Abstract

The transmission capacity of fiber communication networks is enhanced by usage of dense wavelength division multiplexing (WDM). This technique requires wavelength filters for multiplexing of the channels. We report on the realization of a multiplexer device based on superimposed volume-phase gratings in a single lithium niobate crystal. The gratings are recorded through the photorefractive effect by interference of two green laser beams. Thermal fixing is employed to increase the lifetime of the gratings. Each grating diffracts light of a certain WDM channel (wavelengths of ∼1500 nm). Simultaneous multiplexing of many channels is achieved by suitable arrangement of the gratings in the crystal. We present the basic concept of this technology as well as recent advances: (1) refined experimental methods about tailored recording of many-channel multiplexers, (2) characterization of the multiplexers for up to sixteen WDM channels (1-dB bandwidth up to 0.1 nm, channel spacing down to 0.4 nm), and (3) construction of a two-channel multiplexer device.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Grote and H. V. Venghaus, eds., Fiber Optic Communication Devices (Springer-Verlag, New York, 2001).
  2. S. V. Kartalopoulos, Introduction to DWDM Technology, Data in a Rainbow (IEEE, New York, 2000).
  3. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
    [CrossRef]
  4. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  5. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  6. K. O. Hill, “Aperiodic distributed-parameter waveguides for integrated optics,” Appl. Opt. 13, 1853–1856 (1974).
    [CrossRef] [PubMed]
  7. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, D. C. Johnson, and J. Albert, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19, 1314–1316 (1994).
    [CrossRef] [PubMed]
  8. M. Matsuhara and K. O. Hill, “Optical-waveguide band-rejection filters: design,” Appl. Opt. 13, 2886–2888 (1974).
    [CrossRef] [PubMed]
  9. P. S. Cross and H. Kogelnik, “Sidelobe suppression in corrugated-waveguide filter,” Opt. Lett. 1, 43–45 (1977).
    [CrossRef]
  10. W. J. Tomlinson, “Wavelength multiplexing in multimode optical fibers,” Appl. Opt. 16, 2180–2194 (1977).
    [CrossRef] [PubMed]
  11. P. Boffi, D. Piccinin, and M. C. Ubaldi, Topics in Applied Physics: Infrared Holography for Optical Communications Techniques, Materials, and Devices (Springer-Verlag, New York, 2003), Vol. 86.
  12. S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B 66, 339–345 (1998).
    [CrossRef]
  13. S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
    [CrossRef]
  14. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  15. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
    [CrossRef]
  16. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
    [CrossRef]
  17. I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
    [CrossRef]
  18. K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
    [CrossRef]
  19. Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, and S. H. Lee, “Incremental recording for photorefractive hologram multiplexing,” Opt. Lett. 16, 1774–1776 (1991).
    [CrossRef] [PubMed]
  20. E. S. Maniloff and K. M. Johnson, “Incremental recording for photorefractive hologram multiplexing: comment,” Opt. Lett. 17, 961 (1992).
    [CrossRef] [PubMed]
  21. Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, and S. H. Lee, “Incremental recording for photorefractive hologram multiplexing: reply to comment,” Opt. Lett. 17, 962 (1992).
    [CrossRef] [PubMed]
  22. S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
    [CrossRef]
  23. R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transportin electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
    [CrossRef]
  24. K. Peithmann, K. Buse, and A. Wiebrock, “Incremental holographic recording in lithium niobate with active phase locking,” Opt. Lett. 23, 1927–1929 (1998).
    [CrossRef]
  25. B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 12792–12805 (1998).
    [CrossRef]
  26. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef] [PubMed]
  27. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  28. Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and elec-tronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
    [CrossRef]
  29. D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688–3689 (1974).
    [CrossRef]
  30. S. Fries, S. Bauschulte, E. Krätzig, K. Ringhofer, and Y. Yacoby, “Spatial frequency mixing in lithium niobate,” Opt. Commun. 84, 251–257 (1991).
    [CrossRef]
  31. Y. Kondo, Y. Yamashita, T. Fukuda, T. Takano, H. Nakajima, Y. Furukawa, and K. Kitamura, “Wavelength dependence of electrooptic coefficients in lithium niobate crystals with different composition,” in Proceedings of 10th European Conference on Integrated Optics, W. Sohler, ed. (Bonifatius Verlag, Paderborn, 2001), pp. 185–188.

