Abstract

The behavior of several simultaneously trapped, micrometer-sized particles in a fiber-optical trap consisting of two opposing single-mode fibers delivering counterpropagating, near-IR laser beams strongly depends on the size of the particles. Whereas beads that are considerably larger than the laser wavelength are pressed against each other in an axial line, smaller beads spontaneously arrange themselves into regular chains of equidistantly separated particles suspended in space with increasing separation for increasing bead diameter. A simple model based on self-organization by means of diffraction from the particles is capable of explaining the basic features of our experimental observations in the investigated range of bead diameters and refractive indices.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
    [CrossRef] [PubMed]
  3. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [CrossRef] [PubMed]
  4. S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
    [CrossRef] [PubMed]
  5. S. Seeger, S. Monajembashi, K. J. Hutter, G. Futtermann, J. Wolfrum, and K. O. Greulich, “Application of laser optical tweezers in immunology and molecular genetics,” Cytometry 12, 497–504 (1991).
    [CrossRef] [PubMed]
  6. S. C. Kuo and M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
    [CrossRef] [PubMed]
  7. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
    [CrossRef] [PubMed]
  8. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
    [CrossRef] [PubMed]
  9. A. D. Metha, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
    [CrossRef]
  10. S. R. Quake, H. Babcock, and S. Chu, “The dynamics of partially extended single molecules of DNA,” Nature 388, 151–154 (1997).
    [CrossRef] [PubMed]
  11. Y. Arai, R. Yasuda, K.-I. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, “Tying a molecular knot with optical tweezers,” Nature 399, 446–448 (1999).
    [CrossRef] [PubMed]
  12. S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, S. Grinstein and K. Foskett, eds. (Wiley, New York, 1990), pp. 375–402.
  13. K. O. Greulich, Micromanipulation by Light in Biology and Medicine (Birkhäuser, Basel, Switzerland, 1999).
  14. M. P. Sheetz, L. Wilson, and P. Matsudaira, eds., Laser Tweezers in Cell Biology (Academic, San Diego, Calif., 1998).
  15. L. P. Ghislain and W. W. Webb, “Scanning-force microscope based on an optical trap,” Opt. Lett. 18, 1678–1680 (1993).
    [CrossRef] [PubMed]
  16. A. Rohrbach, E.-L. Florin, and E. H. K. Stelzer, “Photonic force microscopy: simulation of principles and applications,”in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels and M. F. Kaschke, eds., Proc. SPIE 4431, 75–86 (2001).
    [CrossRef]
  17. S. Chu, “Laser manipulation of atoms and particles,” Science 253, 861–866 (1991).
    [CrossRef] [PubMed]
  18. C. Cohen-Tannoudji, “Atomic motion in laser light,” in Fundamental Systems in Quantum Optics, J. Dalibard, J.-M. Raimond, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1992), pp. 19–30.
  19. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1993).
    [CrossRef]
  20. A. Rohrbach and E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” J. Opt. Soc. Am. A 18, 839–853 (2001).
    [CrossRef]
  21. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993).
    [CrossRef] [PubMed]
  22. A. G. Yodh, K.-H. Lin, J. C. Crocker, A. D. Dinsmore, R. Verma, and P. D. Kaplan, “Entropically driven self-assembly and interaction in suspension,” Phil. Trans. R. Soc. London Ser. A 359, 921 (2001).
    [CrossRef]
  23. D. G. Grier, “A revolution in optical manipulation,” Nature (to be published).
  24. A. van Blaaderen, K. P. Velikov, J. P. Hoogenboom, D. L. J. Vossen, A. Yethiraj, R. Dullens, T. v. Dillen, and A. Polman, “Manipulation of colloidal crystallization for photonic applications: from self-organization to do-it-yourself organization,” in Photonic Crystals and Light Localization in the 21st Century, NATO Advanced Study Institute, C. M. Soukoulis, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 239–251.
  25. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
    [CrossRef]
  26. D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2, 264–270 (1997).
    [CrossRef]
  27. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
    [CrossRef] [PubMed]
  28. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
    [CrossRef] [PubMed]
  29. M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
    [CrossRef] [PubMed]
  30. W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, “Combined optical tweezers and optical stretcher in microscopy,” in Hybrid and Novel Imaging and New Optical Instrumentation for Biomedical Applications, A.-C. Boccara and A. A. Oraevsky, eds., Proc. SPIE 4434, 227–232 (2001).
    [CrossRef]
  31. R. H. Boundy and R. F. Boyer, Styrene, Its Polymers, Copolymers and Derivatives (Reinhold, New York, 1952), pp 523–525.
  32. D. R. Lide, CRC Handbook of Chemistry and Physics, 79th ed. (Chemical Rubber, Cleveland, Ohio, 1998–1999), pp. 8–81.
  33. P. Domokos and H. Ritsch, “Collective cooling and self-organization of atoms in a cavity,” Phys. Rev. Lett. 89, 253003 (2002).
    [CrossRef] [PubMed]
  34. W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
    [CrossRef] [PubMed]

2003 (1)

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[CrossRef] [PubMed]

2002 (1)

P. Domokos and H. Ritsch, “Collective cooling and self-organization of atoms in a cavity,” Phys. Rev. Lett. 89, 253003 (2002).
[CrossRef] [PubMed]

2001 (4)

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, “Combined optical tweezers and optical stretcher in microscopy,” in Hybrid and Novel Imaging and New Optical Instrumentation for Biomedical Applications, A.-C. Boccara and A. A. Oraevsky, eds., Proc. SPIE 4434, 227–232 (2001).
[CrossRef]

A. G. Yodh, K.-H. Lin, J. C. Crocker, A. D. Dinsmore, R. Verma, and P. D. Kaplan, “Entropically driven self-assembly and interaction in suspension,” Phil. Trans. R. Soc. London Ser. A 359, 921 (2001).
[CrossRef]

A. Rohrbach, E.-L. Florin, and E. H. K. Stelzer, “Photonic force microscopy: simulation of principles and applications,”in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels and M. F. Kaschke, eds., Proc. SPIE 4431, 75–86 (2001).
[CrossRef]

A. Rohrbach and E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” J. Opt. Soc. Am. A 18, 839–853 (2001).
[CrossRef]

2000 (1)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

1999 (2)

A. D. Metha, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

Y. Arai, R. Yasuda, K.-I. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, “Tying a molecular knot with optical tweezers,” Nature 399, 446–448 (1999).
[CrossRef] [PubMed]

1998 (1)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[CrossRef]

1997 (2)

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2, 264–270 (1997).
[CrossRef]

S. R. Quake, H. Babcock, and S. Chu, “The dynamics of partially extended single molecules of DNA,” Nature 388, 151–154 (1997).
[CrossRef] [PubMed]

1994 (1)

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[CrossRef] [PubMed]

1993 (5)

S. C. Kuo and M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
[CrossRef] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[CrossRef] [PubMed]

L. P. Ghislain and W. W. Webb, “Scanning-force microscope based on an optical trap,” Opt. Lett. 18, 1678–1680 (1993).
[CrossRef] [PubMed]

A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18, 1867–1869 (1993).
[CrossRef] [PubMed]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1993).
[CrossRef]

1991 (2)

S. Chu, “Laser manipulation of atoms and particles,” Science 253, 861–866 (1991).
[CrossRef] [PubMed]

S. Seeger, S. Monajembashi, K. J. Hutter, G. Futtermann, J. Wolfrum, and K. O. Greulich, “Application of laser optical tweezers in immunology and molecular genetics,” Cytometry 12, 497–504 (1991).
[CrossRef] [PubMed]

1990 (1)

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

1989 (2)

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef] [PubMed]

1987 (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Akashi, K.-I.

Y. Arai, R. Yasuda, K.-I. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, “Tying a molecular knot with optical tweezers,” Nature 399, 446–448 (1999).
[CrossRef] [PubMed]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Arai, Y.

Y. Arai, R. Yasuda, K.-I. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, “Tying a molecular knot with optical tweezers,” Nature 399, 446–448 (1999).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1993).
[CrossRef]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Babcock, H.

S. R. Quake, H. Babcock, and S. Chu, “The dynamics of partially extended single molecules of DNA,” Nature 388, 151–154 (1997).
[CrossRef] [PubMed]

Berg, H. C.

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef] [PubMed]

Bernet, S.

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[CrossRef] [PubMed]

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, “Combined optical tweezers and optical stretcher in microscopy,” in Hybrid and Novel Imaging and New Optical Instrumentation for Biomedical Applications, A.-C. Boccara and A. A. Oraevsky, eds., Proc. SPIE 4434, 227–232 (2001).
[CrossRef]

Blair, D. F.

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef] [PubMed]

Block, S. M.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[CrossRef] [PubMed]

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef] [PubMed]

Burns, M. M.

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Chu, S.

S. R. Quake, H. Babcock, and S. Chu, “The dynamics of partially extended single molecules of DNA,” Nature 388, 151–154 (1997).
[CrossRef] [PubMed]

S. Chu, “Laser manipulation of atoms and particles,” Science 253, 861–866 (1991).
[CrossRef] [PubMed]

Constable, A.

Crocker, J. C.

A. G. Yodh, K.-H. Lin, J. C. Crocker, A. D. Dinsmore, R. Verma, and P. D. Kaplan, “Entropically driven self-assembly and interaction in suspension,” Phil. Trans. R. Soc. London Ser. A 359, 921 (2001).
[CrossRef]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Dietl, P.

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[CrossRef] [PubMed]

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, “Combined optical tweezers and optical stretcher in microscopy,” in Hybrid and Novel Imaging and New Optical Instrumentation for Biomedical Applications, A.-C. Boccara and A. A. Oraevsky, eds., Proc. SPIE 4434, 227–232 (2001).
[CrossRef]

Dinsmore, A. D.

A. G. Yodh, K.-H. Lin, J. C. Crocker, A. D. Dinsmore, R. Verma, and P. D. Kaplan, “Entropically driven self-assembly and interaction in suspension,” Phil. Trans. R. Soc. London Ser. A 359, 921 (2001).
[CrossRef]

Domokos, P.

P. Domokos and H. Ritsch, “Collective cooling and self-organization of atoms in a cavity,” Phys. Rev. Lett. 89, 253003 (2002).
[CrossRef] [PubMed]

Dufresne, E. R.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

Finer, J. T.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[CrossRef] [PubMed]

Florin, E.-L.

A. Rohrbach, E.-L. Florin, and E. H. K. Stelzer, “Photonic force microscopy: simulation of principles and applications,”in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels and M. F. Kaschke, eds., Proc. SPIE 4431, 75–86 (2001).
[CrossRef]

Fournier, J.-M.

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Frick, M.

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[CrossRef] [PubMed]

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, “Combined optical tweezers and optical stretcher in microscopy,” in Hybrid and Novel Imaging and New Optical Instrumentation for Biomedical Applications, A.-C. Boccara and A. A. Oraevsky, eds., Proc. SPIE 4434, 227–232 (2001).
[CrossRef]

Futtermann, G.

S. Seeger, S. Monajembashi, K. J. Hutter, G. Futtermann, J. Wolfrum, and K. O. Greulich, “Application of laser optical tweezers in immunology and molecular genetics,” Cytometry 12, 497–504 (1991).
[CrossRef] [PubMed]

Ghislain, L. P.

Golovchenko, J. A.

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Greulich, K. O.

S. Seeger, S. Monajembashi, K. J. Hutter, G. Futtermann, J. Wolfrum, and K. O. Greulich, “Application of laser optical tweezers in immunology and molecular genetics,” Cytometry 12, 497–504 (1991).
[CrossRef] [PubMed]

Grier, D. G.

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[CrossRef]

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2, 264–270 (1997).
[CrossRef]

Guck, J.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Haller, T.

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[CrossRef] [PubMed]

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, “Combined optical tweezers and optical stretcher in microscopy,” in Hybrid and Novel Imaging and New Optical Instrumentation for Biomedical Applications, A.-C. Boccara and A. A. Oraevsky, eds., Proc. SPIE 4434, 227–232 (2001).
[CrossRef]

Harada, Y.

Y. Arai, R. Yasuda, K.-I. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, “Tying a molecular knot with optical tweezers,” Nature 399, 446–448 (1999).
[CrossRef] [PubMed]

Hutter, K. J.

S. Seeger, S. Monajembashi, K. J. Hutter, G. Futtermann, J. