Abstract

The behavior of several simultaneously trapped, micrometer-sized particles in a fiber-optical trap consisting of two opposing single-mode fibers delivering counterpropagating, near-IR laser beams strongly depends on the size of the particles. Whereas beads that are considerably larger than the laser wavelength are pressed against each other in an axial line, smaller beads spontaneously arrange themselves into regular chains of equidistantly separated particles suspended in space with increasing separation for increasing bead diameter. A simple model based on self-organization by means of diffraction from the particles is capable of explaining the basic features of our experimental observations in the investigated range of bead diameters and refractive indices.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription