Abstract

A comparison of Tm,Ho:YLF; Tm,Ho:LuLF; and Tm,Ho:LuAG crystals under identical experimental conditions showed that Tm,Ho:LuLF yielded significantly better performance. The thermal expansion coefficients were measured. These crystals were experimentally characterized in the spectral region of 680 nm and 780 nm accessible to laser diodes. The effective energy storage lifetimes of the Ho 5I7 manifold at room temperature were measured experimentally. At 10 Hz and 273 K, free-running laser output energy in excess of 17 mJ was obtained in Tm,Ho:YLF compared with 30 mJ in Tm,Ho:LuLF and 24.4 mJ in Tm,Ho:LuAG. The slope efficiencies with respect to the incident pump energy were 7.4%, 12.9%, and 11.6%, respectively. The temperature dependence of the output energies of these lasers was investigated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Koch, M. Petros, J. Yu, and U. N. Singh, “Precise wavelength control of a single-frequency pulsed Ho:Tm:YLF laser,” Appl. Opt. 41, 1718–1721 (2002).
    [CrossRef] [PubMed]
  2. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
    [CrossRef]
  3. J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Tm3+:YLF laser continuously tunable between 2.20 and 2.46 μm,” Opt. Lett. 19, 883–885 (1994).
    [CrossRef] [PubMed]
  4. S. A. Payne, L. L. Chase, Larry K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [CrossRef]
  5. V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 μm,” IEEE J. Quantum Electron. 36, 879–884 (2000).
    [CrossRef]
  6. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12 laser at 300 K,” Opt. Lett. 12, 678–680 (1987).
    [CrossRef] [PubMed]
  7. J. Yu, U. N. Singh, N. P. Barnes, and M. Petros, “125-mJ diode-pumped injection-seeded Ho, Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
    [CrossRef]
  8. I. F. Elder and M. J. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
    [CrossRef]
  9. N. P. Barnes, E. D. Filer, F. L. Naranjo, W. J. Rodriguez, and M. R. Kokta, “Spectroscopic and lasing properties of Ho:Tm:LuAG,” Opt. Lett. 18, 708–710 (1993).
    [CrossRef] [PubMed]
  10. P. A. Budni, M. G. Knights, E. P. Chicklis, and H. P. Jenssen, “Performance of a diode-pumped high PRF Tm, Ho:YLF laser,” IEEE J. Quantum Electron. 28, 1029–1032 (1992).
    [CrossRef]
  11. M. G. Jani, F. L. Naranjo, N. P. Barnes, K. E. Murray, and G. E. Lockard, “Diode-pumped long-pulse-length Ho, Tm:YLiF4 laser at 10 Hz,” Opt. Lett. 20, 872–874 (1995).
    [CrossRef] [PubMed]
  12. E. D. Filer, C. A. Morrison, N. P. Barnes, and B. M. Walsh, “YLF isomorphs for Ho and Tm laser applications,” in Advanced Solid State Lasers, T. Y. Fan, B. H. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 127–130.
  13. M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho, Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33, 112–115 (1997).
    [CrossRef]
  14. V. Sudesh, K. Asai, A. Kudou, K. Ito, K. Shimamura, and T. Fukuda, “Growth and characterization of Tm, Ho-doped LuLiF4 and YLiF4 crystals,” in Growth, Fabrication, Devices and Applications of Lasers and Nonlinear Materials, J. W. Pierce, K. I. Schaffers, eds., Proc. SPIE 4268, 153–160 (2001).
    [CrossRef]
  15. V. Sudesh, K. Shimamura, T. Fukuda, and K. Asai, “Pulsed Tm, Ho:LuLiF4 2-μm laser using a novel side-pump technique,” in Advanced Solid State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 571–576.
  16. A. Bensalah, K. Shimamura, V. Sudesh, H. Sato, K. Ito, and T. Fukuda, “Growth of Tm, Ho-codoped YLiF4 and LuLiF4 single crystals for eye-safe lasers,” J. Cryst. Growth 223, 539–544 (2001).
    [CrossRef]
  17. V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, “Room-temperature Tm, Ho:LuLiF4 laser using a novel quasi-end pump technique,” Opt. Lett. 26, 1675–1677 (2001).
    [CrossRef]
  18. V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, “Pulsed laser action in Tm, Ho:LuLiF4 and Tm, Ho:YLiF4 crystals using a novel quasi-end-pumping technique,” IEEE J. Quantum Electron. 38, 1102–1109 (2002).
    [CrossRef]
  19. H. Sato, K. Shimamura, V. Sudesh, M. Ito, H. Machida, and T. Fukuda, “Growth and characterization of Tm, Ho-codoped Lu3Al5O12 single crystals by the Czochralski technique,” J. Cryst. Growth 234, 463–468 (2002).
    [CrossRef]
  20. G. Armagan, A. M. Buoncristiani, A. T. Inge, and B. DiBartolo, “Comparison of spectroscopic properties of Tm and Ho in YAG and YLF crystals,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 166–168.
  21. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 39–48 (2000).
    [CrossRef]
  22. J. J. Snyder, P. Reichert, and T. Baer, “Fast diffraction-limited cylindrical microlenses,” Appl. Opt. 30, 2743–2747 (1991).
    [CrossRef] [PubMed]
  23. N. P. Barnes and J. Yu, NASA Langley Research Center, 5 North Dryden Street, Mail Stop 468, Hampton, Virginia 23681 (personal communication, 2002).
  24. M. G. Jani, N. P. Barnes, K. E. Murray, and R. L. Hutcheson, “Diode-pumped Ho:Tm:Lu3Al5O12 room temperature laser,” Advanced Solid-State Lasers, T. Y. Fan, B. H. T. Chai, eds. Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 109–112.
  25. D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett. 21, 728–730 (1996).
    [CrossRef] [PubMed]
  26. P. J. Morris, W. Luthy, and H. P. Weber, “Operation of resonantly pumped Tm, Ho:YAG in active mirror mode,” Opt. Commun. 104, 97–101 (1993).
    [CrossRef]

2002

G. J. Koch, M. Petros, J. Yu, and U. N. Singh, “Precise wavelength control of a single-frequency pulsed Ho:Tm:YLF laser,” Appl. Opt. 41, 1718–1721 (2002).
[CrossRef] [PubMed]

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, “Pulsed laser action in Tm, Ho:LuLiF4 and Tm, Ho:YLiF4 crystals using a novel quasi-end-pumping technique,” IEEE J. Quantum Electron. 38, 1102–1109 (2002).
[CrossRef]

H. Sato, K. Shimamura, V. Sudesh, M. Ito, H. Machida, and T. Fukuda, “Growth and characterization of Tm, Ho-codoped Lu3Al5O12 single crystals by the Czochralski technique,” J. Cryst. Growth 234, 463–468 (2002).
[CrossRef]

2001

V. Sudesh, K. Asai, A. Kudou, K. Ito, K. Shimamura, and T. Fukuda, “Growth and characterization of Tm, Ho-doped LuLiF4 and YLiF4 crystals,” in Growth, Fabrication, Devices and Applications of Lasers and Nonlinear Materials, J. W. Pierce, K. I. Schaffers, eds., Proc. SPIE 4268, 153–160 (2001).
[CrossRef]

A. Bensalah, K. Shimamura, V. Sudesh, H. Sato, K. Ito, and T. Fukuda, “Growth of Tm, Ho-codoped YLiF4 and LuLiF4 single crystals for eye-safe lasers,” J. Cryst. Growth 223, 539–544 (2001).
[CrossRef]

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, “Room-temperature Tm, Ho:LuLiF4 laser using a novel quasi-end pump technique,” Opt. Lett. 26, 1675–1677 (2001).
[CrossRef]

2000

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 39–48 (2000).
[CrossRef]

V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 μm,” IEEE J. Quantum Electron. 36, 879–884 (2000).
[CrossRef]

1998

J. Yu, U. N. Singh, N. P. Barnes, and M. Petros, “125-mJ diode-pumped injection-seeded Ho, Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
[CrossRef]

I. F. Elder and M. J. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

1997

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho, Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33, 112–115 (1997).
[CrossRef]

1996

1995

1994

1993

N. P. Barnes, E. D. Filer, F. L. Naranjo, W. J. Rodriguez, and M. R. Kokta, “Spectroscopic and lasing properties of Ho:Tm:LuAG,” Opt. Lett. 18, 708–710 (1993).
[CrossRef] [PubMed]

P. J. Morris, W. Luthy, and H. P. Weber, “Operation of resonantly pumped Tm, Ho:YAG in active mirror mode,” Opt. Commun. 104, 97–101 (1993).
[CrossRef]

1992

P. A. Budni, M. G. Knights, E. P. Chicklis, and H. P. Jenssen, “Performance of a diode-pumped high PRF Tm, Ho:YLF laser,” IEEE J. Quantum Electron. 28, 1029–1032 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, Larry K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

1991

1988

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

1987

Asai, K.

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, “Pulsed laser action in Tm, Ho:LuLiF4 and Tm, Ho:YLiF4 crystals using a novel quasi-end-pumping technique,” IEEE J. Quantum Electron. 38, 1102–1109 (2002).
[CrossRef]

V. Sudesh, K. Asai, A. Kudou, K. Ito, K. Shimamura, and T. Fukuda, “Growth and characterization of Tm, Ho-doped LuLiF4 and YLiF4 crystals,” in Growth, Fabrication, Devices and Applications of Lasers and Nonlinear Materials, J. W. Pierce, K. I. Schaffers, eds., Proc. SPIE 4268, 153–160 (2001).
[CrossRef]

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, “Room-temperature Tm, Ho:LuLiF4 laser using a novel quasi-end pump technique,” Opt. Lett. 26, 1675–1677 (2001).
[CrossRef]

Baer, T.

Barnes, N. P.

Bensalah, A.

A. Bensalah, K. Shimamura, V. Sudesh, H. Sato, K. Ito, and T. Fukuda, “Growth of Tm, Ho-codoped YLiF4 and LuLiF4 single crystals for eye-safe lasers,” J. Cryst. Growth 223, 539–544 (2001).
[CrossRef]

Budni, P. A.

P. A. Budni, M. G. Knights, E. P. Chicklis, and H. P. Jenssen, “Performance of a diode-pumped high PRF Tm, Ho:YLF laser,” IEEE J. Quantum Electron. 28, 1029–1032 (1992).
[CrossRef]

Byer, R. L.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12 laser at 300 K,” Opt. Lett. 12, 678–680 (1987).
[CrossRef] [PubMed]

Castillo, V. K.

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho, Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33, 112–115 (1997).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, Larry K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Chicklis, E. P.

P. A. Budni, M. G. Knights, E. P. Chicklis, and H. P. Jenssen, “Performance of a diode-pumped high PRF Tm, Ho:YLF laser,” IEEE J. Quantum Electron. 28, 1029–1032 (1992).
[CrossRef]

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 39–48 (2000).
[CrossRef]

Elder, I. F.

I. F. Elder and M. J. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

Esterowitz, L.

Fan, T. Y.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12 laser at 300 K,” Opt. Lett. 12, 678–680 (1987).
[CrossRef] [PubMed]

Filer, E. D.

Fukuda, T.

