Abstract

Adaptive optics systems offer the prospect of significantly increasing the capabilities of high-power laser focusability, which is currently limited by thermal distortions. Using novel wave-front measurement techniques that improve the stability of such systems and a downstream large-aperture deformable mirror that does not bear the usual limitations associated with precompensation, we have improved the focusability of a high-power (6×100-J, 1-ns) Nd:glass laser facility by a factor of 6. Measuring the wave front and the on-target focal spot at full power, we obtained after correction focal spots with a best Strehl ratio of 0.6. The pulse peak intensity could thus be increased to 2×1016 W/cm2, a level beyond reach of the usual focal spot shaping techniques. We then used the near-diffraction-limited focal spots produced by this system to measure the laser–plasma coupling for a single, controlled filament of light and to underline the importance of the coupling among the numerous speckles within conventional multispeckled beams.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, “Thermal effect in laser rods,” in Solid-State Laser Engineering, D. L. MacAdam, ed. (Springer-Verlag, Berlin, 1976), pp. 365–382.
  2. P. E. Young, “Laser beam propagation and channel formation in underdense plasmas,” Phys. Plasmas 2, 2825–2834 (1995).
    [CrossRef]
  3. W. L. Kruer, Physics of Laser Plasma Interactions (Addison-Wesley, Reading, Mass., 1988).
  4. J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
    [CrossRef]
  5. J. D. Lindl, Inertial Confinement Fusion. The Quest for Ignition and Energy Gain Using Indirect Drive (Springer-Verlag, New York, 1998).
  6. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1059 (1984).
    [CrossRef]
  7. J. Garnier, “Statistics of the hot spots of smoothed beams produced by random phase plates revisited,” Phys. Plasmas 6, 1601–1610 (1999).
    [CrossRef]
  8. Laboratory for Laser Energetics, University of Rochester, “Phase conversion using distributed polarization rotation,” Vol. 45 of LLE Review (National Technical Information Services, Springfield, Va., 1990).
  9. K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
    [CrossRef]
  10. R. Lehmberg and S. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983).
    [CrossRef]
  11. R. Lehmberg, A. Schmitt, and S. Bodner, “Theory of induced spatial incoherence,” J. Appl. Phys. 62, 2680–2701 (1987).
    [CrossRef]
  12. S. Skupsky, R. Short, T. Kessler, R. Craxton, S. Letzring, and J. Soures, “Improved laser beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
    [CrossRef]
  13. D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993).
    [CrossRef]
  14. C. Still, R. Berger, A. Langdon, D. Hinkel, L. Suter, and E. Williams, “Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams,” Phys. Plasmas 7, 2023–2032 (2000).
    [CrossRef]
  15. E. Valeo, “Stability of filamentary structures (e.m. wave propagation in plasma),” Phys. Fluids 17, 1391–1393 (1974).
    [CrossRef]
  16. E. Valeo and K. Estabrook, “Stability of the critical surface in irradiated plasma,” Phys. Rev. Lett. 34, 1008–1010 (1975).
    [CrossRef]
  17. C. Ren and W. B. Mori, “Physical picture for the laser hosing instability in a plasma,” Phys. Plasmas 8, 3118–3119 (2001).
    [CrossRef]
  18. D. Pesme, W. Rozmus, V. Tikhonchuk, A. Maximov, I. Ourdev, and C. Still, “Resonant instability of laser filaments in a plasma,” Phys. Rev. Lett. 84, 278–280 (2000).
    [CrossRef] [PubMed]
  19. O. V. Batishchev, V. Y. Bychenkov, F. Detering, W. Rozmus, R. Sydora, C. E. Capjack, and V. N. Novikov, “Heat transport and electron distribution function in laser produced plasmas with hot spots,” Phys. Plasmas 9, 2302–2310 (2002), and references therein.
    [CrossRef]
  20. A. Brantov, V. Bychenkov, V. Tikhonchuck, and W. Rozmus, “Nonlocal electron transport in laser heated plasmas,” Phys. Plasmas 5, 2742–2753 (1998).
    [CrossRef]
  21. S. Cameron and J. Camacho, “Characterization of heat transport dynamics in laser-produced plasmas using collective Thomson scattering: simulation and proposed experiment,” J. Fusion Energy 14, 373–388 (1995).
    [CrossRef]
  22. D. Montgomery, R. Johnson, J. Cobble, J. Fernandez, E. Lindman, H. Rose, and K. Estabrook, “Characterization of plasma and laser conditions for single hot spot experiments,” Laser Part. Beams 17, 349–359 (1999).
    [CrossRef]
  23. D. S. Montgomery, R. P. Johnson, H. A. Rose, J. A. Cobble, and J. C. Fernández, “Flow-induced beam steering in a single laser hot spot,” Phys. Rev. Lett. 84, 678–680 (2000).
    [CrossRef] [PubMed]
  24. F. Roddier, Adaptive Optics in Astronomy (Cambridge U. Press, Cambridge, 1999).
  25. F. Druon, G. Chériaux, J. Faure, J. Nees, M. Nantel, A. Maksimchuk, G. Mourou, J.-C. Chanteloup, and G. Vdovin, “Wave-front correction of femtosecond terawatt lasers by deformable mirrors,” Opt. Lett. 23, 1043–1045 (1998).
    [CrossRef]
  26. D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
    [CrossRef]
  27. J.-C. Chanteloup, H. Baldis, A. Migus, G. Mourou, B. Loiseaux, and J.-P. Huignard, “Nearly diffraction-limited laser focal spot obtained by use of an optically addressed light valve in an adaptive-optics loop,” Opt. Lett. 23, 475–477 (1998).
    [CrossRef]
  28. J.-C. Chanteloup, F. Druon, M. Nantel, A. Maksimchuk, and G. Mourou, “Single-shot wave-front measurements of high-intensity ultrashort laser pulses with a three-wave interferometer,” Opt. Lett. 23, 621–623 (1998).
    [CrossRef]
  29. J. Primot and L. Sogno, “Achromatic three-wave (or more) lateral shearing interferometer,” J. Opt. Soc. Am. A 12, 2679–2685 (1995).
    [CrossRef]
  30. A. V. Kudryashov and V. I. Shmalhausen, “Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications,” Opt. Eng. 35, 3064–3073 (1996).
    [CrossRef]
  31. J. Fuchs, B. Wattellier, J. P. Zou, J. C. Chanteloup, H. Bandulet, P. Michel, and C. Labaune, “Wave front correction for near diffraction-limited focal spot on a 6×100 J/1 ns laser facility,” in Laser Applications and Technologies, A. A. Mak and V. Ya. Panchenko, eds., Proc. SPIE (to be published).
  32. K. Strehl, “Uber Luftschlieren und Zonenfehler,” Zeitschrift Instrumentenkunde 22, 213–223 (1902). It is the ratio of the peak intensity at the focus of the beam with the given (distorted) wave front and its near-field intensity profile, to that of the same near-field intensity distribution with a flat wave front.
  33. B. Wattellier, “Amélioration des performances des chai⁁nes lasers solides utilisant l’amplification à dérive de fréquence: nouveaux réseaux de diffraction à haute tenue au flux et mise en forme programmable de faisceaux lasers par modulation de la phase spatiale,” Ph.D. dissertation (Ecole Polytechnique, Palaiseau, France, 2001).
  34. W. Koechner, “Damage of optical elements,” in Solid-State Laser Engineering, D. L. MacAdam, ed. (Springer-Verlag, Berlin, 1976), pp. 546–549.
  35. B. Wattellier, J.-C. Chanteloup, J. Fuchs, C. Sauteret, J. P. Zou, and A. Migus, “Wave front correction and focusing optimization of partially thermalized Nd:glass high power CPA laser,” in Conference on Lasers and Electro-Optics, OSA 2001 Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 70–71.
  36. J. Fuchs, C. Labaune, S. Depierreux, V. Tikhonchuk, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment,” Phys. Plasmas 7, 4659–4668 (2000).
    [CrossRef]
  37. V. Bychenkov, W. Rozmus, A. Brantov, and V. Tikhonchuk, “Theory of filamentation and stimulated Brillouin scattering with nonlocal hydrodynamics,” Phys. Plasmas 7, 1511–1519 (2000).
    [CrossRef]
  38. B. Bezzerides, H. X. Vu, and R. A. Kopp, “Hydrodynamic coupling of a speckled laser beam to an axially flowing plasma,” Phys. Plasmas 8, 249–259 (2001).
    [CrossRef]
  39. A. Schmitt and B. Afeyan, “Time-dependent filamentation and stimulated Brillouin forward scattering in inertial con-finement fusion plasmas,” Phys. Plasmas 5, 503–517 (1998).
    [CrossRef]
  40. A. Schmitt, “The effects of optical smoothing techniques on filamentation in laser plasmas,” Phys. Fluids 31, 3079–3101 (1988).
    [CrossRef]
  41. S. Hüller, P. Mounaix, V. Tikhonchuk, and D. Pesme, “Interaction of two neighboring laser beams taking into account the effects of plasma hydrodynamics,” Phys. Plasmas 4, 2670–2680 (1997).
    [CrossRef]
  42. V. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S. Hüller, J. Myatt, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments,” Phys. Plasmas 8, 1636–1649 (2001).
    [CrossRef]
  43. T. Afshar-rad, L. Gizzi, M. Desselberger, F. Khattak, O. Willi, and A. Giulietti, “Evidence for whole-beam self-focusing of induced spatially incoherent laser light in large underdense plasma,” Phys. Rev. Lett. 68, 942–944 (1992).
    [CrossRef] [PubMed]
  44. S. Wilks, P. Young, J. Hammer, M. Tabak, and W. Kruer, “Spreading of intense laser beams due to filamentation,” Phys. Rev. Lett. 73, 2994–2997 (1994).
    [CrossRef] [PubMed]
  45. V. V. Elisseev, I. Ourdev, W. Rozmus, V. Tikhonchuk, C. Capjack, and P. Young, “Ion wave response to intense laser beams in underdense plasmas,” Phys. Plasmas 4, 4333–4346 (1997).
    [CrossRef]
  46. P. E. Young, M. Foord, J. Hammer, W. Kruer, M. Tabak, and S. Wilks, “Time-dependent channel formation in a laser-produced plasma,” Phys. Rev. Lett. 75, 1082–1085 (1995).
    [CrossRef] [PubMed]
  47. E. M. Epperlein, “Kinetic theory of laser filamentation in plasmas,” Phys. Rev. Lett. 65, 2145–2148 (1990).
    [CrossRef] [PubMed]
  48. E. M. Epperlein and R. W. Short, “Nonlocal heat transport effects on the filamentation of light in plasmas,” Phys. Fluids B 4, 2211–2216 (1992).
    [CrossRef]
  49. J. Myatt, D. Pesme, S. Hüller, A. Maximov, W. Rozmus, and C. Capjack, “Nonlinear propagation of a randomized beam through an expanding plasma,” Phys. Rev. Lett. 87, 255003 (2001).
    [CrossRef]
  50. J. Fuchs, C. Labaune, S. Depierreux, H. Baldis, A. Michard, and G. James, “Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma,” Phys. Rev. Lett. 86, 432–434 (2001).
    [CrossRef] [PubMed]
  51. C. Yamanaka, T. Yamanaka, J. Mizui, and N. Yamaguchi, “Self-phase modulation of laser light in a laser-produced plasma,” Phys. Rev. A 11, 2138–2141 (1975).
    [CrossRef]
  52. P. E. Young, “Experimental observation of filamentation growth in laser-produced plasmas,” Phys. Plasmas 2, 2815–2824 (1995).
    [CrossRef]
  53. R. W. Short and E. M. Epperlein, “Thermal stimulated Brillouin scattering in laser-produced plasmas,” Phys. Rev. Lett. 68, 3307–3310 (1992).
    [CrossRef] [PubMed]
  54. E. Williams, “Convective growth of parametrically unstable modes in inhomogeneous media,” Phys. Fluids B 3, 1504–1506 (1991).
    [CrossRef]

