Abstract

Artifacts in time-resolved circular dichroism experiments are carefully analyzed. We show that alignment of the longitudinal Pockels cell that modulates the laser polarization in such experiments is crucial. By developing a calculation of the behavior of a slightly misaligned Pockels cell, we are able to propose a simple alignment procedure. This procedure is based on the use of an analyzer at 0° or 45° of the Pockels cell axes, and it allows us to improve the alignment by 3 orders of magnitude and to reduce the artifact below the noise level in our experimental setup.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell (Garland Science, New York, 1994).
  2. C. L. Weaver, M. Espinoza, Y. Kress, and P. Davies, “Conformational changes as one of the earliest alterations of tau in Alzheimer’s disease,” Neurobiol. Aging 21, 719–727 (2000).
    [CrossRef] [PubMed]
  3. G. C. Telling, P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner, “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science 274, 2079–2082 (1996).
    [CrossRef] [PubMed]
  4. U. Mayor, C. R. Johnson, V. Daggett, and A. R. Fersht, “Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation,” Proc. Natl. Acad. Sci. U.S.A. 97, 13518–13522 (2000).
    [CrossRef] [PubMed]
  5. J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: application to (carbonmonoxy) myoglobin and (carbonmonoxy) hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
    [CrossRef]
  6. J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
    [CrossRef]
  7. S. Wenzel and V. Buss, “A split beam method for measuring time-resolved circular dichroism,” Rev. Sci. Instrum. 68, 1886–1888 (1995).
    [CrossRef]
  8. D. W. Neyer, L. A. Rahn, D. W. Chandler, J. A. Nunes, and W. G. Tong, “Circular dichroism spectroscopy using coherent laser-induced thermal gratings,” J. Am. Chem. Soc. 119, 8293–8300 (1997).
    [CrossRef]
  9. R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453–479 (1997).
    [CrossRef] [PubMed]
  10. X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614–2627 (1989).
    [CrossRef]
  11. H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Experimental observation of nonlinear circular dichroism in a pump–probe experiment,” Chem. Phys. Lett. 338, 269–276 (2001).
    [CrossRef]
  12. H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Wavelength dependence of nonlinear circular dichroism in a chiral ruthenium-tris(bipyridyl) solution,” Phys. Rev. A 66, 013802 (2002).
    [CrossRef]
  13. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), p. 294.
  14. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, eds., Handbook of Nonlinear Crystals (Springer-Verlag, Berlin, 1991), p. 57.
  15. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, London, 1975), p. 665.

2002 (1)

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Wavelength dependence of nonlinear circular dichroism in a chiral ruthenium-tris(bipyridyl) solution,” Phys. Rev. A 66, 013802 (2002).
[CrossRef]

2001 (1)

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Experimental observation of nonlinear circular dichroism in a pump–probe experiment,” Chem. Phys. Lett. 338, 269–276 (2001).
[CrossRef]

2000 (2)

C. L. Weaver, M. Espinoza, Y. Kress, and P. Davies, “Conformational changes as one of the earliest alterations of tau in Alzheimer’s disease,” Neurobiol. Aging 21, 719–727 (2000).
[CrossRef] [PubMed]

U. Mayor, C. R. Johnson, V. Daggett, and A. R. Fersht, “Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation,” Proc. Natl. Acad. Sci. U.S.A. 97, 13518–13522 (2000).
[CrossRef] [PubMed]

1997 (2)

D. W. Neyer, L. A. Rahn, D. W. Chandler, J. A. Nunes, and W. G. Tong, “Circular dichroism spectroscopy using coherent laser-induced thermal gratings,” J. Am. Chem. Soc. 119, 8293–8300 (1997).
[CrossRef]

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453–479 (1997).
[CrossRef] [PubMed]

1996 (1)

G. C. Telling, P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner, “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science 274, 2079–2082 (1996).
[CrossRef] [PubMed]

1995 (1)

S. Wenzel and V. Buss, “A split beam method for measuring time-resolved circular dichroism,” Rev. Sci. Instrum. 68, 1886–1888 (1995).
[CrossRef]

1992 (1)

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

1989 (1)

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614–2627 (1989).
[CrossRef]

1985 (1)

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: application to (carbonmonoxy) myoglobin and (carbonmonoxy) hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[CrossRef]

Alexandre, M.