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, “Pulsed laser action in Tm, Ho:LuLiF4 and Tm, Ho:YLiF4 crystals using a novel quasi-end-pumping technique,” IEEE J. Quantum Electron. 38, 1102–1109 (2002).
[CrossRef]

H. Sato, K. Shimamura, V. Sudesh, M. Ito, H. Machida, and T. Fukuda, “Growth and characterization of Tm, Ho-codoped Lu3Al5O12 single crystals by the Czochralski technique,” J. Cryst. Growth 234, 463–468 (2002).
[CrossRef]

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, “Room-temperature Tm, Ho:LuLiF4 laser using a novel quasi-end pump technique,” Opt. Lett. 26, 1675–1677 (2001).
[CrossRef]

V. Sudesh, K. Asai, A. Kudou, K. Ito, K. Shimamura, and T. Fukuda, “Growth and characterization of Tm, Ho-doped LuLiF4 and YLiF4 crystals,” in Growth, Fabrication, Devices and Applications of Lasers and Nonlinear Materials, J. W. Pierce, K. I. Schaffers, eds., Proc. SPIE 4268, 153–160 (2001).
[CrossRef]

A. Bensalah, K. Shimamura, V. Sudesh, H. Sato, K. Ito, and T. Fukuda, “Growth of Tm, Ho-codoped YLiF4 and LuLiF4 single crystals for eye-safe lasers,” J. Cryst. Growth 223, 539–544 (2001).
[CrossRef]

Hart, D. W.

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho, Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33, 112–115 (1997).
[CrossRef]

D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett. 21, 728–730 (1996).
[CrossRef] [PubMed]

Huber, G.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12 laser at 300 K,” Opt. Lett. 12, 678–680 (1987).
[CrossRef] [PubMed]

Ito, K.

V. Sudesh, K. Asai, A. Kudou, K. Ito, K. Shimamura, and T. Fukuda, “Growth and characterization of Tm, Ho-doped LuLiF4 and YLiF4 crystals,” in Growth, Fabrication, Devices and Applications of Lasers and Nonlinear Materials, J. W. Pierce, K. I. Schaffers, eds., Proc. SPIE 4268, 153–160 (2001).
[CrossRef]

A. Bensalah, K. Shimamura, V. Sudesh, H. Sato, K. Ito, and T. Fukuda, “Growth of Tm, Ho-codoped YLiF4 and LuLiF4 single crystals for eye-safe lasers,” J. Cryst. Growth 223, 539–544 (2001).
[CrossRef]

Ito, M.

H. Sato, K. Shimamura, V. Sudesh, M. Ito, H. Machida, and T. Fukuda, “Growth and characterization of Tm, Ho-codoped Lu3Al5O12 single crystals by the Czochralski technique,” J. Cryst. Growth 234, 463–468 (2002).
[CrossRef]

Jani, M.

Jani, M. G.

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho, Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33, 112–115 (1997).
[CrossRef]

M. G. Jani, F. L. Naranjo, N. P. Barnes, K. E. Murray, and G. E. Lockard, “Diode-pumped long-pulse-length Ho, Tm:YLiF4 laser at 10 Hz,” Opt. Lett. 20, 872–874 (1995).
[CrossRef] [PubMed]

Jenssen, H. P.

P. A. Budni, M. G. Knights, E. P. Chicklis, and H. P. Jenssen, “Performance of a diode-pumped high PRF Tm, Ho:YLF laser,” IEEE J. Quantum Electron. 28, 1029–1032 (1992).
[CrossRef]

Knights, M. G.

P. A. Budni, M. G. Knights, E. P. Chicklis, and H. P. Jenssen, “Performance of a diode-pumped high PRF Tm, Ho:YLF laser,” IEEE J. Quantum Electron. 28, 1029–1032 (1992).
[CrossRef]

Koch, G. J.

Kokta, M. R.

Krupke, W. F.

S. A. Payne, L. L. Chase, Larry K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Kudou, A.

V. Sudesh, K. Asai, A. Kudou, K. Ito, K. Shimamura, and T. Fukuda, “Growth and characterization of Tm, Ho-doped LuLiF4 and YLiF4 crystals,” in Growth, Fabrication, Devices and Applications of Lasers and Nonlinear Materials, J. W. Pierce, K. I. Schaffers, eds., Proc. SPIE 4268, 153–160 (2001).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, Larry K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Lockard, G. E.

Luthy, W.

P. J. Morris, W. Luthy, and H. P. Weber, “Operation of resonantly pumped Tm, Ho:YAG in active mirror mode,” Opt. Commun. 104, 97–101 (1993).
[CrossRef]

Machida, H.

H. Sato, K. Shimamura, V. Sudesh, M. Ito, H. Machida, and T. Fukuda, “Growth and characterization of Tm, Ho-codoped Lu3Al5O12 single crystals by the Czochralski technique,” J. Cryst. Growth 234, 463–468 (2002).
[CrossRef]

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12 laser at 300 K,” Opt. Lett. 12, 678–680 (1987).
[CrossRef] [PubMed]

Morris, P. J.

P. J. Morris, W. Luthy, and H. P. Weber, “Operation of resonantly pumped Tm, Ho:YAG in active mirror mode,” Opt. Commun. 104, 97–101 (1993).
[CrossRef]

Murray, K. E.

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho, Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33, 112–115 (1997).
[CrossRef]

M. G. Jani, F. L. Naranjo, N. P. Barnes, K. E. Murray, and G. E. Lockard, “Diode-pumped long-pulse-length Ho, Tm:YLiF4 laser at 10 Hz,” Opt. Lett. 20, 872–874 (1995).
[CrossRef] [PubMed]

Naranjo, F. L.

Payne, M. J.

I. F. Elder and M. J. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

Payne, S. A.

S. A. Payne, L. L. Chase, Larry K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Petros, M.

Pinto, J. F.

Piper, J. A.

V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 μm,” IEEE J. Quantum Electron. 36, 879–884 (2000).
[CrossRef]

Quarles, G. J.

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho, Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33, 112–115 (1997).
[CrossRef]

Reichert, P.

Rodriguez, W. J.

Rosenblatt, G. H.

Sato, H.

H. Sato, K. Shimamura, V. Sudesh, M. Ito, H. Machida, and T. Fukuda, “Growth and characterization of Tm, Ho-codoped Lu3Al5O12 single crystals by the Czochralski technique,” J. Cryst. Growth 234, 463–468 (2002).
[CrossRef]

A. Bensalah, K. Shimamura, V. Sudesh, H. Sato, K. Ito, and T. Fukuda, “Growth of Tm, Ho-codoped YLiF4 and LuLiF4 single crystals for eye-safe lasers,” J. Cryst. Growth 223, 539–544 (2001).
[CrossRef]

Shimamura, K.

H. Sato, K. Shimamura, V. Sudesh, M. Ito, H. Machida, and T. Fukuda, “Growth and characterization of Tm, Ho-codoped Lu3Al5O12 single crystals by the Czochralski technique,” J. Cryst. Growth 234, 463–468 (2002).
[CrossRef]

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, “Pulsed laser action in Tm, Ho:LuLiF4 and Tm, Ho:YLiF4 crystals using a novel quasi-end-pumping technique,” IEEE J. Quantum Electron. 38, 1102–1109 (2002).
[CrossRef]

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, “Room-temperature Tm, Ho:LuLiF4 laser using a novel quasi-end pump technique,” Opt. Lett. 26, 1675–1677 (2001).
[CrossRef]

V. Sudesh, K. Asai, A. Kudou, K. Ito, K. Shimamura, and T. Fukuda, “Growth and characterization of Tm, Ho-doped LuLiF4 and YLiF4 crystals,” in Growth, Fabrication, Devices and Applications of Lasers and Nonlinear Materials, J. W. Pierce, K. I. Schaffers, eds., Proc. SPIE 4268, 153–160 (2001).
[CrossRef]

A. Bensalah, K. Shimamura, V. Sudesh, H. Sato, K. Ito, and T. Fukuda, “Growth of Tm, Ho-codoped YLiF4 and LuLiF4 single crystals for eye-safe lasers,” J. Cryst. Growth 223, 539–544 (2001).
[CrossRef]

Singh, U. N.

Smith, Larry K.

S. A. Payne, L. L. Chase, Larry K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Snyder, J. J.

Sudesh, V.

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, “Pulsed laser action in Tm, Ho:LuLiF4 and Tm, Ho:YLiF4 crystals using a novel quasi-end-pumping technique,” IEEE J. Quantum Electron. 38, 1102–1109 (2002).
[CrossRef]

H. Sato, K. Shimamura, V. Sudesh, M. Ito, H. Machida, and T. Fukuda, “Growth and characterization of Tm, Ho-codoped Lu3Al5O12 single crystals by the Czochralski technique,” J. Cryst. Growth 234, 463–468 (2002).
[CrossRef]

A. Bensalah, K. Shimamura, V. Sudesh, H. Sato, K. Ito, and T. Fukuda, “Growth of Tm, Ho-codoped YLiF4 and LuLiF4 single crystals for eye-safe lasers,” J. Cryst. Growth 223, 539–544 (2001).
[CrossRef]

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, “Room-temperature Tm, Ho:LuLiF4 laser using a novel quasi-end pump technique,” Opt. Lett. 26, 1675–1677 (2001).
[CrossRef]

V. Sudesh, K. Asai, A. Kudou, K. Ito, K. Shimamura, and T. Fukuda, “Growth and characterization of Tm, Ho-doped LuLiF4 and YLiF4 crystals,” in Growth, Fabrication, Devices and Applications of Lasers and Nonlinear Materials, J. W. Pierce, K. I. Schaffers, eds., Proc. SPIE 4268, 153–160 (2001).
[CrossRef]

V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 μm,” IEEE J. Quantum Electron. 36, 879–884 (2000).
[CrossRef]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 39–48 (2000).
[CrossRef]

Weber, H. P.

P. J. Morris, W. Luthy, and H. P. Weber, “Operation of resonantly pumped Tm, Ho:YAG in active mirror mode,” Opt. Commun. 104, 97–101 (1993).
[CrossRef]

Yu, J.

Appl. Opt.

IEEE J. Quantum Electron.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

S. A. Payne, L. L. Chase, Larry K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

V. Sudesh and J. A. Piper, “Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 μm,” IEEE J. Quantum Electron. 36, 879–884 (2000).
[CrossRef]

P. A. Budni, M. G. Knights, E. P. Chicklis, and H. P. Jenssen, “Performance of a diode-pumped high PRF Tm, Ho:YLF laser,” IEEE J. Quantum Electron. 28, 1029–1032 (1992).
[CrossRef]

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho, Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33, 112–115 (1997).
[CrossRef]

V. Sudesh, K. Asai, K. Shimamura, and T. Fukuda, “Pulsed laser action in Tm, Ho:LuLiF4 and Tm, Ho:YLiF4 crystals using a novel quasi-end-pumping technique,” IEEE J. Quantum Electron. 38, 1102–1109 (2002).
[CrossRef]

J. Cryst. Growth

H. Sato, K. Shimamura, V. Sudesh, M. Ito, H. Machida, and T. Fukuda, “Growth and characterization of Tm, Ho-codoped Lu3Al5O12 single crystals by the Czochralski technique,” J. Cryst. Growth 234, 463–468 (2002).
[CrossRef]

A. Bensalah, K. Shimamura, V. Sudesh, H. Sato, K. Ito, and T. Fukuda, “Growth of Tm, Ho-codoped YLiF4 and LuLiF4 single crystals for eye-safe lasers,” J. Cryst. Growth 223, 539–544 (2001).
[CrossRef]

J. Lumin.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “The temperature dependence of energy transfer between the Tm 3F4 and Ho 5I7 manifolds of Tm-sensitized Ho luminescence in YAG and YLF,” J. Lumin. 90, 39–48 (2000).
[CrossRef]

Opt. Commun.

P. J. Morris, W. Luthy, and H. P. Weber, “Operation of resonantly pumped Tm, Ho:YAG in active mirror mode,” Opt. Commun. 104, 97–101 (1993).
[CrossRef]

I. F. Elder and M. J. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

Opt. Lett.