2002 (1)

O. V. Batishchev, V. Y. Bychenkov, F. Detering, W. Rozmus, R. Sydora, C. E. Capjack, and V. N. Novikov, “Heat transport and electron distribution function in laser produced plasmas with hot spots,” Phys. Plasmas 9, 2302–2310 (2002), and references therein.
[CrossRef]

2001 (5)

C. Ren and W. B. Mori, “Physical picture for the laser hosing instability in a plasma,” Phys. Plasmas 8, 3118–3119 (2001).
[CrossRef]

B. Bezzerides, H. X. Vu, and R. A. Kopp, “Hydrodynamic coupling of a speckled laser beam to an axially flowing plasma,” Phys. Plasmas 8, 249–259 (2001).
[CrossRef]

V. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S. Hüller, J. Myatt, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments,” Phys. Plasmas 8, 1636–1649 (2001).
[CrossRef]

J. Myatt, D. Pesme, S. Hüller, A. Maximov, W. Rozmus, and C. Capjack, “Nonlinear propagation of a randomized beam through an expanding plasma,” Phys. Rev. Lett. 87, 255003 (2001).
[CrossRef]

J. Fuchs, C. Labaune, S. Depierreux, H. Baldis, A. Michard, and G. James, “Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma,” Phys. Rev. Lett. 86, 432–434 (2001).
[CrossRef] [PubMed]

2000 (6)

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

J. Fuchs, C. Labaune, S. Depierreux, V. Tikhonchuk, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment,” Phys. Plasmas 7, 4659–4668 (2000).
[CrossRef]

V. Bychenkov, W. Rozmus, A. Brantov, and V. Tikhonchuk, “Theory of filamentation and stimulated Brillouin scattering with nonlocal hydrodynamics,” Phys. Plasmas 7, 1511–1519 (2000).
[CrossRef]

D. Pesme, W. Rozmus, V. Tikhonchuk, A. Maximov, I. Ourdev, and C. Still, “Resonant instability of laser filaments in a plasma,” Phys. Rev. Lett. 84, 278–280 (2000).
[CrossRef] [PubMed]

D. S. Montgomery, R. P. Johnson, H. A. Rose, J. A. Cobble, and J. C. Fernández, “Flow-induced beam steering in a single laser hot spot,” Phys. Rev. Lett. 84, 678–680 (2000).
[CrossRef] [PubMed]

C. Still, R. Berger, A. Langdon, D. Hinkel, L. Suter, and E. Williams, “Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams,” Phys. Plasmas 7, 2023–2032 (2000).
[CrossRef]

1999 (2)

J. Garnier, “Statistics of the hot spots of smoothed beams produced by random phase plates revisited,” Phys. Plasmas 6, 1601–1610 (1999).
[CrossRef]

D. Montgomery, R. Johnson, J. Cobble, J. Fernandez, E. Lindman, H. Rose, and K. Estabrook, “Characterization of plasma and laser conditions for single hot spot experiments,” Laser Part. Beams 17, 349–359 (1999).
[CrossRef]

1998 (5)

1997 (2)

S. Hüller, P. Mounaix, V. Tikhonchuk, and D. Pesme, “Interaction of two neighboring laser beams taking into account the effects of plasma hydrodynamics,” Phys. Plasmas 4, 2670–2680 (1997).
[CrossRef]

V. V. Elisseev, I. Ourdev, W. Rozmus, V. Tikhonchuk, C. Capjack, and P. Young, “Ion wave response to intense laser beams in underdense plasmas,” Phys. Plasmas 4, 4333–4346 (1997).
[CrossRef]

1996 (1)

A. V. Kudryashov and V. I. Shmalhausen, “Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications,” Opt. Eng. 35, 3064–3073 (1996).
[CrossRef]

1995 (6)

J. Primot and L. Sogno, “Achromatic three-wave (or more) lateral shearing interferometer,” J. Opt. Soc. Am. A 12, 2679–2685 (1995).
[CrossRef]

P. E. Young, M. Foord, J. Hammer, W. Kruer, M. Tabak, and S. Wilks, “Time-dependent channel formation in a laser-produced plasma,” Phys. Rev. Lett. 75, 1082–1085 (1995).
[CrossRef] [PubMed]

S. Cameron and J. Camacho, “Characterization of heat transport dynamics in laser-produced plasmas using collective Thomson scattering: simulation and proposed experiment,” J. Fusion Energy 14, 373–388 (1995).
[CrossRef]

P. E. Young, “Laser beam propagation and channel formation in underdense plasmas,” Phys. Plasmas 2, 2825–2834 (1995).
[CrossRef]

J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
[CrossRef]

P. E. Young, “Experimental observation of filamentation growth in laser-produced plasmas,” Phys. Plasmas 2, 2815–2824 (1995).
[CrossRef]

