Abstract

A spectrometer using a pulsed, 10.25-μm-wavelength, thermoelectrically cooled quantum-cascade distributed-feedback laser has been developed for sensitive high-resolution infrared absorption spectroscopy. This spectrometer is based upon the use of the almost linear frequency downchirp of up to 75 GHz produced by a square current drive pulse. The behavior of this downchirp has been investigated in detail using high-resolution Fourier-transform spectrometers. The downchirp spectrometer provides a real-time display of the spectral fingerprint of molecular gases over a wave-number range of up to 2.5 cm-1. Using an astigmatic Herriott cell with a maximum path length of 101 m and a 5-kHz pulse repetition rate with 12-s averaging, absorption lines having an absorbance of less than 0.01 (an absorption of less than 1%) may be measured.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilagems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
    [Crossref] [PubMed]
  2. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
    [Crossref]
  3. G. Duxbury, Infrared Vibration-Rotation Spectroscopy From Free Radicals to the Infrared Sky (Wiley, New York, 2000).
  4. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, and J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in situ stratospheric measurements of HCl, CH4,NO2, and HNO3” Appl. Opt. 33, 454–472 (1994).
    [Crossref] [PubMed]
  5. D. C. Scott, R. L. Herman, C. R. Webster, R. D. May, G. J. Flesch, and E. J. Moyer, “Airborne laser infrared absorption spectrometer-II for in situ atmospheric measurements of N2O,CH4, CO, HCl, and NO2 from balloon or remotely piloted aircraft platforms,” Appl. Opt. 38, 4609–4622 (1999).
    [Crossref]
  6. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
    [Crossref]
  7. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
    [Crossref]
  8. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Trace gas detection in ambient air with a thermoelectrically cooled, pulse operated quantum cascade distributed feedback (QC-DFB) laser,” Appl. Opt. 39, 6866–6872 (2000).
    [Crossref]
  9. E. Normand, G. Duxbury, and N. Langford, “Characterisation of the spectral behaviour of pulsed quantum cascade lasers using a high resolution Fourier transform infrared spectrometer,” Opt. Commun. 197, 115–120 (2001).
    [Crossref]
  10. E. L. Normand, M. T. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade laser,” Opt. Lett. 28, 16–18 (2003).
    [Crossref] [PubMed]
  11. G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford University, London, 1986).
  12. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).
  13. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
    [Crossref] [PubMed]
  14. I. F. Howieson, “Near infrared tunable diode laser absorption spectrometer for trace gas detection,” Ph.D. thesis (University of Strathclyde, Glasgow, UK, 1997).
  15. Kolmar Technologies photovoltaic HgCdTe photodetector, bandwidth >100 MHz.
  16. Femto Messtechnik 1.1-GHz high-speed photodetector amplifier.
  17. W. J. Lafferty, J. P. Sattler, T. L. Worchesky, and K. J. Ritter, “Diode laser heterodyne spectroscopy on the ν4 and ν9 of 1,1-difluoroethylene,” J. Mol. Spectrosc. 87, 416–428 (1981).
    [Crossref]
  18. W. Lewis-Bevan, A. J. Merer, M. C. L. Gerry, P. B. Davies, A. J. Morton-Jones, and P. A. Hamilton, “The high-resolution infrared spectrum of the 201 band of carbonyl fluoride: determination of the far infrared laser frequencies,” J. Mol. Spectrosc. 113, 458–471 (1985).
    [Crossref]
  19. E. A. Cohen and W. Lewis-Bevan, “Further measurements of the rotational spectrum of COF2: improved molecularconstants of the ground and ν2 states,” J. Mol. Spectrosc. 148, 378–384 (1991).
    [Crossref]
  20. I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
    [Crossref]
  21. A. G. Maki and J. S. Wells, “Wavenumber calibration tables from heterodyne frequency measurements (version 1.3),” http://physics.nist.gov/wavenum (2003, February4). Originally published as NIST Spec. Publ.821 (National Institute of Standards and TechnologyGaithersburg Md., 1987).

