Abstract

We show that a planar waveguide filled with a nonlinear liquid can act as a polarization switch. Strong energy transfer from TM to TE polarization occurs at an intensity threshold that depends on the geometrical dimensions of the waveguide and on the nonlinear liquid selected. The stimulated scattering generated in these liquids plays a role in polarization switching. For further applications the nonlinear waveguide can be modeled as a quadripole for which the input quantities are the TE and the TM entrance powers that can lead to the achievement of such optical functions as control of an intense light beam by a weak beam, power limiting, and or gates.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Yang, A. Villeneuve, G. I. Stegeman, C. H. Lin, H. H. Lin, and I. P. Chiou, “Nonlinear polarization switching near half the band gap in semiconductors,” Opt. Lett. 18, 1487–1489 (1993).
    [CrossRef] [PubMed]
  2. J. S. Aitchinson, J. U. Kang, and G. I. Stegeman, “Signal gain due to a polarization coupling in a AlGaAs channel waveguide,” Appl. Phys. Lett. 67, 2456–2458 (1995).
    [CrossRef]
  3. J. V. Kang, G. I. Stegeman, J. S. Aitchinson, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
    [CrossRef] [PubMed]
  4. J. S. Aitchison, D. C. Hutchings, J. M. Arnold, J. U. Kang, G. I. Stegeman, E. Ostrovskaya, and N. Akhmediev, “Power dependent polarization dynamics of mixed mode spatial solitary waves in AlGaAs waveguides,” J. Opt. Soc. Am. B 14, 3032–3037 (1997).
    [CrossRef]
  5. D. Wang, R. Barillé, and G. Rivoire, “Influence of soliton propagation on the beam polarization dynamics in a planar waveguide,” J. Opt. Soc. Am. B 15, 181–185 (1998).
    [CrossRef]
  6. S. Huard, Polarisation de la Lumière (Masson, Paris, 1994).
  7. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), p. 269.
  8. R. Barillé and G. Rivoire, “Spatial solitons in nonlinear liquid waveguides,” J. Pramana 57, 1139–1162 (2001).
    [CrossRef]
  9. L. Friedrich, R. Malendevich, G. I. Stegeman, J. M. Soto-Crespo, and N. N. Akhmediev, “Radiation related polarization instability of fast Kerr optical solitons in slab waveguides,” Opt. Commun. 186, 335–341 (2000).
    [CrossRef]
  10. Reported by O. Graydan, “Liquid waveguides speed up all-optical switching,” presented at the Optics and Laser Europe meeting, January 17, 1998.
  11. R. Barille, J. P. Bourdin, and G. Rivoire, “Instabilities due to Rayleigh wing scattering in a spatial soliton,” Opt. Commun. 171, 291–299 (1999).
    [CrossRef]
  12. V. Boucher, Ph.D. dissertation (University of Angers, Angers, France, 2001).
  13. M. Lefkir and G. Rivoire, “Influence of transverse effect on measurements of third order nonlinear susceptibility tensor by self induced polarization state changes,” J. Opt. Soc. Am. B 14, 2856–2864 (1997).
    [CrossRef]
  14. N. P. Xuan, J. L. Fourier, J. Gazengel, and G. Rivoire, “Picosecond measurement of third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
    [CrossRef]
  15. J. Gazengel, N. P. Xuan, and G. Rivoire, “Stimulated Raman scattering thresholds for ultrashort excitation,” Opt. Acta 54, 1245–1255 (1979).
    [CrossRef]
  16. W. Kaiser and M. Maier, Stimulated Rayleigh, Brillouin and Raman Spectroscopy, in Laser Handbook, F. T. Arechi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2.
  17. C. M. de Sterke and J. E. Sipe, “Polarization instability in a waveguide geometry,” Opt. Lett. 16, 202–204 (1991).
    [CrossRef] [PubMed]
  18. A. D. Boardman, K. Xie, and A. A. Zharov, “Polarization in-teraction of spatial solitons in optical planar waveguides,” Phys. Rev. A 51, 692–705 (1995).
    [CrossRef] [PubMed]
  19. J. M. Soto-Crespo, N. N. Akhmediev, and A. Ankiewicz, “Soliton propagation in optical devices with two-component fields: a comparative study,” J. Opt. Soc. Am. B 12, 1100–1109 (1995).
    [CrossRef]
  20. E. A. Ostrovskaia, N. N. Akhmediev, G. I. Stegeman, U. Kang, and J. S. Aitchison, “Mixed-mode spatial solitons in semiconductor waveguide,” J. Opt. Soc. Am. B 14, 880–887 (1997).
    [CrossRef]
  21. R. Barillé, S. Sogomonian, and G. Rivoire, “Spatial and spectral properties of SRWS pumped by a Bessel beam: role of four photon parametric processes,” J. Opt. Soc. Am. B 16, 1139–1145 (1999).
    [CrossRef]

2001 (1)

R. Barillé and G. Rivoire, “Spatial solitons in nonlinear liquid waveguides,” J. Pramana 57, 1139–1162 (2001).
[CrossRef]

2000 (1)

L. Friedrich, R. Malendevich, G. I. Stegeman, J. M. Soto-Crespo, and N. N. Akhmediev, “Radiation related polarization instability of fast Kerr optical solitons in slab waveguides,” Opt. Commun. 186, 335–341 (2000).
[CrossRef]

1999 (2)

R. Barille, J. P. Bourdin, and G. Rivoire, “Instabilities due to Rayleigh wing scattering in a spatial soliton,” Opt. Commun. 171, 291–299 (1999).
[CrossRef]

R. Barillé, S. Sogomonian, and G. Rivoire, “Spatial and spectral properties of SRWS pumped by a Bessel beam: role of four photon parametric processes,” J. Opt. Soc. Am. B 16, 1139–1145 (1999).
[CrossRef]

1998 (1)

1997 (3)

1996 (1)

J. V. Kang, G. I. Stegeman, J. S. Aitchinson, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[CrossRef] [PubMed]

1995 (3)

J. S. Aitchinson, J. U. Kang, and G. I. Stegeman, “Signal gain due to a polarization coupling in a AlGaAs channel waveguide,” Appl. Phys. Lett. 67, 2456–2458 (1995).
[CrossRef]

A. D. Boardman, K. Xie, and A. A. Zharov, “Polarization in-teraction of spatial solitons in optical planar waveguides,” Phys. Rev. A 51, 692–705 (1995).
[CrossRef] [PubMed]

J. M. Soto-Crespo, N. N. Akhmediev, and A. Ankiewicz, “Soliton propagation in optical devices with two-component fields: a comparative study,” J. Opt. Soc. Am. B 12, 1100–1109 (1995).
[CrossRef]

1993 (1)

1991 (1)

1984 (1)

N. P. Xuan, J. L. Fourier, J. Gazengel, and G. Rivoire, “Picosecond measurement of third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
[CrossRef]

1979 (1)

J. Gazengel, N. P. Xuan, and G. Rivoire, “Stimulated Raman scattering thresholds for ultrashort excitation,” Opt. Acta 54, 1245–1255 (1979).
[CrossRef]

Aitchinson, J. S.

J. V. Kang, G. I. Stegeman, J. S. Aitchinson, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[CrossRef] [PubMed]

J. S. Aitchinson, J. U. Kang, and G. I. Stegeman, “Signal gain due to a polarization coupling in a AlGaAs channel waveguide,” Appl. Phys. Lett. 67, 2456–2458 (1995).
[CrossRef]

Aitchison, J. S.

Akhmediev, N.

Akhmediev, N. N.

Ankiewicz, A.

Arnold, J. M.

Barille, R.

R. Barille, J. P. Bourdin, and G. Rivoire, “Instabilities due to Rayleigh wing scattering in a spatial soliton,” Opt. Commun. 171, 291–299 (1999).
[CrossRef]

Barillé, R.

Boardman, A. D.

A. D. Boardman, K. Xie, and A. A. Zharov, “Polarization in-teraction of spatial solitons in optical planar waveguides,” Phys. Rev. A 51, 692–705 (1995).
[CrossRef] [PubMed]

Bourdin, J. P.

R. Barille, J. P. Bourdin, and G. Rivoire, “Instabilities due to Rayleigh wing scattering in a spatial soliton,” Opt. Commun. 171, 291–299 (1999).
[CrossRef]

Chiou, I. P.

de Sterke, C. M.

Fourier, J. L.