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Wavelength dependence of nonlinear circular dichroism in a chiral ruthenium-tris(bipyridyl) solution,” Phys. Rev. A 66, 013802 (2002).
[CrossRef]

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Experimental observation of nonlinear circular dichroism in a pump–probe experiment,” Chem. Phys. Lett. 338, 269–276 (2001).
[CrossRef]

Andraud, C.

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Wavelength dependence of nonlinear circular dichroism in a chiral ruthenium-tris(bipyridyl) solution,” Phys. Rev. A 66, 013802 (2002).
[CrossRef]

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Experimental observation of nonlinear circular dichroism in a pump–probe experiment,” Chem. Phys. Lett. 338, 269–276 (2001).
[CrossRef]

Buss, V.

S. Wenzel and V. Buss, “A split beam method for measuring time-resolved circular dichroism,” Rev. Sci. Instrum. 68, 1886–1888 (1995).
[CrossRef]

Chandler, D. W.

D. W. Neyer, L. A. Rahn, D. W. Chandler, J. A. Nunes, and W. G. Tong, “Circular dichroism spectroscopy using coherent laser-induced thermal gratings,” J. Am. Chem. Soc. 119, 8293–8300 (1997).
[CrossRef]

Cortelli, P.

G. C. Telling, P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner, “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science 274, 2079–2082 (1996).
[CrossRef] [PubMed]

Daggett, V.

U. Mayor, C. R. Johnson, V. Daggett, and A. R. Fersht, “Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation,” Proc. Natl. Acad. Sci. U.S.A. 97, 13518–13522 (2000).
[CrossRef] [PubMed]

Davies, P.

C. L. Weaver, M. Espinoza, Y. Kress, and P. Davies, “Conformational changes as one of the earliest alterations of tau in Alzheimer’s disease,” Neurobiol. Aging 21, 719–727 (2000).
[CrossRef] [PubMed]

DeArmond, S. J.

G. C. Telling, P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner, “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science 274, 2079–2082 (1996).
[CrossRef] [PubMed]

Dunn, R. C.

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

Einterz, C. M.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: application to (carbonmonoxy) myoglobin and (carbonmonoxy) hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[CrossRef]

Espinoza, M.

C. L. Weaver, M. Espinoza, Y. Kress, and P. Davies, “Conformational changes as one of the earliest alterations of tau in Alzheimer’s disease,” Neurobiol. Aging 21, 719–727 (2000).
[CrossRef] [PubMed]

Fersht, A. R.

U. Mayor, C. R. Johnson, V. Daggett, and A. R. Fersht, “Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation,” Proc. Natl. Acad. Sci. U.S.A. 97, 13518–13522 (2000).
[CrossRef] [PubMed]

Gabizon, R.

G. C. Telling, P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner, “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science 274, 2079–2082 (1996).
[CrossRef] [PubMed]

Gambetti, P.

G. C. Telling, P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner, “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science 274, 2079–2082 (1996).
[CrossRef] [PubMed]

Goldbeck, R. A.

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453–479 (1997).
[CrossRef] [PubMed]

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

Hache, F.

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Wavelength dependence of nonlinear circular dichroism in a chiral ruthenium-tris(bipyridyl) solution,” Phys. Rev. A 66, 013802 (2002).
[CrossRef]

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Experimental observation of nonlinear circular dichroism in a pump–probe experiment,” Chem. Phys. Lett. 338, 269–276 (2001).
[CrossRef]

Johnson, C. R.