1994 (1)

S. Wilks, P. Young, J. Hammer, M. Tabak, and W. Kruer, “Spreading of intense laser beams due to filamentation,” Phys. Rev. Lett. 73, 2994–2997 (1994).
[CrossRef] [PubMed]

1993 (1)

D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993).
[CrossRef]

1992 (4)

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

T. Afshar-rad, L. Gizzi, M. Desselberger, F. Khattak, O. Willi, and A. Giulietti, “Evidence for whole-beam self-focusing of induced spatially incoherent laser light in large underdense plasma,” Phys. Rev. Lett. 68, 942–944 (1992).
[CrossRef] [PubMed]

R. W. Short and E. M. Epperlein, “Thermal stimulated Brillouin scattering in laser-produced plasmas,” Phys. Rev. Lett. 68, 3307–3310 (1992).
[CrossRef] [PubMed]

E. M. Epperlein and R. W. Short, “Nonlocal heat transport effects on the filamentation of light in plasmas,” Phys. Fluids B 4, 2211–2216 (1992).
[CrossRef]

1991 (1)

E. Williams, “Convective growth of parametrically unstable modes in inhomogeneous media,” Phys. Fluids B 3, 1504–1506 (1991).
[CrossRef]

1990 (1)

E. M. Epperlein, “Kinetic theory of laser filamentation in plasmas,” Phys. Rev. Lett. 65, 2145–2148 (1990).
[CrossRef] [PubMed]

1989 (1)

S. Skupsky, R. Short, T. Kessler, R. Craxton, S. Letzring, and J. Soures, “Improved laser beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

1988 (1)

A. Schmitt, “The effects of optical smoothing techniques on filamentation in laser plasmas,” Phys. Fluids 31, 3079–3101 (1988).
[CrossRef]

1987 (1)

R. Lehmberg, A. Schmitt, and S. Bodner, “Theory of induced spatial incoherence,” J. Appl. Phys. 62, 2680–2701 (1987).
[CrossRef]

1984 (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1059 (1984).
[CrossRef]

1983 (1)

R. Lehmberg and S. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983).
[CrossRef]

1975 (2)

E. Valeo and K. Estabrook, “Stability of the critical surface in irradiated plasma,” Phys. Rev. Lett. 34, 1008–1010 (1975).
[CrossRef]

C. Yamanaka, T. Yamanaka, J. Mizui, and N. Yamaguchi, “Self-phase modulation of laser light in a laser-produced plasma,” Phys. Rev. A 11, 2138–2141 (1975).
[CrossRef]

1974 (1)

E. Valeo, “Stability of filamentary structures (e.m. wave propagation in plasma),” Phys. Fluids 17, 1391–1393 (1974).
[CrossRef]

Afeyan, B.

A. Schmitt and B. Afeyan, “Time-dependent filamentation and stimulated Brillouin forward scattering in inertial con-finement fusion plasmas,” Phys. Plasmas 5, 503–517 (1998).
[CrossRef]

Afshar-rad, T.

T. Afshar-rad, L. Gizzi, M. Desselberger, F. Khattak, O. Willi, and A. Giulietti, “Evidence for whole-beam self-focusing of induced spatially incoherent laser light in large underdense plasma,” Phys. Rev. Lett. 68, 942–944 (1992).
[CrossRef] [PubMed]

Arinaga, S.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1059 (1984).
[CrossRef]

Baldis, H.

V. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S. Hüller, J. Myatt, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments,” Phys. Plasmas 8, 1636–1649 (2001).
[CrossRef]

J. Fuchs, C. Labaune, S. Depierreux, H. Baldis, A. Michard, and G. James, “Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma,” Phys. Rev. Lett. 86, 432–434 (2001).
[CrossRef] [PubMed]

J. Fuchs, C. Labaune, S. Depierreux, V. Tikhonchuk, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment,” Phys. Plasmas 7, 4659–4668 (2000).
[CrossRef]

J.-C. Chanteloup, H. Baldis, A. Migus, G. Mourou, B. Loiseaux, and J.-P. Huignard, “Nearly diffraction-limited laser focal spot obtained by use of an optically addressed light valve in an adaptive-optics loop,” Opt. Lett. 23, 475–477 (1998).
[CrossRef]

Batishchev, O. V.

O. V. Batishchev, V. Y. Bychenkov, F. Detering, W. Rozmus, R. Sydora, C. E. Capjack, and V. N. Novikov, “Heat transport and electron distribution function in laser produced plasmas with hot spots,” Phys. Plasmas 9, 2302–2310 (2002), and references therein.
[CrossRef]

Berger, R.

C. Still, R. Berger, A. Langdon, D. Hinkel, L. Suter, and E. Williams, “Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams,” Phys. Plasmas 7, 2023–2032 (2000).
[CrossRef]

Bezzerides, B.

B. Bezzerides, H. X. Vu, and R. A. Kopp, “Hydrodynamic coupling of a speckled laser beam to an axially flowing plasma,” Phys. Plasmas 8, 249–259 (2001).
[CrossRef]

Bodner, S.

R. Lehmberg, A. Schmitt, and S. Bodner, “Theory of induced spatial incoherence,” J. Appl. Phys. 62, 2680–2701 (1987).
[CrossRef]

Brantov, A.

V. Bychenkov, W. Rozmus, A. Brantov, and V. Tikhonchuk, “Theory of filamentation and stimulated Brillouin scattering with nonlocal hydrodynamics,” Phys. Plasmas 7, 1511–1519 (2000).
[CrossRef]

A. Brantov, V. Bychenkov, V. Tikhonchuck, and W. Rozmus, “Nonlocal electron transport in laser heated plasmas,” Phys. Plasmas 5, 2742–2753 (1998).
[CrossRef]

Brown, C. G.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Bychenkov, V.

V. Bychenkov, W. Rozmus, A. Brantov, and V. Tikhonchuk, “Theory of filamentation and stimulated Brillouin scattering with nonlocal hydrodynamics,” Phys. Plasmas 7, 1511–1519 (2000).
[CrossRef]

A. Brantov, V. Bychenkov, V. Tikhonchuck, and W. Rozmus, “Nonlocal electron transport in laser heated plasmas,” Phys. Plasmas 5, 2742–2753 (1998).
[CrossRef]

Bychenkov, V. Y.

O. V. Batishchev, V. Y. Bychenkov, F. Detering, W. Rozmus, R. Sydora, C. E. Capjack, and V. N. Novikov, “Heat transport and electron distribution function in laser produced plasmas with hot spots,” Phys. Plasmas 9, 2302–2310 (2002), and references therein.
[CrossRef]

Camacho, J.

S. Cameron and J. Camacho, “Characterization of heat transport dynamics in laser-produced plasmas using collective Thomson scattering: simulation and proposed experiment,” J. Fusion Energy 14, 373–388 (1995).
[CrossRef]

Cameron, S.

S. Cameron and J. Camacho, “Characterization of heat transport dynamics in laser-produced plasmas using collective Thomson scattering: simulation and proposed experiment,” J. Fusion Energy 14, 373–388 (1995).
[CrossRef]

Capjack, C.

J. Myatt, D. Pesme, S. Hüller, A. Maximov, W. Rozmus, and C. Capjack, “Nonlinear propagation of a randomized beam through an expanding plasma,” Phys. Rev. Lett. 87, 255003 (2001).
[CrossRef]

V. V. Elisseev, I. Ourdev, W. Rozmus, V. Tikhonchuk, C. Capjack, and P. Young, “Ion wave response to intense laser beams in underdense plasmas,” Phys. Plasmas 4, 4333–4346 (1997).
[CrossRef]

Capjack, C. E.

O. V. Batishchev, V. Y. Bychenkov, F. Detering, W. Rozmus, R. Sydora, C. E. Capjack, and V. N. Novikov, “Heat transport and electron distribution function in laser produced plasmas with hot spots,” Phys. Plasmas 9, 2302–2310 (2002), and references therein.
[CrossRef]

Chanteloup, J.-C.

Chériaux, G.

Cobble, J.

D. Montgomery, R. Johnson, J. Cobble, J. Fernandez, E. Lindman, H. Rose, and K. Estabrook, “Characterization of plasma and laser conditions for single hot spot experiments,” Laser Part. Beams 17, 349–359 (1999).
[CrossRef]

Cobble, J. A.