N. P. Xuan, J. L. Fourier, J. Gazengel, and G. Rivoire, “Picosecond measurement of third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
[CrossRef]

Friedrich, L.

L. Friedrich, R. Malendevich, G. I. Stegeman, J. M. Soto-Crespo, and N. N. Akhmediev, “Radiation related polarization instability of fast Kerr optical solitons in slab waveguides,” Opt. Commun. 186, 335–341 (2000).
[CrossRef]

Gazengel, J.

N. P. Xuan, J. L. Fourier, J. Gazengel, and G. Rivoire, “Picosecond measurement of third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
[CrossRef]

J. Gazengel, N. P. Xuan, and G. Rivoire, “Stimulated Raman scattering thresholds for ultrashort excitation,” Opt. Acta 54, 1245–1255 (1979).
[CrossRef]

Hutchings, D. C.

Kang, J. U.

Kang, J. V.

J. V. Kang, G. I. Stegeman, J. S. Aitchinson, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[CrossRef] [PubMed]

Kang, U.

Lefkir, M.

Lin, C. H.

Lin, H. H.

Malendevich, R.

L. Friedrich, R. Malendevich, G. I. Stegeman, J. M. Soto-Crespo, and N. N. Akhmediev, “Radiation related polarization instability of fast Kerr optical solitons in slab waveguides,” Opt. Commun. 186, 335–341 (2000).
[CrossRef]

Ostrovskaia, E. A.

Ostrovskaya, E.

Rivoire, G.

R. Barillé and G. Rivoire, “Spatial solitons in nonlinear liquid waveguides,” J. Pramana 57, 1139–1162 (2001).
[CrossRef]

R. Barille, J. P. Bourdin, and G. Rivoire, “Instabilities due to Rayleigh wing scattering in a spatial soliton,” Opt. Commun. 171, 291–299 (1999).
[CrossRef]

R. Barillé, S. Sogomonian, and G. Rivoire, “Spatial and spectral properties of SRWS pumped by a Bessel beam: role of four photon parametric processes,” J. Opt. Soc. Am. B 16, 1139–1145 (1999).
[CrossRef]

D. Wang, R. Barillé, and G. Rivoire, “Influence of soliton propagation on the beam polarization dynamics in a planar waveguide,” J. Opt. Soc. Am. B 15, 181–185 (1998).
[CrossRef]

M. Lefkir and G. Rivoire, “Influence of transverse effect on measurements of third order nonlinear susceptibility tensor by self induced polarization state changes,” J. Opt. Soc. Am. B 14, 2856–2864 (1997).
[CrossRef]

N. P. Xuan, J. L. Fourier, J. Gazengel, and G. Rivoire, “Picosecond measurement of third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
[CrossRef]

J. Gazengel, N. P. Xuan, and G. Rivoire, “Stimulated Raman scattering thresholds for ultrashort excitation,” Opt. Acta 54, 1245–1255 (1979).
[CrossRef]

Sipe, J. E.

Sogomonian, S.

Soto-Crespo, J. M.

L. Friedrich, R. Malendevich, G. I. Stegeman, J. M. Soto-Crespo, and N. N. Akhmediev, “Radiation related polarization instability of fast Kerr optical solitons in slab waveguides,” Opt. Commun. 186, 335–341 (2000).
[CrossRef]

J. M. Soto-Crespo, N. N. Akhmediev, and A. Ankiewicz, “Soliton propagation in optical devices with two-component fields: a comparative study,” J. Opt. Soc. Am. B 12, 1100–1109 (1995).
[CrossRef]

Stegeman, G. I.

L. Friedrich, R. Malendevich, G. I. Stegeman, J. M. Soto-Crespo, and N. N. Akhmediev, “Radiation related polarization instability of fast Kerr optical solitons in slab waveguides,” Opt. Commun. 186, 335–341 (2000).
[CrossRef]

J. S. Aitchison, D. C. Hutchings, J. M. Arnold, J. U. Kang, G. I. Stegeman, E. Ostrovskaya, and N. Akhmediev, “Power dependent polarization dynamics of mixed mode spatial solitary waves in AlGaAs waveguides,” J. Opt. Soc. Am. B 14, 3032–3037 (1997).
[CrossRef]

E. A. Ostrovskaia, N. N. Akhmediev, G. I. Stegeman, U. Kang, and J. S. Aitchison, “Mixed-mode spatial solitons in semiconductor waveguide,” J. Opt. Soc. Am. B 14, 880–887 (1997).
[CrossRef]

J. V. Kang, G. I. Stegeman, J. S. Aitchinson, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[CrossRef] [PubMed]

J. S. Aitchinson, J. U. Kang, and G. I. Stegeman, “Signal gain due to a polarization coupling in a AlGaAs channel waveguide,” Appl. Phys. Lett. 67, 2456–2458 (1995).
[CrossRef]

C. C. Yang, A. Villeneuve, G. I. Stegeman, C. H. Lin, H. H. Lin, and I. P. Chiou, “Nonlinear polarization switching near half the band gap in semiconductors,” Opt. Lett. 18, 1487–1489 (1993).
[CrossRef] [PubMed]

Villeneuve, A.

Wang, D.

Xie, K.

A. D. Boardman, K. Xie, and A. A. Zharov, “Polarization in-teraction of spatial solitons in optical planar waveguides,” Phys. Rev. A 51, 692–705 (1995).
[CrossRef] [PubMed]

Xuan, N. P.

N. P. Xuan, J. L. Fourier, J. Gazengel, and G. Rivoire, “Picosecond measurement of third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
[CrossRef]

J. Gazengel, N. P. Xuan, and G. Rivoire, “Stimulated Raman scattering thresholds for ultrashort excitation,” Opt. Acta 54, 1245–1255 (1979).
[CrossRef]

Yang, C. C.

Zharov, A. A.

A. D. Boardman, K. Xie, and A. A. Zharov, “Polarization in-teraction of spatial solitons in optical planar waveguides,” Phys. Rev. A 51, 692–705 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. S. Aitchinson, J. U. Kang, and G. I. Stegeman, “Signal gain due to a polarization coupling in a AlGaAs channel waveguide,” Appl. Phys. Lett. 67, 2456–2458 (1995).
[CrossRef]

J. Opt. Soc. Am. B (6)

J. Pramana (1)

R. Barillé and G. Rivoire, “Spatial solitons in nonlinear liquid waveguides,” J. Pramana 57, 1139–1162 (2001).
[CrossRef]

Opt. Acta (1)

J. Gazengel, N. P. Xuan, and G. Rivoire, “Stimulated Raman scattering thresholds for ultrashort excitation,” Opt. Acta 54, 1245–1255 (1979).
[CrossRef]

Opt. Commun. (3)

N. P. Xuan, J. L. Fourier, J. Gazengel, and G. Rivoire, “Picosecond measurement of third order susceptibility tensor in liquids,” Opt. Commun. 51, 433–437 (1984).
[CrossRef]

R. Barille, J. P. Bourdin, and G. Rivoire, “Instabilities due to Rayleigh wing scattering in a spatial soliton,” Opt. Commun. 171, 291–299 (1999).
[CrossRef]

L. Friedrich, R. Malendevich, G. I. Stegeman, J. M. Soto-Crespo, and N. N. Akhmediev, “Radiation related polarization instability of fast Kerr optical solitons in slab waveguides,” Opt. Commun. 186, 335–341 (2000).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

A. D. Boardman, K. Xie, and A. A. Zharov, “Polarization in-teraction of spatial solitons in optical planar waveguides,” Phys. Rev. A 51, 692–705 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. V. Kang, G. I. Stegeman, J. S. Aitchinson, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699–3702 (1996).
[CrossRef] [PubMed]

Other (5)

Reported by O. Graydan, “Liquid waveguides speed up all-optical switching,” presented at the Optics and Laser Europe meeting, January 17, 1998.

S. Huard, Polarisation de la Lumière (Masson, Paris, 1994).

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), p. 269.

W. Kaiser and M. Maier, Stimulated Rayleigh, Brillouin and Raman Spectroscopy, in Laser Handbook, F. T. Arechi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2.

V. Boucher, Ph.D. dissertation (University of Angers, Angers, France, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Liquid waveguide structure. For typical values l=5 cm, a=50 μm, and d=8 μm the waveguide is called the standard-sized waveguide.

Fig. 2
Fig. 2

Quadripolar waveguide scheme; u and v powers; Ro=uo/vo=tan2 θ, Po=uo+vo.

