Abstract

Optical selectivity calculations have been carried out for the 91Zr isotope for two-color resonant three-photon photoionization schemes. The density-matrix equations of motion were solved numerically for collinear, counterpropagating, linearly polarized laser beams having Gaussian temporal profile. Calculations were carried out incorporating the effects of Doppler broadening, magnetic sublevel degeneracy, and laser bandwidths. The selectivities and ion yields were determined for various Rabi frequencies and ionization rates. Thereby, the optimal Rabi frequencies for the first and second excitation steps and ionizaton rate for the ionizaton step were determined. The ionization efficiency as a function of detuning of the excitation lasers was also investigated. Two of the photoionization schemes investigated yielded a selectivity of ∼10, with an ion yield of ∼23%.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Lone, G. A. Bartholomew, R. E. Chrien, and W. R. Kane, Neutron Capture and Gamma Ray Spectroscopy (Plenum, New York, 1979), p. 675.
  2. P. V. Kiran Kumar, M. Sankari, and M. V. Suryanarayana, “Calculation of single-color optical selectivities of the 91Zr isotope for transitions in the 570–620 nm region,” J. Opt. Soc. Am. B 19, 2833–2843 (2002).
    [CrossRef]
  3. R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, Jefferey A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
    [CrossRef]
  4. P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyperfine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 2409–2416 (1988).
    [CrossRef]
  5. O. L. Bourne, M. R. Humphries, S. A. Mitchell and P. A. Hackett, “A high-resolution laser-induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
    [CrossRef]
  6. E. Langlois and J.-M. Gagne, “Zirconium isotope shift measurements using optogalvanic detection,” J. Opt. Soc. Am. B 10, 774–783 (1993).
    [CrossRef]
  7. G. Chevalier, J.-M. Gagne, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127–130 (1987).
    [CrossRef]
  8. G. Chevalier, J.-M. Gagne, and P. Pianarosa, “Hyperfine structures in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B 5, 1492–1499 (1988).
    [CrossRef]
  9. D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapour: application to hyperfine structure in Zr I,” Opt. Commun. 67, 209–213 (1988).
    [CrossRef]
  10. S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
    [CrossRef]
  11. S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
    [CrossRef]
  12. C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shift determination in Zr I by laser-induced fluorescence spectroscopy,” Jpn. J. Appl. Phys. 37, 5049–5052 (1998).
    [CrossRef]
  13. C. Lim and Y. Izawa, “Hyperfine structure and isotope shifts of high-lying levels of Zr I investigated by laser-induced fluorescence spectroscopy,” J. Opt. Soc. Am. B 15, 2607–2613 (1998).
    [CrossRef]
  14. M. R. Humphries, O. L. Bourne, and P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134–139 (1985).
    [CrossRef]
  15. L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47, 4946–4954 (1993).
    [CrossRef] [PubMed]
  16. B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990).
  17. P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547 (1979).
    [CrossRef]
  18. W. H. King, Isotope Shifts in Atomic Spectra (Plenum, New York, 1984).
  19. P. Aufmuth and M. Haunert, “Odd-even isotope shifts after closed neutron shells,” Physica B & C 123, 109–114 (1983).
    [CrossRef]
  20. Yu. P. Gangrskii, S. G. Zemlyanoi, B. K. Kul’dzhanov, K. P. Marinova, B. N. Markov, Hoang Thi Kim Hue, and Chan Kong Tam, “Determination of the differences between the charge radii of zirconium nuclei using laser-excited resonance fluorescence,” Sov. Phys. JETP 67, 1089–1094 (1988).
  21. G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. De Jager, “Nucelar ground state charge radii from electromagnetic interactions,” At. Data Nucl. Data Tables 60, 177–285 (1995).
    [CrossRef]
  22. K. Heilig and A. Steudel, “Changes in mean-square nuclear charge radii from optical shifts,” At. Data Nucl. Data Tables 14, 613–638 (1974).
    [CrossRef]
  23. P. Campbell, J. Billowes, and I. S. Grant, “The isotope shift of 90, 91Zr by collinear ion-laser beam spectroscopy,” J. Phys. B 30, 4783–4790 (1997).
    [CrossRef]

2002 (1)

2000 (1)

S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
[CrossRef]

1998 (2)