2003 (1)

2002 (2)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilagems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[Crossref]

2001 (2)

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[Crossref]

E. Normand, G. Duxbury, and N. Langford, “Characterisation of the spectral behaviour of pulsed quantum cascade lasers using a high resolution Fourier transform infrared spectrometer,” Opt. Commun. 197, 115–120 (2001).
[Crossref]

2000 (1)

1999 (1)

1998 (2)

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[Crossref]

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

1995 (1)

1994 (1)

1991 (1)

E. A. Cohen and W. Lewis-Bevan, “Further measurements of the rotational spectrum of COF2: improved molecularconstants of the ground and ν2 states,” J. Mol. Spectrosc. 148, 378–384 (1991).
[Crossref]

1985 (1)

W. Lewis-Bevan, A. J. Merer, M. C. L. Gerry, P. B. Davies, A. J. Morton-Jones, and P. A. Hamilton, “The high-resolution infrared spectrum of the 201 band of carbonyl fluoride: determination of the far infrared laser frequencies,” J. Mol. Spectrosc. 113, 458–471 (1985).
[Crossref]

1981 (1)

W. J. Lafferty, J. P. Sattler, T. L. Worchesky, and K. J. Ritter, “Diode laser heterodyne spectroscopy on the ν4 and ν9 of 1,1-difluoroethylene,” J. Mol. Spectrosc. 87, 416–428 (1981).
[Crossref]

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilagems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Baillargeon, J. N.

Beck, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilagems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Bracewell, R.

R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).

Brown, L. R.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Cai, S.

Camy-Peyret, C.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Capasso, F.

Chance, K. V.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Chave, R. G.

Cho, A. Y.

Cohen, E. A.

E. A. Cohen and W. Lewis-Bevan, “Further measurements of the rotational spectrum of COF2: improved molecularconstants of the ground and ν2 states,” J. Mol. Spectrosc. 148, 378–384 (1991).
[Crossref]

Curl, R. F.

Dana, V.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Davies, P. B.

W. Lewis-Bevan, A. J. Merer, M. C. L. Gerry, P. B. Davies, A. J. Morton-Jones, and P. A. Hamilton, “The high-resolution infrared spectrum of the 201 band of carbonyl fluoride: determination of the far infrared laser frequencies,” J. Mol. Spectrosc. 113, 458–471 (1985).
[Crossref]

Duxbury, G.

E. L. Normand, M. T. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade laser,” Opt. Lett. 28, 16–18 (2003).
[Crossref] [PubMed]

E. Normand, G. Duxbury, and N. Langford, “Characterisation of the spectral behaviour of pulsed quantum cascade lasers using a high resolution Fourier transform infrared spectrometer,” Opt. Commun. 197, 115–120 (2001).
[Crossref]

G. Duxbury, Infrared Vibration-Rotation Spectroscopy From Free Radicals to the Infrared Sky (Wiley, New York, 2000).

Edwards, D. P.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Faist, J.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilagems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
[Crossref]

Flaud, J.-M.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Fleming, G. R.

G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford University, London, 1986).

Flesch, G. J.

Gamache, R. R.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Gerry, M. C. L.

W. Lewis-Bevan, A. J. Merer, M. C. L. Gerry, P. B. Davies, A. J. Morton-Jones, and P. A. Hamilton, “The high-resolution infrared spectrum of the 201 band of carbonyl fluoride: determination of the far infrared laser frequencies,” J. Mol. Spectrosc. 113, 458–471 (1985).
[Crossref]

Gini, E.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilagems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Gmachl, C.

Goldman, A.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Hamilton, P. A.

W. Lewis-Bevan, A. J. Merer, M. C. L. Gerry, P. B. Davies, A. J. Morton-Jones, and P. A. Hamilton, “The high-resolution infrared spectrum of the 201 band of carbonyl fluoride: determination of the far infrared laser frequencies,” J. Mol. Spectrosc. 113, 458–471 (1985).
[Crossref]

Herman, R. L.

Hofstetter, D.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilagems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Howieson, I. F.