U. Mayor, C. R. Johnson, V. Daggett, and A. R. Fersht, “Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation,” Proc. Natl. Acad. Sci. U.S.A. 97, 13518–13522 (2000).
[CrossRef] [PubMed]

Kim-Shapiro, D. B.

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453–479 (1997).
[CrossRef] [PubMed]

Kliger, D. S.

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453–479 (1997).
[CrossRef] [PubMed]

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: application to (carbonmonoxy) myoglobin and (carbonmonoxy) hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[CrossRef]

Kress, Y.

C. L. Weaver, M. Espinoza, Y. Kress, and P. Davies, “Conformational changes as one of the earliest alterations of tau in Alzheimer’s disease,” Neurobiol. Aging 21, 719–727 (2000).
[CrossRef] [PubMed]

Kuntz, I. D.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: application to (carbonmonoxy) myoglobin and (carbonmonoxy) hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[CrossRef]

Lemercier, G.

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Wavelength dependence of nonlinear circular dichroism in a chiral ruthenium-tris(bipyridyl) solution,” Phys. Rev. A 66, 013802 (2002).
[CrossRef]

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Experimental observation of nonlinear circular dichroism in a pump–probe experiment,” Chem. Phys. Lett. 338, 269–276 (2001).
[CrossRef]

Lewis, J. W.

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: application to (carbonmonoxy) myoglobin and (carbonmonoxy) hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[CrossRef]

Lugaresi, E.

G. C. Telling, P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner, “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science 274, 2079–2082 (1996).
[CrossRef] [PubMed]

Mastrianni, J.

G. C. Telling, P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner, “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science 274, 2079–2082 (1996).
[CrossRef] [PubMed]

Mayor, U.

U. Mayor, C. R. Johnson, V. Daggett, and A. R. Fersht, “Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation,” Proc. Natl. Acad. Sci. U.S.A. 97, 13518–13522 (2000).
[CrossRef] [PubMed]

Mesnil, H.

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Wavelength dependence of nonlinear circular dichroism in a chiral ruthenium-tris(bipyridyl) solution,” Phys. Rev. A 66, 013802 (2002).
[CrossRef]

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Experimental observation of nonlinear circular dichroism in a pump–probe experiment,” Chem. Phys. Lett. 338, 269–276 (2001).
[CrossRef]

Milder, S. J.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: application to (carbonmonoxy) myoglobin and (carbonmonoxy) hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[CrossRef]

Montagna, P.

G. C. Telling, P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner, “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science 274, 2079–2082 (1996).
[CrossRef] [PubMed]

Neyer, D. W.

D. W. Neyer, L. A. Rahn, D. W. Chandler, J. A. Nunes, and W. G. Tong, “Circular dichroism spectroscopy using coherent laser-induced thermal gratings,” J. Am. Chem. Soc. 119, 8293–8300 (1997).
[CrossRef]

Nunes, J. A.

D. W. Neyer, L. A. Rahn, D. W. Chandler, J. A. Nunes, and W. G. Tong, “Circular dichroism spectroscopy using coherent laser-induced thermal gratings,” J. Am. Chem. Soc. 119, 8293–8300 (1997).
[CrossRef]

Parchi, P.

G. C. Telling, P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner, “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science 274, 2079–2082 (1996).
[CrossRef] [PubMed]

Prusiner, S. B.

G. C. Telling, P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner, “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science 274, 2079–2082 (1996).
[CrossRef] [PubMed]

Rahn, L. A.

D. W. Neyer, L. A. Rahn, D. W. Chandler, J. A. Nunes, and W. G. Tong, “Circular dichroism spectroscopy using coherent laser-induced thermal gratings,” J. Am. Chem. Soc. 119, 8293–8300 (1997).
[CrossRef]

Schanne-Klein, M. C.

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Wavelength dependence of nonlinear circular dichroism in a chiral ruthenium-tris(bipyridyl) solution,” Phys. Rev. A 66, 013802 (2002).
[CrossRef]

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Experimental observation of nonlinear circular dichroism in a pump–probe experiment,” Chem. Phys. Lett. 338, 269–276 (2001).
[CrossRef]

Simon, J. D.

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614–2627 (1989).
[CrossRef]

Telling, G. C.

G. C. Telling, P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner, “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science 274, 2079–2082 (1996).
[CrossRef] [PubMed]

Tilton, R. F.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: application to (carbonmonoxy) myoglobin and (carbonmonoxy) hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[CrossRef]

Tong, W. G.

D. W. Neyer, L. A. Rahn, D. W. Chandler, J. A. Nunes, and W. G. Tong, “Circular dichroism spectroscopy using coherent laser-induced thermal gratings,” J. Am. Chem. Soc. 119, 8293–8300 (1997).
[CrossRef]

Weaver, C. L.

C. L. Weaver, M. Espinoza, Y. Kress, and P. Davies, “Conformational changes as one of the earliest alterations of tau in Alzheimer’s disease,” Neurobiol. Aging 21, 719–727 (2000).
[CrossRef] [PubMed]

Wenzel, S.

S. Wenzel and V. Buss, “A split beam method for measuring time-resolved circular dichroism,” Rev. Sci. Instrum. 68, 1886–1888 (1995).
[CrossRef]

Xie, X.

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614–2627 (1989).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453–479 (1997).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Experimental observation of nonlinear circular dichroism in a pump–probe experiment,” Chem. Phys. Lett. 338, 269–276 (2001).
[CrossRef]

J. Am. Chem. Soc. (1)

D. W. Neyer, L. A. Rahn, D. W. Chandler, J. A. Nunes, and W. G. Tong, “Circular dichroism spectroscopy using coherent laser-induced thermal gratings,” J. Am. Chem. Soc. 119, 8293–8300 (1997).
[CrossRef]

J. Phys. Chem. (2)

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: application to (carbonmonoxy) myoglobin and (carbonmonoxy) hemoglobin,” J. Phys. Chem. 89, 289–294 (1985).
[CrossRef]

J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory and applications to biological systems,” J. Phys. Chem. 96, 5243–5254 (1992).
[CrossRef]

Neurobiol. Aging (1)

C. L. Weaver, M. Espinoza, Y. Kress, and P. Davies, “Conformational changes as one of the earliest alterations of tau in Alzheimer’s disease,” Neurobiol. Aging 21, 719–727 (2000).
[CrossRef] [PubMed]

Phys. Rev. A (1)

H. Mesnil, M. C. Schanne-Klein, F. Hache, M. Alexandre, G. Lemercier, and C. Andraud, “Wavelength dependence of nonlinear circular dichroism in a chiral ruthenium-tris(bipyridyl) solution,” Phys. Rev. A 66, 013802 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

U. Mayor, C. R. Johnson, V. Daggett, and A. R. Fersht, “Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation,” Proc. Natl. Acad. Sci. U.S.A. 97, 13518–13522 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

S. Wenzel and V. Buss, “A split beam method for measuring time-resolved circular dichroism,” Rev. Sci. Instrum. 68, 1886–1888 (1995).
[CrossRef]

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614–2627 (1989).
[CrossRef]

Science (1)

G. C. Telling, P. Parchi, S. J. DeArmond, P. Cortelli, P. Montagna, R. Gabizon, J. Mastrianni, E. Lugaresi, P. Gambetti, and S. B. Prusiner, “Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity,” Science 274, 2079–2082 (1996).
[CrossRef] [PubMed]

Other (4)

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell (Garland Science, New York, 1994).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), p. 294.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, eds., Handbook of Nonlinear Crystals (Springer-Verlag, Berlin, 1991), p. 57.

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, London, 1975), p. 665.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for time-resolved circular dichroism measurements. The pump is linearly polarized, whereas the probe polarization is modulated alternatively circular left or right by the Pockels cell: P, polarizers; S, sample; LI, lock-in amplifier.

Fig. 2
Fig. 2

Qualitative illustration of the linear dichroism that can occur if the probe polarizations are not perfectly left or right circular.

Fig. 3
Fig. 3

Representation of the index ellipsoid of the PC. The wave-vector direction kˆ is characterized by θ and ϕ. The gray ellipse is the cross section of the index ellipsoid by the plane orthogonal to kˆ; its points M are described by θ and ϕ (not shown).

Fig. 4
Fig. 4

Photography of the structure observed in the preliminary alignment of the PC (see text). The dark cross and the concentric circles are clearly observable.

Fig. 5
Fig. 5

Representation of the (kX, kY) plane. The center corresponds to a perfect alignment of the PC. Dotted curves, points at which LI0(4α) is equal to 0, ±1, and ±3×10-3; solid curves, same as for LI45(δ++δ-). Figure represents the adjustment procedure when one starts with the analyzer at 45° (at left) and at 0° (at right).

Fig. 6
Fig. 6

Pump–probe experiment in a ruthenium-tris(bipyridyl) salt. The up and down triangles that were obtained with the racemic mixture demonstrate the consequence of a misalignment of the PC. The filled circles were obtained with the Δ enantiomer and correspond to a true pump-induced CD experiment.12 The open circles are the PMT signal (in arbitrary units), showing the onset of the absorption saturation at delay 0.

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

T=T0exp(-αL),
T=T0exp(-α0L)(1δαL).
AZ=-12 (α+βIp)A.
β=ω(0cn)2Im χXXXX(3),
β=ω(0cn)2Im χXYYX(3),
I(L)=I(0)exp(-αL)exp(-βIpLeff),
e^L,R=exp(±iφ)2 (Xˆ±iYˆ).
TL,R=exp(-αL)2 [exp(-βIpLeff)+exp(-βIpLeff)],
AL=A(0)(e^L+Le^R),
AR=A(0)(Re^L+e^R),
TL-TR=[(L-R)cos 2φ+(L+R)×sin 2φ]exp(-αL)[exp(-βIpLeff)-exp(-βIpLeff)].
exp(-βIpLeff)-exp(-βIpLeff)
Im χXXXX(3)-Im χXYYX(3).
L=R*
nx=no+12 no3r63Vz=no+Δneo,
ny=no-12 no3r63Vz=no-Δneo,
nz=no+Δnn,
ΔΦ2Δneoωc Lπ2Δneo10-5.
kx=sin θ cos ϕθ cos ϕ,
ky=sin θ sin ϕθ sin ϕ,
kz=cos θ1.
θ-(π/2)=θ cos(ϕ-ϕ).
sin2 θcos2 ϕnx2+sin2 θsin2 ϕny2+cos2 θnz2=1n2.
n=no+Δneosin2 θcos 2ϕ+Δnncos2 θ,
n=no+Δneocos 2ϕ+Δnnθ2cos2(ϕ-ϕ).
ΔnV=0=Δnnθ2,
sin(2ϕ)=Δnn2Δneo θ2sin 2(ϕ-ϕ).
α=Δnn4Δneo θ2sin 2ϕ.
α=Δnn2Δneo kxky.
Δneff=2Δneo+Δnnθ2cos 2ϕ,
Δneff=2Δneo+Δnn(kx2-ky2).
Ein=cosπ4+s-αx^α+sinπ4+s-αy^α.
Eout+=exp(iδ+)2 [(1-s+α)(1-iδ+)x^α+i(1+s-α)(1+iδ+)y^α].
Eout+=e^L+(α-s-iδ+)e^R.
Eout-=e^R+(-α-s-iδ-)e^L.
L=α-s-iδ+,
R=-α-s-iδ-.
α=0,
δ++δ-=0.
α=Δnn2Δneo kxky=0,
δ++δ-=Lωc Δnn(kx2-ky2)=0.
kx2+ky2=λLΔnn,
I±1+2(±α-s)cos 2aδ±sin 2a.
LI4α cos 2a-(δ++δ-)sin 2a.

Metrics