2001 (1)

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and elec-tronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

2000 (1)

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

1999 (2)

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
[CrossRef]

1998 (4)

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

K. Peithmann, K. Buse, and A. Wiebrock, “Incremental holographic recording in lithium niobate with active phase locking,” Opt. Lett. 23, 1927–1929 (1998).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B 66, 339–345 (1998).
[CrossRef]

1997 (2)

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

1996 (1)

1994 (1)

1992 (2)

1991 (2)

Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, and S. H. Lee, “Incremental recording for photorefractive hologram multiplexing,” Opt. Lett. 16, 1774–1776 (1991).
[CrossRef] [PubMed]

S. Fries, S. Bauschulte, E. Krätzig, K. Ringhofer, and Y. Yacoby, “Spatial frequency mixing in lithium niobate,” Opt. Commun. 84, 251–257 (1991).
[CrossRef]

1988 (1)

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
[CrossRef]

1978 (2)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transportin electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

1977 (3)

P. S. Cross and H. Kogelnik, “Sidelobe suppression in corrugated-waveguide filter,” Opt. Lett. 1, 43–45 (1977).
[CrossRef]

W. J. Tomlinson, “Wavelength multiplexing in multimode optical fibers,” Appl. Opt. 16, 2180–2194 (1977).
[CrossRef] [PubMed]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

1974 (3)

1971 (1)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Agulló-López, F.

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

Albert, J.

Amodei, J. J.

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Bauschulte, S.

S. Fries, S. Bauschulte, E. Krätzig, K. Ringhofer, and Y. Yacoby, “Spatial frequency mixing in lithium niobate,” Opt. Commun. 84, 251–257 (1991).
[CrossRef]

Bilodeau, F.

Breer, S.

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
[CrossRef]

S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B 66, 339–345 (1998).
[CrossRef]

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Burr, G. W.

Buse, K.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and elec-tronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
[CrossRef]

S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B 66, 339–345 (1998).
[CrossRef]

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

K. Peithmann, K. Buse, and A. Wiebrock, “Incremental holographic recording in lithium niobate with active phase locking,” Opt. Lett. 23, 1927–1929 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Carrascosa, M.

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

Cross, P. S.

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Engelmann, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Fainman, Y.

Ford, J. E.

Fries, S.

S. Fries, S. Bauschulte, E. Krätzig, K. Ringhofer, and Y. Yacoby, “Spatial frequency mixing in lithium niobate,” Opt. Commun. 84, 251–257 (1991).
[CrossRef]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Gao, M.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Hill, K. O.

Johnson, D. C.

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, D. C. Johnson, and J. Albert, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19, 1314–1316 (1994).
[CrossRef] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Johnson, K. M.

Kapphan, S.

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kitagawa, T.

Kogelnik, H.

P. S. Cross and H. Kogelnik, “Sidelobe suppression in corrugated-waveguide filter,” Opt. Lett. 1, 43–45 (1977).
[CrossRef]

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Krätzig, E.

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

S. Fries, S. Bauschulte, E. Krätzig, K. Ringhofer, and Y. Yacoby, “Spatial frequency mixing in lithium niobate,” Opt. Commun. 84, 251–257 (1991).
[CrossRef]

R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transportin electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kurz, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Lee, S. H.

Limeres, J.

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

Ma, J.

Malo, B.

Maniloff, E. S.

Matsuhara, M.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Mikulyak, R. M.

D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688–3689 (1974).
[CrossRef]

Mok, F. H.

Müller, M.

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

Nee, I.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and elec-tronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
[CrossRef]

Nelson, D. F.

D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688–3689 (1974).
[CrossRef]

Orlowski, R.

R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transportin electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Peithmann, K.

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

K. Peithmann, K. Buse, and A. Wiebrock, “Incremental holographic recording in lithium niobate with active phase locking,” Opt. Lett. 23, 1927–1929 (1998).
[CrossRef]

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Psaltis, D.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and elec-tronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
[CrossRef] [PubMed]

Räuber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Ringhofer, K.

S. Fries, S. Bauschulte, E. Krätzig, K. Ringhofer, and Y. Yacoby, “Spatial frequency mixing in lithium niobate,” Opt. Commun. 84, 251–257 (1991).
[CrossRef]

Sasaki, H.

Smit, M. K.

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
[CrossRef]

Staebler, D. L.

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Sturman, B. I.

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

Taketomi, Y.

Tomlinson, W. J.

Vogt, H.

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
[CrossRef]

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

Wiebrock, A.

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

K. Peithmann, K. Buse, and A. Wiebrock, “Incremental holographic recording in lithium niobate with active phase locking,” Opt. Lett. 23, 1927–1929 (1998).
[CrossRef]

Yacoby, Y.