I. F. Howieson, “Near infrared tunable diode laser absorption spectrometer for trace gas detection,” Ph.D. thesis (University of Strathclyde, Glasgow, UK, 1997).

Hutchinson, A. L.

Ilagems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilagems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Jucks, K. W.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Kebabian, P. L.

Kendall, J.

Kosterev, A. A.

Lafferty, W. J.

W. J. Lafferty, J. P. Sattler, T. L. Worchesky, and K. J. Ritter, “Diode laser heterodyne spectroscopy on the ν4 and ν9 of 1,1-difluoroethylene,” J. Mol. Spectrosc. 87, 416–428 (1981).
[Crossref]

Langford, N.

E. L. Normand, M. T. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade laser,” Opt. Lett. 28, 16–18 (2003).
[Crossref] [PubMed]

E. Normand, G. Duxbury, and N. Langford, “Characterisation of the spectral behaviour of pulsed quantum cascade lasers using a high resolution Fourier transform infrared spectrometer,” Opt. Commun. 197, 115–120 (2001).
[Crossref]

Lewis-Bevan, W.

E. A. Cohen and W. Lewis-Bevan, “Further measurements of the rotational spectrum of COF2: improved molecularconstants of the ground and ν2 states,” J. Mol. Spectrosc. 148, 378–384 (1991).
[Crossref]

W. Lewis-Bevan, A. J. Merer, M. C. L. Gerry, P. B. Davies, A. J. Morton-Jones, and P. A. Hamilton, “The high-resolution infrared spectrum of the 201 band of carbonyl fluoride: determination of the far infrared laser frequencies,” J. Mol. Spectrosc. 113, 458–471 (1985).
[Crossref]

Mandin, J.-Y.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Massie, T.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

May, R. D.

McCann, A.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

McCulloch, M. T.

McManus, J. B.

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilagems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Merer, A. J.

W. Lewis-Bevan, A. J. Merer, M. C. L. Gerry, P. B. Davies, A. J. Morton-Jones, and P. A. Hamilton, “The high-resolution infrared spectrum of the 201 band of carbonyl fluoride: determination of the far infrared laser frequencies,” J. Mol. Spectrosc. 113, 458–471 (1985).
[Crossref]

Morton-Jones, A. J.

W. Lewis-Bevan, A. J. Merer, M. C. L. Gerry, P. B. Davies, A. J. Morton-Jones, and P. A. Hamilton, “The high-resolution infrared spectrum of the 201 band of carbonyl fluoride: determination of the far infrared laser frequencies,” J. Mol. Spectrosc. 113, 458–471 (1985).
[Crossref]

Moyer, E. J.

Namjou, K.

Nemtchinov, V.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Normand, E.

E. Normand, G. Duxbury, and N. Langford, “Characterisation of the spectral behaviour of pulsed quantum cascade lasers using a high resolution Fourier transform infrared spectrometer,” Opt. Commun. 197, 115–120 (2001).
[Crossref]

Normand, E. L.

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilagems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Perrin, A.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Rinsland, C. P.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Ritter, K. J.

W. J. Lafferty, J. P. Sattler, T. L. Worchesky, and K. J. Ritter, “Diode laser heterodyne spectroscopy on the ν4 and ν9 of 1,1-difluoroethylene,” J. Mol. Spectrosc. 87, 416–428 (1981).
[Crossref]

Rothman, I. S.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Sattler, J. P.

W. J. Lafferty, J. P. Sattler, T. L. Worchesky, and K. J. Ritter, “Diode laser heterodyne spectroscopy on the ν4 and ν9 of 1,1-difluoroethylene,” J. Mol. Spectrosc. 87, 416–428 (1981).
[Crossref]

Schroeder, J.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Scott, D. C.

Sivco, D. L.

Swanson, J. E.

Tittel, F. K.

Trimble, C. A.

Varanas, P.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Wattson, R. B.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Webster, C. R.

Whittaker, E. A.

Woodward, W. S.

Worchesky, T. L.