Proc. SPIE

V. Sudesh, K. Asai, A. Kudou, K. Ito, K. Shimamura, and T. Fukuda, “Growth and characterization of Tm, Ho-doped LuLiF4 and YLiF4 crystals,” in Growth, Fabrication, Devices and Applications of Lasers and Nonlinear Materials, J. W. Pierce, K. I. Schaffers, eds., Proc. SPIE 4268, 153–160 (2001).
[CrossRef]

Other

V. Sudesh, K. Shimamura, T. Fukuda, and K. Asai, “Pulsed Tm, Ho:LuLiF4 2-μm laser using a novel side-pump technique,” in Advanced Solid State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 571–576.

E. D. Filer, C. A. Morrison, N. P. Barnes, and B. M. Walsh, “YLF isomorphs for Ho and Tm laser applications,” in Advanced Solid State Lasers, T. Y. Fan, B. H. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 127–130.

G. Armagan, A. M. Buoncristiani, A. T. Inge, and B. DiBartolo, “Comparison of spectroscopic properties of Tm and Ho in YAG and YLF crystals,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 166–168.

N. P. Barnes and J. Yu, NASA Langley Research Center, 5 North Dryden Street, Mail Stop 468, Hampton, Virginia 23681 (personal communication, 2002).

M. G. Jani, N. P. Barnes, K. E. Murray, and R. L. Hutcheson, “Diode-pumped Ho:Tm:Lu3Al5O12 room temperature laser,” Advanced Solid-State Lasers, T. Y. Fan, B. H. T. Chai, eds. Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 109–112.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the partial energy-level diagram for diode-pumped Tm–Ho 2-μm lasers. The Ho upper laser level (5I7) is resonantly pumped by commercially available diode lasers emitting at either 680 nm or 780 nm.

Fig. 2
Fig. 2

Schematic of the laser setup and crystal dimensions and orientation.

Fig. 3
Fig. 3

Dependence of the lattice parameters a (a) and c (b) on temperature for LuLF and YLF crystals.

Fig. 4
Fig. 4

Dependence of the lattice parameter on temperature for LuAG crystal.

Fig. 5
Fig. 5

Absorption cross section spectra at room temperature for (a) YLF, (b) LuLF, (c) LuAG in the region of wavelengths available for pumping by diode lasers at 780 nm (3H63H4) and 680 nm (3H63F3).

Fig. 6
Fig. 6

Typical fluorescence decay curves in crystals studied.

Fig. 7
Fig. 7

Laser performance of YLF at various PRF and crystal temperatures for a 150-mm-long resonator with an output mirror reflectivity of 95%. The curves are least-squares fits to the experimental data (symbols). Panels (a) and (b) are for 300 K and 273 K, respectively.

Fig. 8
Fig. 8

Laser performance of LuLF under the same conditions as for Figs. 7(a) and (b).

Fig. 9
Fig. 9

Laser performance of LuAG under the same conditions as for Figs. 7(a) and (b).

Fig. 10
Fig. 10

Schematic of the proposed diffusion-bonded crystal.

Fig. 11
Fig. 11

Dependence of the output energy of the 2-μm lasers on crystal temperature. The curves are least-squares fits to the experimental data (symbols).

Tables (5)

Tables Icon

Table 1 Comparison of the Physical Properties of Laser Crystals Studied in This Paper

Tables Icon

Table 2 Measured Absorption Coefficients for Tm in the Vicinity of 680 and 780 nm in Crystals Studied

Tables Icon

Table 3 Comparison of Measured Lifetimes a at Room Temperature for the Ho 5I7 Energy Levels in Crystals Studied

Tables Icon

Table 4 Summary of Laser Results at 27 °C Crystal Temperature a

Tables Icon

Table 5 Summary of Laser Results at 0 °C Crystal Temperature a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y=A1*exp(-x/t1)+A2*exp(-x/t2)

Metrics