[CrossRef]

R. Nubling and J. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997).
[CrossRef] [PubMed]

R. Nubling and J. Harrington, “Hollow waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 34, 372–380 (1996).
[CrossRef]

Herguth, P.

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Herzinger, C. M.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Hoeglund, A.

D. Smith, D. Babb, H. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. Boone, C. Langhoff, and M. Radler, “Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials,” J. Fluorine Chem. 104, 109–117 (2000).
[CrossRef]

Jen, A.

H. Ma, A. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Jin, J.

J. Jin, S. Kumar, S. Foulger, D. Smith, H. Liu, B. Mojazza, P. Go, and A. Shep, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 43, 609–610 (2002).

Johs, B.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Kennedy, A.

D. A. Babb, B. Ezzell, K. Clement, W. Richey, and A. Kennedy, J. Polym. Sci., Part A: Polym. Chem. 31, 3465 (1993).
[CrossRef]

Kuman, S.

D. Smith, S. Chen, S. Kuman, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585–1589 (2002).
[CrossRef]

Kumar, S.

J. Jin, S. Kumar, S. Foulger, D. Smith, H. Liu, B. Mojazza, P. Go, and A. Shep, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 43, 609–610 (2002).

Kwon, M.

B. Lee, M. Kwon, J. Yoon, and S. Shin, “Fabrication of polymeric large-core waveguides for optical interconnects using rubber molding process,” IEEE Photon. Technol. Lett. 102, 62–64 (2000).

Laane, J.

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

Langhoff, C.

D. Smith, D. Babb, H. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. Boone, C. Langhoff, and M. Radler, “Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials,” J. Fluorine Chem. 104, 109–117 (2000).
[CrossRef]

Lee, B.

B. Lee, M. Kwon, J. Yoon, and S. Shin, “Fabrication of polymeric large-core waveguides for optical interconnects using rubber molding process,” IEEE Photon. Technol. Lett. 102, 62–64 (2000).

Lee, H.

M. Oh, H. Lee, J. Ahn, and S. Han, “Asymmetric x-junction thermooptic switches based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10, 813–815 (1998).
[CrossRef]

Lee, S.-N.

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

Liu, H.

J. Jin, S. Kumar, S. Foulger, D. Smith, H. Liu, B. Mojazza, P. Go, and A. Shep, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 43, 609–610 (2002).

Ma, H.

H. Ma, A. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

McGahan, W. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Mojazza, B.

J. Jin, S. Kumar, S. Foulger, D. Smith, H. Liu, B. Mojazza, P. Go, and A. Shep, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 43, 609–610 (2002).

Nordin, G.

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

Nubling, R.

R. Nubling and J. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997).
[CrossRef] [PubMed]

R. Nubling and J. Harrington, “Hollow waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 34, 372–380 (1996).
[CrossRef]

Oh, M.

M. Oh, H. Lee, J. Ahn, and S. Han, “Asymmetric x-junction thermooptic switches based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10, 813–815 (1998).
[CrossRef]

Paulson, W.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Perahia, D.

R. Traiphol, H. Shah, D. Smith, and D. Perahia, “Bulk and interfacial studies of a new and versatile semifluorinated lyotropic liquid crystalline polymer,” Macromolecules 34, 3954–3961 (2001).
[CrossRef]

D. Smith, D. Babb, H. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. Boone, C. Langhoff, and M. Radler, “Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials,” J. Fluorine Chem. 104, 109–117 (2000).
[CrossRef]

Radler, M.

D. Smith, D. Babb, H. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. Boone, C. Langhoff, and M. Radler, “Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials,” J. Fluorine Chem. 104, 109–117 (2000).
[CrossRef]

Richey, W.

D. A. Babb, B. Ezzell, K. Clement, W. Richey, and A. Kennedy, J. Polym. Sci., Part A: Polym. Chem. 31, 3465 (1993).
[CrossRef]

Shacklette, L.

L. Eldad and L. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

Shah, H.

D. Smith, S. Chen, S. Kuman, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585–1589 (2002).
[CrossRef]

R. Traiphol, H. Shah, D. Smith, and D. Perahia, “Bulk and interfacial studies of a new and versatile semifluorinated lyotropic liquid crystalline polymer,” Macromolecules 34, 3954–3961 (2001).
[CrossRef]

D. Smith, D. Babb, H. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. Boone, C. Langhoff, and M. Radler, “Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials,” J. Fluorine Chem. 104, 109–117 (2000).
[CrossRef]

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

Shep, A.