C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shift determination in Zr I by laser-induced fluorescence spectroscopy,” Jpn. J. Appl. Phys. 37, 5049–5052 (1998).
[CrossRef]

C. Lim and Y. Izawa, “Hyperfine structure and isotope shifts of high-lying levels of Zr I investigated by laser-induced fluorescence spectroscopy,” J. Opt. Soc. Am. B 15, 2607–2613 (1998).
[CrossRef]

1997 (1)

P. Campbell, J. Billowes, and I. S. Grant, “The isotope shift of 90, 91Zr by collinear ion-laser beam spectroscopy,” J. Phys. B 30, 4783–4790 (1997).
[CrossRef]

1995 (1)

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. De Jager, “Nucelar ground state charge radii from electromagnetic interactions,” At. Data Nucl. Data Tables 60, 177–285 (1995).
[CrossRef]

1993 (3)

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47, 4946–4954 (1993).
[CrossRef] [PubMed]

R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, Jefferey A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
[CrossRef]

E. Langlois and J.-M. Gagne, “Zirconium isotope shift measurements using optogalvanic detection,” J. Opt. Soc. Am. B 10, 774–783 (1993).
[CrossRef]

1988 (4)

G. Chevalier, J.-M. Gagne, and P. Pianarosa, “Hyperfine structures in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B 5, 1492–1499 (1988).
[CrossRef]

D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapour: application to hyperfine structure in Zr I,” Opt. Commun. 67, 209–213 (1988).
[CrossRef]

P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyperfine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 2409–2416 (1988).
[CrossRef]

Yu. P. Gangrskii, S. G. Zemlyanoi, B. K. Kul’dzhanov, K. P. Marinova, B. N. Markov, Hoang Thi Kim Hue, and Chan Kong Tam, “Determination of the differences between the charge radii of zirconium nuclei using laser-excited resonance fluorescence,” Sov. Phys. JETP 67, 1089–1094 (1988).

1987 (1)

G. Chevalier, J.-M. Gagne, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127–130 (1987).
[CrossRef]

1986 (1)

O. L. Bourne, M. R. Humphries, S. A. Mitchell and P. A. Hackett, “A high-resolution laser-induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
[CrossRef]

1985 (1)

M. R. Humphries, O. L. Bourne, and P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134–139 (1985).
[CrossRef]

1983 (1)

P. Aufmuth and M. Haunert, “Odd-even isotope shifts after closed neutron shells,” Physica B & C 123, 109–114 (1983).
[CrossRef]

1979 (1)

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547 (1979).
[CrossRef]

1978 (1)

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

1974 (1)

K. Heilig and A. Steudel, “Changes in mean-square nuclear charge radii from optical shifts,” At. Data Nucl. Data Tables 14, 613–638 (1974).
[CrossRef]

Aufmuth, P.

P. Aufmuth and M. Haunert, “Odd-even isotope shifts after closed neutron shells,” Physica B & C 123, 109–114 (1983).
[CrossRef]

Bernhardt, C.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. De Jager, “Nucelar ground state charge radii from electromagnetic interactions,” At. Data Nucl. Data Tables 60, 177–285 (1995).
[CrossRef]

Billowes, J.

P. Campbell, J. Billowes, and I. S. Grant, “The isotope shift of 90, 91Zr by collinear ion-laser beam spectroscopy,” J. Phys. B 30, 4783–4790 (1997).
[CrossRef]

Bouazza, S.

S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
[CrossRef]

Bourne, O. L.

P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyperfine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 2409–2416 (1988).
[CrossRef]

O. L. Bourne, M. R. Humphries, S. A. Mitchell and P. A. Hackett, “A high-resolution laser-induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
[CrossRef]

M. R. Humphries, O. L. Bourne, and P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134–139 (1985).
[CrossRef]

Buttgenbach, S.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

Campbell, P.

P. Campbell, J. Billowes, and I. S. Grant, “The isotope shift of 90, 91Zr by collinear ion-laser beam spectroscopy,” J. Phys. B 30, 4783–4790 (1997).
[CrossRef]

Chevalier, G.

G. Chevalier, J.-M. Gagne, and P. Pianarosa, “Hyperfine structures in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B 5, 1492–1499 (1988).
[CrossRef]

G. Chevalier, J.-M. Gagne, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127–130 (1987).
[CrossRef]

De Jager, C. W.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. De Jager, “Nucelar ground state charge radii from electromagnetic interactions,” At. Data Nucl. Data Tables 60, 177–285 (1995).
[CrossRef]

Dicke, R.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

Dropinski, S. C.