W. J. Lafferty, J. P. Sattler, T. L. Worchesky, and K. J. Ritter, “Diode laser heterodyne spectroscopy on the ν4 and ν9 of 1,1-difluoroethylene,” J. Mol. Spectrosc. 87, 416–428 (1981).
[Crossref]

Yoshino, K.

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Zahniser, M. S.

Appl. Opt. (5)

IEEE J. Quantum Electron. (1)

A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[Crossref]

J. Mol. Spectrosc. (3)

W. J. Lafferty, J. P. Sattler, T. L. Worchesky, and K. J. Ritter, “Diode laser heterodyne spectroscopy on the ν4 and ν9 of 1,1-difluoroethylene,” J. Mol. Spectrosc. 87, 416–428 (1981).
[Crossref]

W. Lewis-Bevan, A. J. Merer, M. C. L. Gerry, P. B. Davies, A. J. Morton-Jones, and P. A. Hamilton, “The high-resolution infrared spectrum of the 201 band of carbonyl fluoride: determination of the far infrared laser frequencies,” J. Mol. Spectrosc. 113, 458–471 (1985).
[Crossref]

E. A. Cohen and W. Lewis-Bevan, “Further measurements of the rotational spectrum of COF2: improved molecularconstants of the ground and ν2 states,” J. Mol. Spectrosc. 148, 378–384 (1991).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
[Crossref]

Opt. Commun. (1)

E. Normand, G. Duxbury, and N. Langford, “Characterisation of the spectral behaviour of pulsed quantum cascade lasers using a high resolution Fourier transform infrared spectrometer,” Opt. Commun. 197, 115–120 (2001).
[Crossref]

Opt. Lett. (2)

Science (1)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilagems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[Crossref] [PubMed]

Other (7)

G. Duxbury, Infrared Vibration-Rotation Spectroscopy From Free Radicals to the Infrared Sky (Wiley, New York, 2000).

G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford University, London, 1986).

R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).

A. G. Maki and J. S. Wells, “Wavenumber calibration tables from heterodyne frequency measurements (version 1.3),” http://physics.nist.gov/wavenum (2003, February4). Originally published as NIST Spec. Publ.821 (National Institute of Standards and TechnologyGaithersburg Md., 1987).

I. F. Howieson, “Near infrared tunable diode laser absorption spectrometer for trace gas detection,” Ph.D. thesis (University of Strathclyde, Glasgow, UK, 1997).

Kolmar Technologies photovoltaic HgCdTe photodetector, bandwidth >100 MHz.

Femto Messtechnik 1.1-GHz high-speed photodetector amplifier.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) High-resolution absorption spectrum of 1,1 difluoroethylene, CF2CH2, recorded using the QC laser as source, with 20 scans of the Bruker Fourier transform IFS 120HR spectrometer at the National Environmental Research Council Molecular Spectroscopy Facility. The resolution of the spectrometer is 0.0015 cm-1. The absorption cell had a path length of 26 cm and the gas pressure was 0.9 Torr. The length of the electrical drive pulse applied to the QC laser was 200 ns, the pulse repetition frequency 20 kHz, and the drive current, 4.8 A. The substrate temperature was -1.5 °C. (i), (ii), and (iii) are three easily identifiable groups of lines. (b) The upper trace is the absorption spectrum of 1,1 difluoroethylene, CF2CH2, recorded using the spectrometer shown in Fig. 2. The 36 traversals through the astigmatic Herriott cell gave a path length of 18 m through gas at a pressure of 0.1 Torr. The lower trace is a recording of the etalon fringe pattern of a solid Ge etalon, of nominal fringe spacing 0.05 cm-1, and calibrated fringe spacing 0.0483 cm-1. The length of the electrical drive pulse applied to the QC laser was 200 ns, the pulse repetition frequency 5 kHz, and the drive current 4.8 A. The temperature of the substrate on which the QC laser was mounted was -1.52 °C. The spectrum was recorded using an average of 4096 scans.