D. S. Montgomery, R. P. Johnson, H. A. Rose, J. A. Cobble, and J. C. Fernández, “Flow-induced beam steering in a single laser hot spot,” Phys. Rev. Lett. 84, 678–680 (2000).
[CrossRef] [PubMed]

Cowan, T. E.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Craxton, R.

S. Skupsky, R. Short, T. Kessler, R. Craxton, S. Letzring, and J. Soures, “Improved laser beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Depierreux, S.

V. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S. Hüller, J. Myatt, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments,” Phys. Plasmas 8, 1636–1649 (2001).
[CrossRef]

J. Fuchs, C. Labaune, S. Depierreux, H. Baldis, A. Michard, and G. James, “Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma,” Phys. Rev. Lett. 86, 432–434 (2001).
[CrossRef] [PubMed]

J. Fuchs, C. Labaune, S. Depierreux, V. Tikhonchuk, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment,” Phys. Plasmas 7, 4659–4668 (2000).
[CrossRef]

Desselberger, M.

T. Afshar-rad, L. Gizzi, M. Desselberger, F. Khattak, O. Willi, and A. Giulietti, “Evidence for whole-beam self-focusing of induced spatially incoherent laser light in large underdense plasma,” Phys. Rev. Lett. 68, 942–944 (1992).
[CrossRef] [PubMed]

Detering, F.

O. V. Batishchev, V. Y. Bychenkov, F. Detering, W. Rozmus, R. Sydora, C. E. Capjack, and V. N. Novikov, “Heat transport and electron distribution function in laser produced plasmas with hot spots,” Phys. Plasmas 9, 2302–2310 (2002), and references therein.
[CrossRef]

Druon, F.

Elisseev, V. V.

V. V. Elisseev, I. Ourdev, W. Rozmus, V. Tikhonchuk, C. Capjack, and P. Young, “Ion wave response to intense laser beams in underdense plasmas,” Phys. Plasmas 4, 4333–4346 (1997).
[CrossRef]

Epperlein, E. M.

E. M. Epperlein and R. W. Short, “Nonlocal heat transport effects on the filamentation of light in plasmas,” Phys. Fluids B 4, 2211–2216 (1992).
[CrossRef]

R. W. Short and E. M. Epperlein, “Thermal stimulated Brillouin scattering in laser-produced plasmas,” Phys. Rev. Lett. 68, 3307–3310 (1992).
[CrossRef] [PubMed]

E. M. Epperlein, “Kinetic theory of laser filamentation in plasmas,” Phys. Rev. Lett. 65, 2145–2148 (1990).
[CrossRef] [PubMed]

Estabrook, K.

D. Montgomery, R. Johnson, J. Cobble, J. Fernandez, E. Lindman, H. Rose, and K. Estabrook, “Characterization of plasma and laser conditions for single hot spot experiments,” Laser Part. Beams 17, 349–359 (1999).
[CrossRef]

E. Valeo and K. Estabrook, “Stability of the critical surface in irradiated plasma,” Phys. Rev. Lett. 34, 1008–1010 (1975).
[CrossRef]

Faure, J.

Fernandez, J.

D. Montgomery, R. Johnson, J. Cobble, J. Fernandez, E. Lindman, H. Rose, and K. Estabrook, “Characterization of plasma and laser conditions for single hot spot experiments,” Laser Part. Beams 17, 349–359 (1999).
[CrossRef]

Fernández, J. C.

D. S. Montgomery, R. P. Johnson, H. A. Rose, J. A. Cobble, and J. C. Fernández, “Flow-induced beam steering in a single laser hot spot,” Phys. Rev. Lett. 84, 678–680 (2000).
[CrossRef] [PubMed]

Foord, M.

P. E. Young, M. Foord, J. Hammer, W. Kruer, M. Tabak, and S. Wilks, “Time-dependent channel formation in a laser-produced plasma,” Phys. Rev. Lett. 75, 1082–1085 (1995).
[CrossRef] [PubMed]

Fuchs, J.

J. Fuchs, C. Labaune, S. Depierreux, H. Baldis, A. Michard, and G. James, “Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma,” Phys. Rev. Lett. 86, 432–434 (2001).
[CrossRef] [PubMed]

V. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S. Hüller, J. Myatt, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments,” Phys. Plasmas 8, 1636–1649 (2001).
[CrossRef]

J. Fuchs, C. Labaune, S. Depierreux, V. Tikhonchuk, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment,” Phys. Plasmas 7, 4659–4668 (2000).
[CrossRef]

Garnier, J.

J. Garnier, “Statistics of the hot spots of smoothed beams produced by random phase plates revisited,” Phys. Plasmas 6, 1601–1610 (1999).
[CrossRef]

Giulietti, A.

T. Afshar-rad, L. Gizzi, M. Desselberger, F. Khattak, O. Willi, and A. Giulietti, “Evidence for whole-beam self-focusing of induced spatially incoherent laser light in large underdense plasma,” Phys. Rev. Lett. 68, 942–944 (1992).
[CrossRef] [PubMed]

Gizzi, L.

T. Afshar-rad, L. Gizzi, M. Desselberger, F. Khattak, O. Willi, and A. Giulietti, “Evidence for whole-beam self-focusing of induced spatially incoherent laser light in large underdense plasma,” Phys. Rev. Lett. 68, 942–944 (1992).
[CrossRef] [PubMed]

Gouédard, C.

D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993).
[CrossRef]

Hammer, J.

P. E. Young, M. Foord, J. Hammer, W. Kruer, M. Tabak, and S. Wilks, “Time-dependent channel formation in a laser-produced plasma,” Phys. Rev. Lett. 75, 1082–1085 (1995).
[CrossRef] [PubMed]

S. Wilks, P. Young, J. Hammer, M. Tabak, and W. Kruer, “Spreading of intense laser beams due to filamentation,” Phys. Rev. Lett. 73, 2994–2997 (1994).
[CrossRef] [PubMed]

Hatchett, S. P.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Henry, E.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Herman, S.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Hinkel, D.

C. Still, R. Berger, A. Langdon, D. Hinkel, L. Suter, and E. Williams, “Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams,” Phys. Plasmas 7, 2023–2032 (2000).
[CrossRef]

Huignard, J.-P.

Hüller, S.

V. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S. Hüller, J. Myatt, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments,” Phys. Plasmas 8, 1636–1649 (2001).
[CrossRef]

J. Myatt, D. Pesme, S. Hüller, A. Maximov, W. Rozmus, and C. Capjack, “Nonlinear propagation of a randomized beam through an expanding plasma,” Phys. Rev. Lett. 87, 255003 (2001).
[CrossRef]

S. Hüller, P. Mounaix, V. Tikhonchuk, and D. Pesme, “Interaction of two neighboring laser beams taking into account the effects of plasma hydrodynamics,” Phys. Plasmas 4, 2670–2680 (1997).
[CrossRef]

James, G.

J. Fuchs, C. Labaune, S. Depierreux, H. Baldis, A. Michard, and G. James, “Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma,” Phys. Rev. Lett. 86, 432–434 (2001).
[CrossRef] [PubMed]

Jitsuno, T.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Johnson, R.

D. Montgomery, R. Johnson, J. Cobble, J. Fernandez, E. Lindman, H. Rose, and K. Estabrook, “Characterization of plasma and laser conditions for single hot spot experiments,” Laser Part. Beams 17, 349–359 (1999).
[CrossRef]

Johnson, R. P.

D. S. Montgomery, R. P. Johnson, H. A. Rose, J. A. Cobble, and J. C. Fernández, “Flow-induced beam steering in a single laser hot spot,” Phys. Rev. Lett. 84, 678–680 (2000).
[CrossRef] [PubMed]

Kanabe, T.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Kartz, M.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Kato, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1059 (1984).
[CrossRef]

Kessler, T.

S. Skupsky, R. Short, T. Kessler, R. Craxton, S. Letzring, and J. Soures, “Improved laser beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Key, M.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Khattak, F.

T. Afshar-rad, L. Gizzi, M. Desselberger, F. Khattak, O. Willi, and A. Giulietti, “Evidence for whole-beam self-focusing of induced spatially incoherent laser light in large underdense plasma,” Phys. Rev. Lett. 68, 942–944 (1992).
[CrossRef] [PubMed]

Kitagawa, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1059 (1984).
[CrossRef]

Koch, J.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Kopp, R. A.

