Abstract

Applying external electric fields of as much as 65 kV/mm reveals significant enhancement of refractive-index changes Δns and of photorefractive sensitivity S. Samples with different iron concentrations and oxidation–reduction states were investigated. Refractive-index changes of up to Δns=11.5×10-4 and sensitivities as high as S=40 cm/J were measured (ordinary light polarization; light wavelength, λ=488 nm). The refractive-index changes are space-charge limited, but the photorefractive sensitivity S exhibits for large externally applied electric fields a linear increase up to the highest field values used. No nonlinear enhancement of the charge transport was observed. However, the excellent high-field material performance and the record values for Δns and S obtained improve the applicability of LiNbO3 crystals.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Boffi, D. Piccinin, and M. C. Ubaldi, eds., Infrared Holography for Optical Communication–Techniques, Materials, and Devices (Springer-Verlag, Berlin, 2003).
  2. H. J. Coufal, D. Psaltis, and G. Sincerbox, eds., Holographic Data Storage, Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  3. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
    [CrossRef]
  4. K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
    [CrossRef]
  5. K. Buse, “Light-induced charge transport processes in photorefractive crystals. II. Materials,” Appl. Phys. B 64, 391–407 (1997).
    [CrossRef]
  6. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical, Mössbauer, and EPR methods,” Appl. Phys. 12, 355–368 (1977).
    [CrossRef]
  7. R. Orlowski, E. Krätzig, and H. Kurz, “Photorefractive effects in LiNbO3:Fe under external electric fields,” Opt. Commun. 20, 171–174 (1977).
    [CrossRef]
  8. J. D. G. Cook and D. Jones, “Photovoltaic contribution to counter-propagating two-beam coupling in photorefractive lithium niobate,” Opt. Commun. 192, 393–398 (2001).
    [CrossRef]
  9. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
    [CrossRef]
  10. J. J. Amodei, W. Phillips, and D. L. Staebler, “Improved electrooptic materials and fixing techniques for holographic recording,” Appl. Opt. 11, 390–396 (1972).
    [CrossRef] [PubMed]
  11. G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index change,” Appl. Phys. Lett. 19, 130–132 (1971).
    [CrossRef]
  12. P. A. M. Dos Santos, L. Cescato, and J. Frejlich, “Interference-term real-time measurement for self-stabilized two-wave mixing in photorefractive crystals,” Opt. Lett. 13, 1014–1016 (1988).
    [CrossRef]
  13. S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
    [CrossRef]
  14. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  15. N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Phys. Tech. Lett. 2, 438–440 (1976).
  16. K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 168, 777–784 (1999).
    [CrossRef]

2001 (1)

J. D. G. Cook and D. Jones, “Photovoltaic contribution to counter-propagating two-beam coupling in photorefractive lithium niobate,” Opt. Commun. 192, 393–398 (2001).
[CrossRef]

1999 (1)

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 168, 777–784 (1999).
[CrossRef]

1998 (1)

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

1997 (2)

K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals. II. Materials,” Appl. Phys. B 64, 391–407 (1997).
[CrossRef]

1988 (1)

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

1977 (2)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical, Mössbauer, and EPR methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

R. Orlowski, E. Krätzig, and H. Kurz, “Photorefractive effects in LiNbO3:Fe under external electric fields,” Opt. Commun. 20, 171–174 (1977).
[CrossRef]

1976 (1)

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Phys. Tech. Lett. 2, 438–440 (1976).

1974 (1)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

1972 (1)

1971 (1)

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index change,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Amodei, J. J.

Breer, S.

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

Buse, K.

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 168, 777–784 (1999).
[CrossRef]

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals. II. Materials,” Appl. Phys. B 64, 391–407 (1997).
[CrossRef]

Cescato, L.

Cook, J. D. G.

J. D. G. Cook and D. Jones, “Photovoltaic contribution to counter-propagating two-beam coupling in photorefractive lithium niobate,” Opt. Commun. 192, 393–398 (2001).
[CrossRef]

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical, Mössbauer, and EPR methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Dos Santos, P. A. M.

Engelmann, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical, Mössbauer, and EPR methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Frejlich, J.

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index change,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical, Mössbauer, and EPR methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Jones, D.

J. D. G. Cook and D. Jones, “Photovoltaic contribution to counter-propagating two-beam coupling in photorefractive lithium niobate,” Opt. Commun. 192, 393–398 (2001).
[CrossRef]

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical, Mössbauer, and EPR methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Krätzig, E.

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

R. Orlowski, E. Krätzig, and H. Kurz, “Photorefractive effects in LiNbO3:Fe under external electric fields,” Opt. Commun. 20, 171–174 (1977).
[CrossRef]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical, Mössbauer, and EPR methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Phys. Tech. Lett. 2, 438–440 (1976).

Kurz, H.

R. Orlowski, E. Krätzig, and H. Kurz, “Photorefractive effects in LiNbO3:Fe under external electric fields,” Opt. Commun. 20, 171–174 (1977).
[CrossRef]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical, Mössbauer, and EPR methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index change,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

Odoulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Orlowski, R.

R. Orlowski, E. Krätzig, and H. Kurz, “Photorefractive effects in LiNbO3:Fe under external electric fields,” Opt. Commun. 20, 171–174 (1977).
[CrossRef]

Peithmann, K.

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 168, 777–784 (1999).
[CrossRef]

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

Peterson, G. E.

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index change,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

Phillips, W.

Räuber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical, Mössbauer, and EPR methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Staebler, D. L.

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Vogt, H.

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Wiebrock, A.

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 168, 777–784 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3 studied by optical, Mössbauer, and EPR methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Appl. Phys. B (3)

K. Buse, “Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals. II. Materials,” Appl. Phys. B 64, 391–407 (1997).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 168, 777–784 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index change,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Opt. Commun. (2)

R. Orlowski, E. Krätzig, and H. Kurz, “Photorefractive effects in LiNbO3:Fe under external electric fields,” Opt. Commun. 20, 171–174 (1977).
[CrossRef]

J. D. G. Cook and D. Jones, “Photovoltaic contribution to counter-propagating two-beam coupling in photorefractive lithium niobate,” Opt. Commun. 192, 393–398 (2001).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

Sov. Phys. Tech. Lett. (1)

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Phys. Tech. Lett. 2, 438–440 (1976).

Other (2)

P. Boffi, D. Piccinin, and M. C. Ubaldi, eds., Infrared Holography for Optical Communication–Techniques, Materials, and Devices (Springer-Verlag, Berlin, 2003).

H. J. Coufal, D. Psaltis, and G. Sincerbox, eds., Holographic Data Storage, Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic drawing of the crystal holder utilized.

Fig. 2
Fig. 2

Saturation values of refractive-index changes Δns versus external electric field Eext for blue light (λ=488 nm, ordinary light polarization) (a) for three crystals with different iron concentrations cFe and (b) for one of the crystals in three different oxidation (ox)/reduction (red) states. Symbols show experimental data; the solid curves are fits of the standard-charge transport model.

Fig. 3
Fig. 3

Photorefractive sensitivity S versus external electric field Eext for blue light (λ=488 nm, ordinary light polarization) for (a) three crystals with different iron concentrations cFe and (b) for one of the crystals in three different oxidation (ox)/reduction (red) states. Symbols show experimental data; the solid curves are fits of the standard-charge transport model.

Tables (2)

Tables Icon

Table 1 Notation, Dimensions, Iron Concentration, and Concentration Ratio of Filled and Empty Iron Traps of the Samples Investigated

Tables Icon

Table 2 Effective Trap Density Neff, Fe2+ Concentration cFe2+, and Sensitivity Parameter a for the Samples Investigated a

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

cFe2+=2.16×1021m-2αo477nm,
η=tanh2πΔndλ cos θ,
S=1IdηttτSC,
S=πIλ cos θΔnsτSC.
ESC=-Eext+Ephv+iED1+ED/Eq-iEext/Eq-iEphv/Eq.
ESC=-(Eext+Ephv)2+ED2(1+ED/Eq)2+(Eext/Eq+Ephv/Eq)21/2,
Ephv=jphvσph=β*reμqA cFe3+,ED=kBTe K,
Eq=e0K Neff,Eq=e0K cFe2+,
Neff=1cFe2++1cFe3+-1,
ESC=-Eq.
Δns=-12no3r13ESC,
τSC=τM1+(ED-iEext)/EM1+ED/Eq-iEext/Eq-iEphv/Eq,
EM=rqμK cFe3+,τM=0σ,
S=πno3r132Iλ cos θESCτSC
=πno3r132Iλ cos θτM(Eext+Ephv)2+ED2(1+ED/EM)2+(Eext/EM)21/2.
S=a[(Eext+Ephv)2+ED2]1/2,
a=πn03r132Iλ cos θ τM.
SEext.

Metrics