Fig. 2
Fig. 2

Schematic diagram of the apparatus, the multipass cell used is an astigmatic Herriot cell.

Fig. 3
Fig. 3

Trace showing the time-dependent amplitude of the emitted pulses of a quantum-cascade laser. (a) The optical path length was 18 m. The drive current was 4.4 A, the pulse length 250 ns, the pulse repetition frequency 500 Hz, and the substrate temperature -1.52 °C. (b) The optical path length was 101 m, the drive current was 5 A, the pulse length 300 ns, the pulse repetition frequency 500 Hz, and the substrate temperature 9.18 °C. In (a), part of the electrical interference associated with the pulse generator may be seen at the start and end of the optical pulse, whereas in (b), the extra time delay between electrical drive pulse and the signal detection minimizes the effects of electrical interference both at current switch on and at switch off.

Fig. 4
Fig. 4

Comparison of the absorption spectra of the two near-oblate top molecules 1,1, difluoroethylene and carbonyl fluoride to show the ease of pattern recognition within a 200-ns time window. Both spectra were recorded using an average of 4096 scans, an 18-m path length, a 4.2-A drive current, and a substrate temperature of -1.52 °C: (a) 0.051 Torr 1,1, difluoroethylene, (b) 0.055 Torr carbonyl fluoride. The transmission spectra have been off-set for clarity. The wave-number calibration has been made using the germanium etalon with fringe spacing 0.0483 cm-1 and reference lines of 1,1, difluoroethylene taken from the high-resolution Fourier-transform spectrum shown in Fig. 1(a).

Fig. 5
Fig. 5

Comparison of the absorption spectra of 1,1, difluoroethylene recorded using two different drive currents. Both spectra were recorded using an average of 4096 scans and an 18-m path length, a substrate temperature of -1.52 °C, and a gas pressure of approximately 0.1 Torr: (a) drive current 4.8 A, average downchirp -260 MHz/ns; (b) drive current 4.2 A, average downchirp -214 MHz/ns. The effects of the decreased downchirp at lower drive voltage may be seen in the increased separation of groups (i) to (iii) at lower voltage, and the greatly improved resolution of groups (ii) and (iii). The transmission spectra have been off-set vertically for clarity.

Fig. 6
Fig. 6

(a) Comparison of a portion the high-resolution Fourier-transform absorption spectrum of 1,1, difluoroethylene, recorded using a globar source, with transmission spectra recorded (b) at the end and (c) at the beginning of the laser emission produced of a long 300-ns current pulse. A path length of 101 m, pressure of 0.01 Torr, a drive current of 5 A, and a repetition rate of 500 Hz were the same for both (b) and (c). The shift in the start wave number was produced by temperature tuning, (b) used a substrate temperature of -5.52 °C shifting the origin to higher wave number, and (c) used a substrate temperature of 9.18 °C, inducing a shift to lower wave number. In (b), where the average downchirp is -239.1 MHz/ns, two of the lines in the central cluster with a resolution of 0.01 cm-1 are just resolved, whereas in (c), where the average downchirp is -285.6 MHz/ns, the overall resolution is much poorer, and the resolution of the central structure is lost.

Fig. 7
Fig. 7

Portion of the atmosphere in the laboratory recorded at reduced pressure using a path length of 101 m. The laser drive current was 5 A, the pulse length 232 ns, the repetition rate 5 kHz, and the substrate temperature -1.52 °C. An average of 64 000 scans was used: (a) cell pressure 50.5 Torr, (b) pressure 104.5 Torr, (c) carbon dioxide contained in human breath that was added to the sample; the pressure was then reduced to 103.2 Torr. The very weak water line has almost the same percentage absorption in traces (b) and (c). However, it is evident that a large increase in the percentage of absorption due to carbon dioxide has occurred in trace (c) in comparison to trace (b).

Tables (1)

Tables Icon

Table 1 Wave Numbers and Intensities of Absorption Lines of Nitrous Oxide, Water, and Carbon Dioxide Used for Comparison of Relative Sensitivities of Detection in the 8 and 10 μm Regions

Metrics