B. Bezzerides, H. X. Vu, and R. A. Kopp, “Hydrodynamic coupling of a speckled laser beam to an axially flowing plasma,” Phys. Plasmas 8, 249–259 (2001).
[CrossRef]

Kruer, W.

P. E. Young, M. Foord, J. Hammer, W. Kruer, M. Tabak, and S. Wilks, “Time-dependent channel formation in a laser-produced plasma,” Phys. Rev. Lett. 75, 1082–1085 (1995).
[CrossRef] [PubMed]

S. Wilks, P. Young, J. Hammer, M. Tabak, and W. Kruer, “Spreading of intense laser beams due to filamentation,” Phys. Rev. Lett. 73, 2994–2997 (1994).
[CrossRef] [PubMed]

Kudryashov, A. V.

A. V. Kudryashov and V. I. Shmalhausen, “Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications,” Opt. Eng. 35, 3064–3073 (1996).
[CrossRef]

Labaune, C.

V. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S. Hüller, J. Myatt, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments,” Phys. Plasmas 8, 1636–1649 (2001).
[CrossRef]

J. Fuchs, C. Labaune, S. Depierreux, H. Baldis, A. Michard, and G. James, “Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma,” Phys. Rev. Lett. 86, 432–434 (2001).
[CrossRef] [PubMed]

J. Fuchs, C. Labaune, S. Depierreux, V. Tikhonchuk, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment,” Phys. Plasmas 7, 4659–4668 (2000).
[CrossRef]

Langdon, A.

C. Still, R. Berger, A. Langdon, D. Hinkel, L. Suter, and E. Williams, “Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams,” Phys. Plasmas 7, 2023–2032 (2000).
[CrossRef]

Lehmberg, R.

R. Lehmberg, A. Schmitt, and S. Bodner, “Theory of induced spatial incoherence,” J. Appl. Phys. 62, 2680–2701 (1987).
[CrossRef]

R. Lehmberg and S. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983).
[CrossRef]

Letzring, S.

S. Skupsky, R. Short, T. Kessler, R. Craxton, S. Letzring, and J. Soures, “Improved laser beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Lindl, J.

J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
[CrossRef]

Lindman, E.

D. Montgomery, R. Johnson, J. Cobble, J. Fernandez, E. Lindman, H. Rose, and K. Estabrook, “Characterization of plasma and laser conditions for single hot spot experiments,” Laser Part. Beams 17, 349–359 (1999).
[CrossRef]

Loiseaux, B.

MacKinnon, A. J.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Maksimchuk, A.

Maximov, A.

J. Myatt, D. Pesme, S. Hüller, A. Maximov, W. Rozmus, and C. Capjack, “Nonlinear propagation of a randomized beam through an expanding plasma,” Phys. Rev. Lett. 87, 255003 (2001).
[CrossRef]

D. Pesme, W. Rozmus, V. Tikhonchuk, A. Maximov, I. Ourdev, and C. Still, “Resonant instability of laser filaments in a plasma,” Phys. Rev. Lett. 84, 278–280 (2000).
[CrossRef] [PubMed]

Michard, A.

J. Fuchs, C. Labaune, S. Depierreux, H. Baldis, A. Michard, and G. James, “Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma,” Phys. Rev. Lett. 86, 432–434 (2001).
[CrossRef] [PubMed]

Migus, A.

Mima, K.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1059 (1984).
[CrossRef]

Miyanaga, N.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1059 (1984).
[CrossRef]

Mizui, J.

C. Yamanaka, T. Yamanaka, J. Mizui, and N. Yamaguchi, “Self-phase modulation of laser light in a laser-produced plasma,” Phys. Rev. A 11, 2138–2141 (1975).
[CrossRef]

Montgomery, D.

D. Montgomery, R. Johnson, J. Cobble, J. Fernandez, E. Lindman, H. Rose, and K. Estabrook, “Characterization of plasma and laser conditions for single hot spot experiments,” Laser Part. Beams 17, 349–359 (1999).
[CrossRef]

Montgomery, D. S.

D. S. Montgomery, R. P. Johnson, H. A. Rose, J. A. Cobble, and J. C. Fernández, “Flow-induced beam steering in a single laser hot spot,” Phys. Rev. Lett. 84, 678–680 (2000).
[CrossRef] [PubMed]

Mori, W. B.

C. Ren and W. B. Mori, “Physical picture for the laser hosing instability in a plasma,” Phys. Plasmas 8, 3118–3119 (2001).
[CrossRef]

Mounaix, P.

S. Hüller, P. Mounaix, V. Tikhonchuk, and D. Pesme, “Interaction of two neighboring laser beams taking into account the effects of plasma hydrodynamics,” Phys. Plasmas 4, 2670–2680 (1997).
[CrossRef]

Mourou, G.

Myatt, J.

V. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S. Hüller, J. Myatt, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments,” Phys. Plasmas 8, 1636–1649 (2001).
[CrossRef]

J. Myatt, D. Pesme, S. Hüller, A. Maximov, W. Rozmus, and C. Capjack, “Nonlinear propagation of a randomized beam through an expanding plasma,” Phys. Rev. Lett. 87, 255003 (2001).
[CrossRef]

Nakai, S.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Nakano, H.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Nakatsuka, M.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1059 (1984).
[CrossRef]

Nantel, M.

Nees, J.

Novikov, V. N.

O. V. Batishchev, V. Y. Bychenkov, F. Detering, W. Rozmus, R. Sydora, C. E. Capjack, and V. N. Novikov, “Heat transport and electron distribution function in laser produced plasmas with hot spots,” Phys. Plasmas 9, 2302–2310 (2002), and references therein.
[CrossRef]

Obenschain, S.

R. Lehmberg and S. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983).
[CrossRef]

Ourdev, I.

D. Pesme, W. Rozmus, V. Tikhonchuk, A. Maximov, I. Ourdev, and C. Still, “Resonant instability of laser filaments in a plasma,” Phys. Rev. Lett. 84, 278–280 (2000).
[CrossRef] [PubMed]

V. V. Elisseev, I. Ourdev, W. Rozmus, V. Tikhonchuk, C. Capjack, and P. Young, “Ion wave response to intense laser beams in underdense plasmas,” Phys. Plasmas 4, 4333–4346 (1997).
[CrossRef]

Pennington, D. M.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Perry, M. D.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Pesme, D.

J. Myatt, D. Pesme, S. Hüller, A. Maximov, W. Rozmus, and C. Capjack, “Nonlinear propagation of a randomized beam through an expanding plasma,” Phys. Rev. Lett. 87, 255003 (2001).
[CrossRef]

D. Pesme, W. Rozmus, V. Tikhonchuk, A. Maximov, I. Ourdev, and C. Still, “Resonant instability of laser filaments in a plasma,” Phys. Rev. Lett. 84, 278–280 (2000).
[CrossRef] [PubMed]

S. Hüller, P. Mounaix, V. Tikhonchuk, and D. Pesme, “Interaction of two neighboring laser beams taking into account the effects of plasma hydrodynamics,” Phys. Plasmas 4, 2670–2680 (1997).
[CrossRef]

Phillips, T. W.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Primot, J.

Ren, C.

C. Ren and W. B. Mori, “Physical picture for the laser hosing instability in a plasma,” Phys. Plasmas 8, 3118–3119 (2001).
[CrossRef]

Rose, H.

D. Montgomery, R. Johnson, J. Cobble, J. Fernandez, E. Lindman, H. Rose, and K. Estabrook, “Characterization of plasma and laser conditions for single hot spot experiments,” Laser Part. Beams 17, 349–359 (1999).
[CrossRef]

Rose, H. A.

D. S. Montgomery, R. P. Johnson, H. A. Rose, J. A. Cobble, and J. C. Fernández, “Flow-induced beam steering in a single laser hot spot,” Phys. Rev. Lett. 84, 678–680 (2000).
[CrossRef] [PubMed]

Roth, M.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Rozmus, W.