R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, Jefferey A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
[CrossRef]

Fricke, G.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. De Jager, “Nucelar ground state charge radii from electromagnetic interactions,” At. Data Nucl. Data Tables 60, 177–285 (1995).
[CrossRef]

Gagne, J.-M.

Gangrskii, Yu. P.

Yu. P. Gangrskii, S. G. Zemlyanoi, B. K. Kul’dzhanov, K. P. Marinova, B. N. Markov, Hoang Thi Kim Hue, and Chan Kong Tam, “Determination of the differences between the charge radii of zirconium nuclei using laser-excited resonance fluorescence,” Sov. Phys. JETP 67, 1089–1094 (1988).

Gebauer, H.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

Gough, D. S.

S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
[CrossRef]

D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapour: application to hyperfine structure in Zr I,” Opt. Commun. 67, 209–213 (1988).
[CrossRef]

Grant, I. S.

P. Campbell, J. Billowes, and I. S. Grant, “The isotope shift of 90, 91Zr by collinear ion-laser beam spectroscopy,” J. Phys. B 30, 4783–4790 (1997).
[CrossRef]

Green, L. W.

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47, 4946–4954 (1993).
[CrossRef] [PubMed]

Hackett, P. A.

P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyperfine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 2409–2416 (1988).
[CrossRef]

O. L. Bourne, M. R. Humphries, S. A. Mitchell and P. A. Hackett, “A high-resolution laser-induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
[CrossRef]

M. R. Humphries, O. L. Bourne, and P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134–139 (1985).
[CrossRef]

Hannaford, P.

S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
[CrossRef]

D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapour: application to hyperfine structure in Zr I,” Opt. Commun. 67, 209–213 (1988).
[CrossRef]

Haunert, M.

P. Aufmuth and M. Haunert, “Odd-even isotope shifts after closed neutron shells,” Physica B & C 123, 109–114 (1983).
[CrossRef]

Heilig, K.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. De Jager, “Nucelar ground state charge radii from electromagnetic interactions,” At. Data Nucl. Data Tables 60, 177–285 (1995).
[CrossRef]

K. Heilig and A. Steudel, “Changes in mean-square nuclear charge radii from optical shifts,” At. Data Nucl. Data Tables 14, 613–638 (1974).
[CrossRef]

Hue, Hoang Thi Kim

Yu. P. Gangrskii, S. G. Zemlyanoi, B. K. Kul’dzhanov, K. P. Marinova, B. N. Markov, Hoang Thi Kim Hue, and Chan Kong Tam, “Determination of the differences between the charge radii of zirconium nuclei using laser-excited resonance fluorescence,” Sov. Phys. JETP 67, 1089–1094 (1988).

Humphries, M. R.

O. L. Bourne, M. R. Humphries, S. A. Mitchell and P. A. Hackett, “A high-resolution laser-induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
[CrossRef]

M. R. Humphries, O. L. Bourne, and P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134–139 (1985).
[CrossRef]

Izawa, Y.

C. Lim and Y. Izawa, “Hyperfine structure and isotope shifts of high-lying levels of Zr I investigated by laser-induced fluorescence spectroscopy,” J. Opt. Soc. Am. B 15, 2607–2613 (1998).
[CrossRef]

C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shift determination in Zr I by laser-induced fluorescence spectroscopy,” Jpn. J. Appl. Phys. 37, 5049–5052 (1998).
[CrossRef]

Kiran Kumar, P. V.

Kuhnen, R.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

Kul’dzhanov, B. K.

Yu. P. Gangrskii, S. G. Zemlyanoi, B. K. Kul’dzhanov, K. P. Marinova, B. N. Markov, Hoang Thi Kim Hue, and Chan Kong Tam, “Determination of the differences between the charge radii of zirconium nuclei using laser-excited resonance fluorescence,” Sov. Phys. JETP 67, 1089–1094 (1988).

Lambropoulos, P.

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547 (1979).
[CrossRef]

Langlois, E.

Lim, C.

C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shift determination in Zr I by laser-induced fluorescence spectroscopy,” Jpn. J. Appl. Phys. 37, 5049–5052 (1998).
[CrossRef]

C. Lim and Y. Izawa, “Hyperfine structure and isotope shifts of high-lying levels of Zr I investigated by laser-induced fluorescence spectroscopy,” J. Opt. Soc. Am. B 15, 2607–2613 (1998).
[CrossRef]

Marinova, K. P.

Yu. P. Gangrskii, S. G. Zemlyanoi, B. K. Kul’dzhanov, K. P. Marinova, B. N. Markov, Hoang Thi Kim Hue, and Chan Kong Tam, “Determination of the differences between the charge radii of zirconium nuclei using laser-excited resonance fluorescence,” Sov. Phys. JETP 67, 1089–1094 (1988).

Markov, B. N.

Yu. P. Gangrskii, S. G. Zemlyanoi, B. K. Kul’dzhanov, K. P. Marinova, B. N. Markov, Hoang Thi Kim Hue, and Chan Kong Tam, “Determination of the differences between the charge radii of zirconium nuclei using laser-excited resonance fluorescence,” Sov. Phys. JETP 67, 1089–1094 (1988).

McRae, G. A.

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47, 4946–4954 (1993).
[CrossRef] [PubMed]

Mitchell, S. A.

O. L. Bourne, M. R. Humphries, S. A. Mitchell and P. A. Hackett, “A high-resolution laser-induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
[CrossRef]

Morrison, H. D.

Nomaru, K.

C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shift determination in Zr I by laser-induced fluorescence spectroscopy,” Jpn. J. Appl. Phys. 37, 5049–5052 (1998).
[CrossRef]

Page, R. H.

R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, Jefferey A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
[CrossRef]

Pianarosa, P.

G. Chevalier, J.-M. Gagne, and P. Pianarosa, “Hyperfine structures in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B 5, 1492–1499 (1988).
[CrossRef]

G. Chevalier, J.-M. Gagne, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127–130 (1987).
[CrossRef]

Rayner, D. M.

Rochefort, P. A.

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47, 4946–4954 (1993).
[CrossRef] [PubMed]

Sankari, M.

Schaller, L. A.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. De Jager, “Nucelar ground state charge radii from electromagnetic interactions,” At. Data Nucl. Data Tables 60, 177–285 (1995).
[CrossRef]

Schellenberg, L.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. De Jager, “Nucelar ground state charge radii from electromagnetic interactions,” At. Data Nucl. Data Tables 60, 177–285 (1995).
[CrossRef]

Shera, E. B.

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. De Jager, “Nucelar ground state charge radii from electromagnetic interactions,” At. Data Nucl. Data Tables 60, 177–285 (1995).
[CrossRef]

Simard, B.

Steudel, A.

K. Heilig and A. Steudel, “Changes in mean-square nuclear charge radii from optical shifts,” At. Data Nucl. Data Tables 14, 613–638 (1974).
[CrossRef]

Stockdale, J. A. D.

R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, Jefferey A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
[CrossRef]

Suryanarayana, M. V.

Tam, Chan Kong

Yu. P. Gangrskii, S. G. Zemlyanoi, B. K. Kul’dzhanov, K. P. Marinova, B. N. Markov, Hoang Thi Kim Hue, and Chan Kong Tam, “Determination of the differences between the charge radii of zirconium nuclei using laser-excited resonance fluorescence,” Sov. Phys. JETP 67, 1089–1094 (1988).

Traber, F.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

Wilson, M.

S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
[CrossRef]

Worden Jr., E. F.

R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, Jefferey A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
[CrossRef]

Zemlyanoi, S. G.

Yu. P. Gangrskii, S. G. Zemlyanoi, B. K. Kul’dzhanov, K. P. Marinova, B. N. Markov, Hoang Thi Kim Hue, and Chan Kong Tam, “Determination of the differences between the charge radii of zirconium nuclei using laser-excited resonance fluorescence,” Sov. Phys. JETP 67, 1089–1094 (1988).

Zoller, P.

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547 (1979).
[CrossRef]

At. Data Nucl. Data Tables (2)

G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. De Jager, “Nucelar ground state charge radii from electromagnetic interactions,” At. Data Nucl. Data Tables 60, 177–285 (1995).
[CrossRef]

K. Heilig and A. Steudel, “Changes in mean-square nuclear charge radii from optical shifts,” At. Data Nucl. Data Tables 14, 613–638 (1974).
[CrossRef]

Chem. Phys. Lett. (1)

M. R. Humphries, O. L. Bourne, and P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134–139 (1985).
[CrossRef]

J. Opt. Soc. Am. B (5)

J. Phys. B (3)

P. Campbell, J. Billowes, and I. S. Grant, “The isotope shift of 90, 91Zr by collinear ion-laser beam spectroscopy,” J. Phys. B 30, 4783–4790 (1997).
[CrossRef]

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547 (1979).
[CrossRef]

S. Bouazza, D. S. Gough, P. Hannaford, and M. Wilson, “Hyperfine structure of odd-parity levels in 91Zr I,” J. Phys. B 33, 2355–2365 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shift determination in Zr I by laser-induced fluorescence spectroscopy,” Jpn. J. Appl. Phys. 37, 5049–5052 (1998).
[CrossRef]

Opt. Commun. (3)

D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapour: application to hyperfine structure in Zr I,” Opt. Commun. 67, 209–213 (1988).
[CrossRef]

G. Chevalier, J.-M. Gagne, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127–130 (1987).
[CrossRef]

O. L. Bourne, M. R. Humphries, S. A. Mitchell and P. A. Hackett, “A high-resolution laser-induced fluorescence study of a supersonic zirconium atomic beam,” Opt. Commun. 56, 403–408 (1986).
[CrossRef]

Phys. Rev. A (1)

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47, 4946–4954 (1993).
[CrossRef] [PubMed]

Physica B & C (1)

P. Aufmuth and M. Haunert, “Odd-even isotope shifts after closed neutron shells,” Physica B & C 123, 109–114 (1983).
[CrossRef]

Proc. SPIE (1)

R. H. Page, S. C. Dropinski, E. F. Worden, Jr., and J. A. D. Stockdale, “Progress in zirconium resonance ionization spectroscopy,” in Laser Isotope Separation, Jefferey A. Paisner, ed., Proc. SPIE 1859, 49–63 (1993).
[CrossRef]

Sov. Phys. JETP (1)

Yu. P. Gangrskii, S. G. Zemlyanoi, B. K. Kul’dzhanov, K. P. Marinova, B. N. Markov, Hoang Thi Kim Hue, and Chan Kong Tam, “Determination of the differences between the charge radii of zirconium nuclei using laser-excited resonance fluorescence,” Sov. Phys. JETP 67, 1089–1094 (1988).

Z. Phys. A (1)

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125–131 (1978).
[CrossRef]

Other (3)

M. A. Lone, G. A. Bartholomew, R. E. Chrien, and W. R. Kane, Neutron Capture and Gamma Ray Spectroscopy (Plenum, New York, 1979), p. 675.

B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990).

W. H. King, Isotope Shifts in Atomic Spectra (Plenum, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a typical two-step photoionization scheme.

Fig. 2
Fig. 2

(a) Ion yield of 91Zr isotope as function of Rabi frequency of the second excitation transition and ionization rate for scheme 1. (b) Optical selectivity of 91Zr isotope as function of Rabi frequency of the second excitation transition and ionization rate for scheme 1. Rabi frequency for the first excitation transition is fixed at 18 GHz for the calculations.

Fig. 3
Fig. 3

Ion yield as a function of detuning of the second excitation laser for schemes 1 and 2. First excitation laser is fixed at the most intense hyperfine component of 91Zr resonance for both cases.

Fig. 4
Fig. 4

Time evolution of level populations of 91Zr when both lasers are tuned to the most intense hyperfine component for the schemes 1 and 2. (a),(a) No Doppler broadening and no laser linewidth, (b)(b) only laser linewidth (500 MHz) and no Doppler broadening, (c)(c) in presence of Doppler broadening (500 MHz) and laser linewidth (500 MHz).

Fig. 5
Fig. 5

Logarithmic contours of ion yield of 90Zr and 91Zr isotopes as function of detuning of laser 1 (abscissa) and laser 2 (ordinate) for schemes 1 and 3.

Fig. 6
Fig. 6

Velocity distribution of level populations of 90Zr and 91Zr isotopes for schemes 1 and 2. Excitation conditions for scheme 1 are Ω1=9 GHz, Ω2=11 GHz and γI=0.9 GHz; excitation conditions for scheme 2 are Ω1=1.4 GHz, Ω2=3 GHz and γI=0.6 GHz. The lasers are assumed to be tuned to the most intense hyperfine component of 91Zr at each excitation step. Axis break is provided for better viewing of velocity distribution of all the level populations.

Tables (3)

Tables Icon

Table 1 Isotope Shift and Hyperfine Structure Constants of Zirconium Transitions

Tables Icon

Table 2 Optimum Excitation Parameters, Ion Yield, and Selectivity of 91Zr for all Four Photoionization Schemes Investigated

Tables Icon

Table 3 Coherent Two-Photon Ionization Probabilities of Zr Isotopes and Optical Selectivity for all Photoionization Schemes Investigated

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

4d25s2 (F 3 2)613.4585 nm4d25s5p (F 3 2 0),
4d25s2 (F 3 2)593.5216 nm4d25s5p (F 3 3 0)
Ei(t)=[i(t)exp(iωit)+i*(t)exp(-iωit)]ei,
ρ˙11=i2 (Ω1*ρ21-Ω1ρ12)+2Γ1ρ22,
ρ˙22=i2 (ρ12Ω1-ρ21Ω1*)+i2 (ρ32Ω2*-ρ23Ω2)+2Γ2ρ33-2Γ1ρ22,
ρ˙33=i2 (ρ23Ω2-ρ32Ω2*)-2(Γ2+γI)ρ33,
ρ˙12=iρ12Δ1-ρ13Ω12+i Ω1*2 (ρ22-ρ11)-Γ1+2γL1β12Δ12+β12ρ12,
ρ˙21=-iρ21Δ1-ρ31Ω1*2-i Ω12 (ρ22-ρ11)-Γ1+2γL1β12Δ12+β12ρ21,
ρ˙13=iρ13(Δ1+Δ2)+i2 ρ23Ω1*-i2 ρ12Ω2*-Γ2+2γL1β12Δ12+β12+2γL2β22Δ22+β22+γIρ13,
ρ˙31=-iρ31(Δ1+Δ2)-i2 ρ32Ω1+i2 ρ21Ω2-Γ2+2γL1β12Δ12+β12+2γL2β22Δ22+β22+γIρ31,
ρ˙23=iρ23Δ2+i2 ρ13Ω1+i2 Ω2*(ρ33-ρ22)-Γ1+Γ2+2γL2β22Δ22+β22+γIρ23,
ρ˙32=-iρ32Δ2+i2 ρ31Ω1*-i2 Ω2(ρ33-ρ22)-Γ1+Γ2+2γL2β22Δ22+β22+γIρ32.
2γLi=βi2Δi2+βi2,i=1, 2.
Pj=1(2J+1)Mρjj.
Pj=W(vx)ρjj,j=1, 2, 3.
W(vx)=N0v0πexp-vxv02,
Pion(t)=1-ρ11(t)-ρ22(t)-ρ33(t),
F 3 4(1240.84 cm-1)586.8268 nmF 5 5 0(18,276.92 cm-1)
568.5439 nmF 5 4(35,860.83 cm-1)
522 nmZr+,
F 3 2(0.0 cm-1)595.5366 nmF 5 1 0(16,786.93 cm-1)
547.4915 nmF 5 1(35,046.98 cm-1)522 nmZr+,
F 3 2(0.0 cm-1)595.5366 nmF 5 1 0(16,786.93 cm-1)
542.6351 nmF 5 2(35,210.40 cm-1)522 nmZr+,
F 3 3(570.41 cm-1)588.5623 nmF 3 4 0(17,756.26 cm-1)
557.8835 nmF 5 3(35,476.17 cm-1)
522 nmZr+.
δνA,A=F×δr2A,A+M×A-AAA.
FS=F×δr2A,A.
F 3 3 (570.41 cm-1)614.3256 nmF 3 3 0 (16,843.92 cm-1)
Ωodd=23gγλ38πhc1/2(2F+1)(2F+1)JFIFJ1×F1F-mqmI,
Ωeven=23gγλ38πhc1/2J1J-mqmI.
JFIFJ1
F1F-mqm
91α=[A91/(ΣA-A91)]e[A91/(ΣA-A91)]n.
(|1ω1+ω2|3)
(|1ω1|2ω2|3).

Metrics