J. Jin, S. Kumar, S. Foulger, D. Smith, H. Liu, B. Mojazza, P. Go, and A. Shep, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 43, 609–610 (2002).

Shin, S.

B. Lee, M. Kwon, J. Yoon, and S. Shin, “Fabrication of polymeric large-core waveguides for optical interconnects using rubber molding process,” IEEE Photon. Technol. Lett. 102, 62–64 (2000).

Smith, D.

D. Smith, S. Chen, S. Kuman, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585–1589 (2002).
[CrossRef]

J. Jin, S. Kumar, S. Foulger, D. Smith, H. Liu, B. Mojazza, P. Go, and A. Shep, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 43, 609–610 (2002).

R. Traiphol, H. Shah, D. Smith, and D. Perahia, “Bulk and interfacial studies of a new and versatile semifluorinated lyotropic liquid crystalline polymer,” Macromolecules 34, 3954–3961 (2001).
[CrossRef]

D. Smith, D. Babb, H. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. Boone, C. Langhoff, and M. Radler, “Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials,” J. Fluorine Chem. 104, 109–117 (2000).
[CrossRef]

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

Topping, C.

D. Smith, S. Chen, S. Kuman, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585–1589 (2002).
[CrossRef]

Traiphol, R.

R. Traiphol, H. Shah, D. Smith, and D. Perahia, “Bulk and interfacial studies of a new and versatile semifluorinated lyotropic liquid crystalline polymer,” Macromolecules 34, 3954–3961 (2001).
[CrossRef]

D. Smith, D. Babb, H. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. Boone, C. Langhoff, and M. Radler, “Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials,” J. Fluorine Chem. 104, 109–117 (2000).
[CrossRef]

Woollam, J. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Wu, J.

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Yoon, J.

B. Lee, M. Kwon, J. Yoon, and S. Shin, “Fabrication of polymeric large-core waveguides for optical interconnects using rubber molding process,” IEEE Photon. Technol. Lett. 102, 62–64 (2000).

Adv. Mater. (2)

H. Ma, A. Jen, and L. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

D. Smith, S. Chen, S. Kuman, J. Ballato, C. Topping, H. Shah, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585–1589 (2002).
[CrossRef]

Appl. Opt. (2)

R. Nubling and J. Harrington, “Hollow waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 34, 372–380 (1996).
[CrossRef]

R. Nubling and J. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997).
[CrossRef] [PubMed]

Chem. Mater. (1)

H. Ma, J. Wu, P. Herguth, B. Chen, and A. Jen, “A novel class of high-performance perfluorocyclobutane-containing polymers for second-order nonlinear optics,” Chem. Mater. 12, 1187–1189 (2000).
[CrossRef]

Fiber Integr. Opt. (1)

J. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–228 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldad and L. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

B. Lee, M. Kwon, J. Yoon, and S. Shin, “Fabrication of polymeric large-core waveguides for optical interconnects using rubber molding process,” IEEE Photon. Technol. Lett. 102, 62–64 (2000).

H. Shah, P. Deguzman, D. Smith, J. Ballato, G. Nordin, and S. Foulger, “Direct generation of optical diffractive elements in perfluorocyclobutane (PFCB) polymers by soft lithography,” IEEE Photon. Technol. Lett. 12, 1650–1652 (2000).
[CrossRef]

M. Oh, H. Lee, J. Ahn, and S. Han, “Asymmetric x-junction thermooptic switches based on fluorinated polymer waveguides,” IEEE Photon. Technol. Lett. 10, 813–815 (1998).
[CrossRef]

J. Appl. Phys. (1)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

J. Fluorine Chem. (1)

D. Smith, D. Babb, H. Shah, A. Hoeglund, R. Traiphol, D. Perahia, H. Boone, C. Langhoff, and M. Radler, “Perfluorocyclobutane (PFCB) polyaryl ethers: versatile coatings materials,” J. Fluorine Chem. 104, 109–117 (2000).
[CrossRef]