O. V. Batishchev, V. Y. Bychenkov, F. Detering, W. Rozmus, R. Sydora, C. E. Capjack, and V. N. Novikov, “Heat transport and electron distribution function in laser produced plasmas with hot spots,” Phys. Plasmas 9, 2302–2310 (2002), and references therein.
[CrossRef]

J. Myatt, D. Pesme, S. Hüller, A. Maximov, W. Rozmus, and C. Capjack, “Nonlinear propagation of a randomized beam through an expanding plasma,” Phys. Rev. Lett. 87, 255003 (2001).
[CrossRef]

D. Pesme, W. Rozmus, V. Tikhonchuk, A. Maximov, I. Ourdev, and C. Still, “Resonant instability of laser filaments in a plasma,” Phys. Rev. Lett. 84, 278–280 (2000).
[CrossRef] [PubMed]

V. Bychenkov, W. Rozmus, A. Brantov, and V. Tikhonchuk, “Theory of filamentation and stimulated Brillouin scattering with nonlocal hydrodynamics,” Phys. Plasmas 7, 1511–1519 (2000).
[CrossRef]

A. Brantov, V. Bychenkov, V. Tikhonchuck, and W. Rozmus, “Nonlocal electron transport in laser heated plasmas,” Phys. Plasmas 5, 2742–2753 (1998).
[CrossRef]

V. V. Elisseev, I. Ourdev, W. Rozmus, V. Tikhonchuk, C. Capjack, and P. Young, “Ion wave response to intense laser beams in underdense plasmas,” Phys. Plasmas 4, 4333–4346 (1997).
[CrossRef]

Sangster, T. C.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Schmitt, A.

A. Schmitt and B. Afeyan, “Time-dependent filamentation and stimulated Brillouin forward scattering in inertial con-finement fusion plasmas,” Phys. Plasmas 5, 503–517 (1998).
[CrossRef]

A. Schmitt, “The effects of optical smoothing techniques on filamentation in laser plasmas,” Phys. Fluids 31, 3079–3101 (1988).
[CrossRef]

R. Lehmberg, A. Schmitt, and S. Bodner, “Theory of induced spatial incoherence,” J. Appl. Phys. 62, 2680–2701 (1987).
[CrossRef]

Shmalhausen, V. I.

A. V. Kudryashov and V. I. Shmalhausen, “Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications,” Opt. Eng. 35, 3064–3073 (1996).
[CrossRef]

Short, R.

S. Skupsky, R. Short, T. Kessler, R. Craxton, S. Letzring, and J. Soures, “Improved laser beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Short, R. W.

E. M. Epperlein and R. W. Short, “Nonlocal heat transport effects on the filamentation of light in plasmas,” Phys. Fluids B 4, 2211–2216 (1992).
[CrossRef]

R. W. Short and E. M. Epperlein, “Thermal stimulated Brillouin scattering in laser-produced plasmas,” Phys. Rev. Lett. 68, 3307–3310 (1992).
[CrossRef] [PubMed]

Singh, M.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Skupsky, S.

S. Skupsky, R. Short, T. Kessler, R. Craxton, S. Letzring, and J. Soures, “Improved laser beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Snavely, R. A.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Sogno, L.

Soures, J.

S. Skupsky, R. Short, T. Kessler, R. Craxton, S. Letzring, and J. Soures, “Improved laser beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Still, C.

C. Still, R. Berger, A. Langdon, D. Hinkel, L. Suter, and E. Williams, “Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams,” Phys. Plasmas 7, 2023–2032 (2000).
[CrossRef]

D. Pesme, W. Rozmus, V. Tikhonchuk, A. Maximov, I. Ourdev, and C. Still, “Resonant instability of laser filaments in a plasma,” Phys. Rev. Lett. 84, 278–280 (2000).
[CrossRef] [PubMed]

Stoyer, M.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Stuart, B. C.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Suter, L.

C. Still, R. Berger, A. Langdon, D. Hinkel, L. Suter, and E. Williams, “Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams,” Phys. Plasmas 7, 2023–2032 (2000).
[CrossRef]

Sydora, R.

O. V. Batishchev, V. Y. Bychenkov, F. Detering, W. Rozmus, R. Sydora, C. E. Capjack, and V. N. Novikov, “Heat transport and electron distribution function in laser produced plasmas with hot spots,” Phys. Plasmas 9, 2302–2310 (2002), and references therein.
[CrossRef]

Tabak, M.

P. E. Young, M. Foord, J. Hammer, W. Kruer, M. Tabak, and S. Wilks, “Time-dependent channel formation in a laser-produced plasma,” Phys. Rev. Lett. 75, 1082–1085 (1995).
[CrossRef] [PubMed]

S. Wilks, P. Young, J. Hammer, M. Tabak, and W. Kruer, “Spreading of intense laser beams due to filamentation,” Phys. Rev. Lett. 73, 2994–2997 (1994).
[CrossRef] [PubMed]

Thiell, G.

D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993).
[CrossRef]

Tikhonchuck, V.

A. Brantov, V. Bychenkov, V. Tikhonchuck, and W. Rozmus, “Nonlocal electron transport in laser heated plasmas,” Phys. Plasmas 5, 2742–2753 (1998).
[CrossRef]

Tikhonchuk, V.

V. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S. Hüller, J. Myatt, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments,” Phys. Plasmas 8, 1636–1649 (2001).
[CrossRef]

V. Bychenkov, W. Rozmus, A. Brantov, and V. Tikhonchuk, “Theory of filamentation and stimulated Brillouin scattering with nonlocal hydrodynamics,” Phys. Plasmas 7, 1511–1519 (2000).
[CrossRef]

J. Fuchs, C. Labaune, S. Depierreux, V. Tikhonchuk, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment,” Phys. Plasmas 7, 4659–4668 (2000).
[CrossRef]

D. Pesme, W. Rozmus, V. Tikhonchuk, A. Maximov, I. Ourdev, and C. Still, “Resonant instability of laser filaments in a plasma,” Phys. Rev. Lett. 84, 278–280 (2000).
[CrossRef] [PubMed]

S. Hüller, P. Mounaix, V. Tikhonchuk, and D. Pesme, “Interaction of two neighboring laser beams taking into account the effects of plasma hydrodynamics,” Phys. Plasmas 4, 2670–2680 (1997).
[CrossRef]

V. V. Elisseev, I. Ourdev, W. Rozmus, V. Tikhonchuk, C. Capjack, and P. Young, “Ion wave response to intense laser beams in underdense plasmas,” Phys. Plasmas 4, 4333–4346 (1997).
[CrossRef]

Tsubakimoto, K.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Valeo, E.

E. Valeo and K. Estabrook, “Stability of the critical surface in irradiated plasma,” Phys. Rev. Lett. 34, 1008–1010 (1975).
[CrossRef]

E. Valeo, “Stability of filamentary structures (e.m. wave propagation in plasma),” Phys. Fluids 17, 1391–1393 (1974).
[CrossRef]

Vdovin, G.

Veron, D.

D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993).
[CrossRef]

Vu, H. X.

B. Bezzerides, H. X. Vu, and R. A. Kopp, “Hydrodynamic coupling of a speckled laser beam to an axially flowing plasma,” Phys. Plasmas 8, 249–259 (2001).
[CrossRef]

Wilks, S.

P. E. Young, M. Foord, J. Hammer, W. Kruer, M. Tabak, and S. Wilks, “Time-dependent channel formation in a laser-produced plasma,” Phys. Rev. Lett. 75, 1082–1085 (1995).
[CrossRef] [PubMed]

S. Wilks, P. Young, J. Hammer, M. Tabak, and W. Kruer, “Spreading of intense laser beams due to filamentation,” Phys. Rev. Lett. 73, 2994–2997 (1994).
[CrossRef] [PubMed]

Wilks, S. C.

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

Willi, O.

T. Afshar-rad, L. Gizzi, M. Desselberger, F. Khattak, O. Willi, and A. Giulietti, “Evidence for whole-beam self-focusing of induced spatially incoherent laser light in large underdense plasma,” Phys. Rev. Lett. 68, 942–944 (1992).
[CrossRef] [PubMed]

Williams, E.

C. Still, R. Berger, A. Langdon, D. Hinkel, L. Suter, and E. Williams, “Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams,” Phys. Plasmas 7, 2023–2032 (2000).
[CrossRef]

E. Williams, “Convective growth of parametrically unstable modes in inhomogeneous media,” Phys. Fluids B 3, 1504–1506 (1991).
[CrossRef]

Yamaguchi, N.

C. Yamanaka, T. Yamanaka, J. Mizui, and N. Yamaguchi, “Self-phase modulation of laser light in a laser-produced plasma,” Phys. Rev. A 11, 2138–2141 (1975).
[CrossRef]

Yamanaka, C.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1059 (1984).
[CrossRef]

C. Yamanaka, T. Yamanaka, J. Mizui, and N. Yamaguchi, “Self-phase modulation of laser light in a laser-produced plasma,” Phys. Rev. A 11, 2138–2141 (1975).
[CrossRef]

Yamanaka, T.