S. Fries, S. Bauschulte, E. Krätzig, K. Ringhofer, and Y. Yacoby, “Spatial frequency mixing in lithium niobate,” Opt. Commun. 84, 251–257 (1991).
[CrossRef]

Yang, Y.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and elec-tronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Appl. Phys. B (2)

S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate,” Appl. Phys. B 66, 339–345 (1998).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and elec-tronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Electron. Lett. (2)

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
[CrossRef]

S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate,” Electron. Lett. 34, 2419–2421 (1999).
[CrossRef]

J. Appl. Phys. (2)

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88, 4282–4286 (2000).
[CrossRef]

D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688–3689 (1974).
[CrossRef]

J. Lightwave Technol. (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Opt. Commun. (1)

S. Fries, S. Bauschulte, E. Krätzig, K. Ringhofer, and Y. Yacoby, “Spatial frequency mixing in lithium niobate,” Opt. Commun. 84, 251–257 (1991).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. B (2)

K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to experiment,” Phys. Rev. B 57, 12792–12805 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized recording and thermal fixing of holograms in photorefractive lithium niobate crystals,” Rev. Sci. Instrum. 69, 1591–1594 (1998).
[CrossRef]

Solid State Commun. (1)

R. Orlowski and E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transportin electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Other (4)

Y. Kondo, Y. Yamashita, T. Fukuda, T. Takano, H. Nakajima, Y. Furukawa, and K. Kitamura, “Wavelength dependence of electrooptic coefficients in lithium niobate crystals with different composition,” in Proceedings of 10th European Conference on Integrated Optics, W. Sohler, ed. (Bonifatius Verlag, Paderborn, 2001), pp. 185–188.

P. Boffi, D. Piccinin, and M. C. Ubaldi, Topics in Applied Physics: Infrared Holography for Optical Communications Techniques, Materials, and Devices (Springer-Verlag, New York, 2003), Vol. 86.

N. Grote and H. V. Venghaus, eds., Fiber Optic Communication Devices (Springer-Verlag, New York, 2001).

S. V. Kartalopoulos, Introduction to DWDM Technology, Data in a Rainbow (IEEE, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Wave-vector diagram for demultiplexing of two channels by superposition of two gratings: kiin, kiout, wave vectors of the input and output beams; λR,i=2πn/|ki|, channel wavelengths with n as refractive index; α˜B, β˜i, input and output angles of incoming and diffracted beams; Ki, grating vectors; ζi, tilt angles between the optical axis and the grating vectors Ki.

Fig. 2
Fig. 2

Geometry for recording (wavelength λW=514.5 nm) and readout (wavelength λR1.55 μm) of superimposed gratings in a single crystal. The gratings are recorded in transmission geometry by visible light, readout is performed in reflection geometry with infrared light (γL, γR, recording angles; αB, βi, input and output angles of the infrared beams outside the crystal).

Fig. 3
Fig. 3

(a) Monitor signal Iω of the active phase stabilization during incremental recording of an eight-channel multiplexer at room temperature. (b) Section of Fig. 3(a) that covers one cycle of the monitor signal Iω.

Fig. 4
Fig. 4

Monitor signal Iω of the active phase stabilization during recording of a single thermally fixed grating.

Fig. 5
Fig. 5

(a) Monitor signal Iω of the active phase stabilization during incremental recording and thermal fixing of an eight-channel multiplexer. (b) Section of Fig. 5(a) that covers one cycle of the monitor signal Iω.

Fig. 6
Fig. 6

Indirectly determined diffraction efficiency η versus angle of incidence α for different wavelengths λR of the readout light for an eight-channel multiplexer recorded at room temperature (crystal DT4-15).

Fig. 7
Fig. 7

Bragg wavelength λB versus Bragg angle αB for the eight-channel multiplexer recorded in the crystal DT4-15. Symbols represent data points deduced from Fig. 6, and the lines are fits of the Bragg equation to the data.

Fig. 8
Fig. 8

Intensity of the transmitted light Itrans versus wavelength λR for a sixteen-channel multiplexer written at room temperature (crystal DT4-15).

Fig. 9
Fig. 9

Diffraction efficiency η versus wavelength λR for a single thermally fixed grating (crystal DT4-15).

Fig. 10
Fig. 10

(a) Diffraction efficiency η versus wavelength λR for a thermally fixed eight-channel multiplexer (crystal DT4-14). (b) Same data as in (a) but with logarithmic scale for η.

Fig. 11
Fig. 11

Prototype of a two-channel multiplexer. One crystal containing two superimposed gratings and three precisely adjusted gradient-index (GRIN) lenses are glued on a metal stage.

Tables (3)

Tables Icon

Table 1 Notation, Dimensions (c is Along the Optical Axis), Total Iron Concentration cFe, Concentration cFe2+ of Electron Sources, and the Concentration Ratio cFe2+/cFe3+ Between Electron Sources and Traps of the Investigated Crystals

Tables Icon

Table 2 Data of the Eight Gratings Superimposed in the Crystal DT4-15 Written at Room Temperature a

Tables Icon

Table 3 Data of the Eight Superimposed and Thermally Fixed Gratings in the Crystal DT4-15 a

Metrics