J. Polym. Sci., Part A: Polym. Chem. (1)

D. A. Babb, B. Ezzell, K. Clement, W. Richey, and A. Kennedy, J. Polym. Sci., Part A: Polym. Chem. 31, 3465 (1993).
[CrossRef]

Macromolecules (1)

R. Traiphol, H. Shah, D. Smith, and D. Perahia, “Bulk and interfacial studies of a new and versatile semifluorinated lyotropic liquid crystalline polymer,” Macromolecules 34, 3954–3961 (2001).
[CrossRef]

Polym. Int. (1)

C. Cheatham, S.-N. Lee, J. Laane, D. Babb, and D. Smith, “Kinetics of the trifluorovinyl ether cyclopolymerization via Raman spectroscopy,” Polym. Int. 46, 320–324 (1998).
[CrossRef]

Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. (1)

J. Jin, S. Kumar, S. Foulger, D. Smith, H. Liu, B. Mojazza, P. Go, and A. Shep, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 43, 609–610 (2002).

Other (8)

J. Ballato, D. Smith, S. Foulger, and E. Wagener, eds., Design and Fabrication of Planar Optical Waveguide Devices and Materials, Proc. SPIE 4805, 1–8 (2003).

W. Tropf, M. Thomas, and T. Harris, “Properties of crystals and glasses,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Chap. 33, pp. 33.3–33.101. For the GeO2-doped SiO2 glass, the dispersion curve was computed using Eq. (2), where the n(λ) function, whose second derivative is taken with respect to λ, was a combination of the SiO2 and GeO2 refractive indices following the rule of mixing. In other words, n(λ)=0.96 nsilica(λ)+0.04 ngermania(λ), where the Sellmeier forms of nsilica and ngermania were used (per the above reference).

T. Tiwald, J. A. Woollam Company, 645 M St., Suite 102, Lincoln, Neb. 68508 (personal communication, 2003).

G. H. Sigel, “Optical absorption in glasses,” Glass I: Interaction with Electromagnetic Radiation, Vol. 13 of Treatise on Materials Science and Engineering (Academic, New York, 1978), pp. 5–89.

J. A. Woollam Co., Inc., 645 M St., Suite 102, Lincoln, Neb. 68508; (http://www.jawoollam.com).

E. Wagener, http://www.tetramertechnologies.com (personal communication, 2003).

P. Resnick and W. Buck, in Modern Fluoropolymers, J. Scheirs, ed. (Wiley, New York, 1997), Chap. 22, pp. 397–419.

N. Sugiyama, in Modern Fluoropolymers, J. Scheirs, ed. (Wiley, New York, 1997), Chap. 28, pp. 541–555.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Polymerization of selected trifluorovinyl ether monomers into perfluorocyclobutyl polymers. Aryl constituents used are a biphenyl (BP) and hexafluoroisopropylidene (6F).

Fig. 2
Fig. 2

Refractive index as a function of wavelength for (a) BP and (b) 6F PFCB polymers.

Fig. 3
Fig. 3

Extinction coefficient as a function of wavelength for (a) BP and (b) 6F PFCB polymers. Inset to (b) shows magnified view of 6F extinction coefficient in the low-loss ultraviolet, visible, and near-IR wavelengths.

Fig. 4
Fig. 4

(a) Dispersion curves, with selected measured data points, for the BP and 6F PFCB polymers and a germania-doped SiO2 glass (4 wt.% GeO2 and 96 wt.% SiO2, computed using known Sellmeier coefficients for SiO2 and GeO2); (b) material dispersion as a function of wavelength for BP and 6F PFCB polymers and a germania-doped SiO2 glass. For comparison, stars mark dispersion exhibited by commercially available dispersion-shifted fiber (DSF) and nonzero-dispersion-shifted fiber (NZ-DSF).

Fig. 5
Fig. 5

(a) Dispersion curves for BP PFCB polymer using Sellmeier and Cauchy curve fits to the data of Fig. 2; (b) curvature of refractive index as a function of wavelength as computed from the dispersion fits of (a).

Tables (1)

Tables Icon

Table 1 Sellmeier Coefficients for BP and 6F PFCB Polymers

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n(λ)2-1=iAiλi2λ2-λi2.
M(λ)=λcd2ndλ2,
n(λ)=C0+C11λ2+C21λ4.

Metrics