C. Yamanaka, T. Yamanaka, J. Mizui, and N. Yamaguchi, “Self-phase modulation of laser light in a laser-produced plasma,” Phys. Rev. A 11, 2138–2141 (1975).
[CrossRef]

Young, P.

V. V. Elisseev, I. Ourdev, W. Rozmus, V. Tikhonchuk, C. Capjack, and P. Young, “Ion wave response to intense laser beams in underdense plasmas,” Phys. Plasmas 4, 4333–4346 (1997).
[CrossRef]

S. Wilks, P. Young, J. Hammer, M. Tabak, and W. Kruer, “Spreading of intense laser beams due to filamentation,” Phys. Rev. Lett. 73, 2994–2997 (1994).
[CrossRef] [PubMed]

Young, P. E.

P. E. Young, M. Foord, J. Hammer, W. Kruer, M. Tabak, and S. Wilks, “Time-dependent channel formation in a laser-produced plasma,” Phys. Rev. Lett. 75, 1082–1085 (1995).
[CrossRef] [PubMed]

P. E. Young, “Experimental observation of filamentation growth in laser-produced plasmas,” Phys. Plasmas 2, 2815–2824 (1995).
[CrossRef]

P. E. Young, “Laser beam propagation and channel formation in underdense plasmas,” Phys. Plasmas 2, 2825–2834 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[CrossRef]

J. Appl. Phys. (2)

R. Lehmberg, A. Schmitt, and S. Bodner, “Theory of induced spatial incoherence,” J. Appl. Phys. 62, 2680–2701 (1987).
[CrossRef]

S. Skupsky, R. Short, T. Kessler, R. Craxton, S. Letzring, and J. Soures, “Improved laser beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

J. Fusion Energy (1)

S. Cameron and J. Camacho, “Characterization of heat transport dynamics in laser-produced plasmas using collective Thomson scattering: simulation and proposed experiment,” J. Fusion Energy 14, 373–388 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

Laser Part. Beams (1)

D. Montgomery, R. Johnson, J. Cobble, J. Fernandez, E. Lindman, H. Rose, and K. Estabrook, “Characterization of plasma and laser conditions for single hot spot experiments,” Laser Part. Beams 17, 349–359 (1999).
[CrossRef]

Opt. Commun. (3)

D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993).
[CrossRef]

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

R. Lehmberg and S. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983).
[CrossRef]

Opt. Eng. (1)

A. V. Kudryashov and V. I. Shmalhausen, “Semipassive bimorph flexible mirrors for atmospheric adaptive optics applications,” Opt. Eng. 35, 3064–3073 (1996).
[CrossRef]

Opt. Lett. (3)

Phys. Fluids (2)

A. Schmitt, “The effects of optical smoothing techniques on filamentation in laser plasmas,” Phys. Fluids 31, 3079–3101 (1988).
[CrossRef]

E. Valeo, “Stability of filamentary structures (e.m. wave propagation in plasma),” Phys. Fluids 17, 1391–1393 (1974).
[CrossRef]

Phys. Fluids B (2)

E. M. Epperlein and R. W. Short, “Nonlocal heat transport effects on the filamentation of light in plasmas,” Phys. Fluids B 4, 2211–2216 (1992).
[CrossRef]

E. Williams, “Convective growth of parametrically unstable modes in inhomogeneous media,” Phys. Fluids B 3, 1504–1506 (1991).
[CrossRef]

Phys. Plasmas (15)

P. E. Young, “Experimental observation of filamentation growth in laser-produced plasmas,” Phys. Plasmas 2, 2815–2824 (1995).
[CrossRef]

S. Hüller, P. Mounaix, V. Tikhonchuk, and D. Pesme, “Interaction of two neighboring laser beams taking into account the effects of plasma hydrodynamics,” Phys. Plasmas 4, 2670–2680 (1997).
[CrossRef]

V. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S. Hüller, J. Myatt, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments,” Phys. Plasmas 8, 1636–1649 (2001).
[CrossRef]

V. V. Elisseev, I. Ourdev, W. Rozmus, V. Tikhonchuk, C. Capjack, and P. Young, “Ion wave response to intense laser beams in underdense plasmas,” Phys. Plasmas 4, 4333–4346 (1997).
[CrossRef]

C. Still, R. Berger, A. Langdon, D. Hinkel, L. Suter, and E. Williams, “Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams,” Phys. Plasmas 7, 2023–2032 (2000).
[CrossRef]

P. E. Young, “Laser beam propagation and channel formation in underdense plasmas,” Phys. Plasmas 2, 2825–2834 (1995).
[CrossRef]

J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995).
[CrossRef]

J. Garnier, “Statistics of the hot spots of smoothed beams produced by random phase plates revisited,” Phys. Plasmas 6, 1601–1610 (1999).
[CrossRef]

J. Fuchs, C. Labaune, S. Depierreux, V. Tikhonchuk, and H. Baldis, “Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment,” Phys. Plasmas 7, 4659–4668 (2000).
[CrossRef]

V. Bychenkov, W. Rozmus, A. Brantov, and V. Tikhonchuk, “Theory of filamentation and stimulated Brillouin scattering with nonlocal hydrodynamics,” Phys. Plasmas 7, 1511–1519 (2000).
[CrossRef]

B. Bezzerides, H. X. Vu, and R. A. Kopp, “Hydrodynamic coupling of a speckled laser beam to an axially flowing plasma,” Phys. Plasmas 8, 249–259 (2001).
[CrossRef]

A. Schmitt and B. Afeyan, “Time-dependent filamentation and stimulated Brillouin forward scattering in inertial con-finement fusion plasmas,” Phys. Plasmas 5, 503–517 (1998).
[CrossRef]

C. Ren and W. B. Mori, “Physical picture for the laser hosing instability in a plasma,” Phys. Plasmas 8, 3118–3119 (2001).
[CrossRef]

O. V. Batishchev, V. Y. Bychenkov, F. Detering, W. Rozmus, R. Sydora, C. E. Capjack, and V. N. Novikov, “Heat transport and electron distribution function in laser produced plasmas with hot spots,” Phys. Plasmas 9, 2302–2310 (2002), and references therein.
[CrossRef]

A. Brantov, V. Bychenkov, V. Tikhonchuck, and W. Rozmus, “Nonlocal electron transport in laser heated plasmas,” Phys. Plasmas 5, 2742–2753 (1998).
[CrossRef]

Phys. Rev. A (1)

C. Yamanaka, T. Yamanaka, J. Mizui, and N. Yamaguchi, “Self-phase modulation of laser light in a laser-produced plasma,” Phys. Rev. A 11, 2138–2141 (1975).
[CrossRef]

Phys. Rev. Lett. (11)

J. Myatt, D. Pesme, S. Hüller, A. Maximov, W. Rozmus, and C. Capjack, “Nonlinear propagation of a randomized beam through an expanding plasma,” Phys. Rev. Lett. 87, 255003 (2001).
[CrossRef]

J. Fuchs, C. Labaune, S. Depierreux, H. Baldis, A. Michard, and G. James, “Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma,” Phys. Rev. Lett. 86, 432–434 (2001).
[CrossRef] [PubMed]

R. W. Short and E. M. Epperlein, “Thermal stimulated Brillouin scattering in laser-produced plasmas,” Phys. Rev. Lett. 68, 3307–3310 (1992).
[CrossRef] [PubMed]

P. E. Young, M. Foord, J. Hammer, W. Kruer, M. Tabak, and S. Wilks, “Time-dependent channel formation in a laser-produced plasma,” Phys. Rev. Lett. 75, 1082–1085 (1995).
[CrossRef] [PubMed]

E. M. Epperlein, “Kinetic theory of laser filamentation in plasmas,” Phys. Rev. Lett. 65, 2145–2148 (1990).
[CrossRef] [PubMed]

T. Afshar-rad, L. Gizzi, M. Desselberger, F. Khattak, O. Willi, and A. Giulietti, “Evidence for whole-beam self-focusing of induced spatially incoherent laser light in large underdense plasma,” Phys. Rev. Lett. 68, 942–944 (1992).
[CrossRef] [PubMed]

S. Wilks, P. Young, J. Hammer, M. Tabak, and W. Kruer, “Spreading of intense laser beams due to filamentation,” Phys. Rev. Lett. 73, 2994–2997 (1994).
[CrossRef] [PubMed]

D. Pesme, W. Rozmus, V. Tikhonchuk, A. Maximov, I. Ourdev, and C. Still, “Resonant instability of laser filaments in a plasma,” Phys. Rev. Lett. 84, 278–280 (2000).
[CrossRef] [PubMed]

D. S. Montgomery, R. P. Johnson, H. A. Rose, J. A. Cobble, and J. C. Fernández, “Flow-induced beam steering in a single laser hot spot,” Phys. Rev. Lett. 84, 678–680 (2000).
[CrossRef] [PubMed]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1059 (1984).
[CrossRef]

E. Valeo and K. Estabrook, “Stability of the critical surface in irradiated plasma,” Phys. Rev. Lett. 34, 1008–1010 (1975).
[CrossRef]

Other (10)

W. Koechner, “Thermal effect in laser rods,” in Solid-State Laser Engineering, D. L. MacAdam, ed. (Springer-Verlag, Berlin, 1976), pp. 365–382.