Fig. 3
Fig. 3

Relative TE and TM output powers versus relative input power in the standard-sized CS2 waveguide. θ1°. (Reproduced from R. Barille and G. Rivoire, “Stimulated Rayleigh wing scattering,” in Scattering (Academic, San Diego, Calif., 2001), Chap. 52.

Fig. 4
Fig. 4

Relative TM output power v/Ps versus relative input power Po/Ps in the standard-sized waveguide for several values of input ratio Ro.

Fig. 5
Fig. 5

Output TM power versus power in CS2 waveguide for several sizes a and d: stars, d=8 μm and a=50 μm; diamonds, d=12 μm and a=80 μm; squares, d=8 μm and a=80 μm; circles, d=12 μm and a=110 μm. (a) Values of v and Po relative to soliton power PS; (b) absolute values of v and Po.

Fig. 6
Fig. 6

Stars, d=8 μm, a=50 μm, PS=1250 W, and PT=3000 W; diamonds, d=12 μm, a=80 μm, PS=1170 W, and PT=7200 W; squares, d=12 μm, a=110 μm, PS=850 W, and PT=9900 W; circles, d=8 μm, a=80 μm, PS=7800 W, and PT=4800 W.

Fig. 7
Fig. 7

Relative output powers TE (u/vo) and TM (v/vo) including laser and scattered frequencies versus normalized input powers Po/PS in the standard-sized waveguides CS2 and CHCl3.

Fig. 8
Fig. 8

Relative laser output powers TE (u/vo) and TM (v/vo) versus normalized input powers Po/PS in the standard-sized waveguides C6H6 and CCl4.

Fig. 9
Fig. 9

R=PTE/PTM versus input power P for input value Ro=0.03. (a) a=120 μm and d=12 μm; circles, points without SRWS; asterisks, points with SRWS (phase modulation is negligible). (b) a=80 μm, d=12 μm; circles, points without SRWS; asterisks, points with SRWS (phase modulation present).

Fig. 10
Fig. 10

Spectra of the TE and TM components for θ=10° (Ro=0.03), ao=120 μm, d=12 μm, and P=1.02Ps.

Tables (3)

Tables Icon

Table 1 Value of Soliton Power PS for Pure TE or TM Polarization a

Tables Icon

Table 2 Polarization Waveguide Response

Tables Icon

Table 3 Stimulated Scattering Thresholds IT and Soliton Intensities IS a

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

Nm=E2dλno2-N2,
Ps=3×6dk2an2,
G=gITl15,
i Exz+12kx2Exx2+α|Ex|2Ex+β|Ey|2Ex
+γEyEyE*xexp(-2iΔkz)=0,
i Eyz+12ky2Eyy2+α|Ey|2Ey+β|Ex|2Ey
+γExExE*yexp(+2iΔkz)=0,
Xz+1kX 2φx2+φxXx+2γXY sin 2Ψ=0,
Yz+1kY 2θx2+θxYx-2γXY sin 2Ψ=0,
-φz+14kX2Xx2-18kX2Xx2-12kφx2+αX
+βY+γY cos 2Ψ=0,
-θz+14kY2Yx2-18kY2Yx2-12kθx2+αY
+βX+γX cos 2Ψ=0,
Xz=DX+C,
Yz=DY-C,
φz=Dφ+Nφ+Cφ,
θz=Dθ+Nθ+Cθ,
Dx=-1kX 2φx2+φxXx,
C=-2γXY sin(2ψ),
Dφ=14kX2Xx2-18kX2Xx2-φx2,
Nφ=αX,
Cφ=βY+γY cos(2Ψ).
X=Xoch2Kαx,dφdz=αX02,
1wdwdz=DXX-DYY-2γ(X+Y)sin(2Ψ).
w=woexpγIsΔk [cos(2Δkz-1)].
w=w0exp4,6Aknoa2cos(2Δkl)-1Δk.
Xz=DX+C-gXXR,
Yz=DY-C-gYYR,
1wwz=DXX-DYY-2γ(X+Y)×sin(2Ψ)+g(YR-XR).
i EyLz-γExSExASEyL*exp(-iΔkz),
i ExSz-γEyLEyLExAS*exp(-iΔkz),
i ExASz-γEyL*EyL*ExSexp(+iΔkz),
Δk=Δk+ΔkSRWS,

Metrics