Laboratory for Laser Energetics, University of Rochester, “Phase conversion using distributed polarization rotation,” Vol. 45 of LLE Review (National Technical Information Services, Springfield, Va., 1990).

J. D. Lindl, Inertial Confinement Fusion. The Quest for Ignition and Energy Gain Using Indirect Drive (Springer-Verlag, New York, 1998).

W. L. Kruer, Physics of Laser Plasma Interactions (Addison-Wesley, Reading, Mass., 1988).

F. Roddier, Adaptive Optics in Astronomy (Cambridge U. Press, Cambridge, 1999).

J. Fuchs, B. Wattellier, J. P. Zou, J. C. Chanteloup, H. Bandulet, P. Michel, and C. Labaune, “Wave front correction for near diffraction-limited focal spot on a 6×100 J/1 ns laser facility,” in Laser Applications and Technologies, A. A. Mak and V. Ya. Panchenko, eds., Proc. SPIE (to be published).

K. Strehl, “Uber Luftschlieren und Zonenfehler,” Zeitschrift Instrumentenkunde 22, 213–223 (1902). It is the ratio of the peak intensity at the focus of the beam with the given (distorted) wave front and its near-field intensity profile, to that of the same near-field intensity distribution with a flat wave front.

B. Wattellier, “Amélioration des performances des chai⁁nes lasers solides utilisant l’amplification à dérive de fréquence: nouveaux réseaux de diffraction à haute tenue au flux et mise en forme programmable de faisceaux lasers par modulation de la phase spatiale,” Ph.D. dissertation (Ecole Polytechnique, Palaiseau, France, 2001).

W. Koechner, “Damage of optical elements,” in Solid-State Laser Engineering, D. L. MacAdam, ed. (Springer-Verlag, Berlin, 1976), pp. 546–549.

B. Wattellier, J.-C. Chanteloup, J. Fuchs, C. Sauteret, J. P. Zou, and A. Migus, “Wave front correction and focusing optimization of partially thermalized Nd:glass high power CPA laser,” in Conference on Lasers and Electro-Optics, OSA 2001 Technical Digest Series (Optical Society of America, Washington, D.C., 2001), pp. 70–71.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Far-field patterns of a high-energy shot (80 J) recorded with an f=500 mm doublet. The incident beam’s diameter is 85 mm. In (b) a random phase plate (2-mm elements) has been added before the focusing doublet (low-energy shot).

Fig. 2
Fig. 2

Far-field patterns in the output of the deformable mirror recorded with a long-focus (f=2200 mm) diffraction-limited lens and a cw laser. (a) The deformable mirror is relaxed. (b) At the end of the closed loop the Strehl ratio reaches 0.85. (Vertical bands visible in both images are due to readout noise onto the CCD.) The two images, recorded at different attenuations, are on the same scale. The beam aperture is limited to 80 mm to match 80% of the deformable mirror’s aperture (98 mm).

Fig. 3
Fig. 3

(a) Intensity and (b) phase maps (the phase PtV is 0.48 λ) for the final state of the convergence [see Fig. 6(d) below] as extracted from the interferogram given by the ATWLSI. These maps are used in calculating (c) the simulated far-field pattern, whose Strehl ratio is 0.7. The gray scale applies only for (c).

Fig. 4
Fig. 4

Setup for wave-front correction. The experiment uses four beams. For clarity, only the interaction beam, to which wave-front correction is applied, is shown. This beam’s diameter is 65 mm. It is focused by an f1=500 mm doublet. The far field inside the vacuum interaction chamber is imaged by a 9× telescope (two doublets f2=250 mm and f3=2200 mm) combined with a 4× microscope objective. The images are recorded with a 12-bit CCD camera.

Fig. 5
Fig. 5

Maps of the phase difference between the first shot in a regular sequence of 80-J shots every 20 min, and (a) the fourth shot in the same series and (b) the tenth shot in this series. The scale shows that the maximum shot-to-shot phase difference for a thermalized chain is ∼0.15λ. Such stability of the laser wave front allows the wave front measured during the previous high-energy shot to be used to correct the phase for the next shot in the feedback loop system.

Fig. 6
Fig. 6

(a)–(d) Wave-front phase maps of high-energy shots (50 J) during a converging sequence of the adaptive optics system. The color scale applies for all images (a)–(d). (e)–(h) Far-field patterns for the same shots (each focal spot is placed below the phase map to which it corresponds). The gray scale in (h) applies only to this image. (i) Corresponding evolution of the amplitude of the maximum wave-front distortion (squares, left scale) and of the Strehl ratio (filled circles, right scale).

Fig. 7
Fig. 7

(a) Solid curve, azimuthally averaged intensity profile of the focal spot at the end of the convergence [this profile is averaged over several shots, like the one shown in Fig. 6(h)]; dashed curve, same for the theoretical Airy spot. (b) Encircled energy as a function of radius for the profiles shown in (a); 35% of the incident energy is within the central peak of the actual focal spot, compared to 84% for the theoretical Airy spot.

Fig. 8
Fig. 8

Transmission rate within the f/3 collecting cone and through the plasma (0.1 nc/1 mm) of the SHS beam (filled and open circles, which represent two series of shots) as a function of the incident peak intensity and of the RPP beam at its nominal mean intensity (1014 W cm-2). Overlaid upon the RPP data point (averaged over four shots) is the vacuum intensity distribution of the speckles within the focal pattern (linear gray scale). The error bar on the RPP data point represents the shot-to-shot variation. The collecting optics’ aperture is twice the focusing aperture.

Fig. 9
Fig. 9

(a) Fraction, within a circle of 25-μm radius, of the transmitted energy of the SHS beam through the plasma as a function of the incident peak intensity. The fraction of the incident energy contained within the same area is ∼0.8 [Fig. 7(b)]. (b) Time-integrated far-field pattern of the light in the output of the plasma. The incident intensity is 2×1013 W cm-2. Superimposed is the 25-μm-radius circle in which the energy fraction plotted in (a) is measured. (c) Same as (b) but for an incident intensity of 2×1016 W cm-2. Each image corresponds to a data point in (a) to which an arrow points. The gray scale applies for (b) and (c).

Fig. 10
Fig. 10

Steady-state calculated values as a function of the angle (from forward) of the scattered electromagnetic wave of (a) the filamentation spatial growth rate37,47,48,52 and (b) forward SBS convective exponential gain.37,53,54 These values were calculated, with the experimental parameters, for three incident intensities and include nonlocal transport effects. The vertical dotted line represents the collecting optics’ aperture.

Fig. 11
Fig. 11

Spectra of the light scattered forward, after propagation through the plasma, in a ring from 7° to 11° about the incident axis (i.e., outside the incident cone). (a) SHS beam with an incident intensity of 2×1016 W cm-2 (T=18%). (b) SHS beam with an incident intensity of 2×1015 W cm-2 (T=18%). (c) SHS beam with an incident intensity of 2×1014 W cm-2 (T=9%). (d) SHS spot beam with an incident intensity of 6×1013 W cm-2 (T=3%). (e) RPP beam with a mean incident intensity of 1014 W cm-2. Horizontal dashed lines indicate the temporal peak of the incident pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Rm=MmnVn,
Mmn=PmnSnntQnn,
Mnm-1=Qnn(1/s)nntPnm.

Metrics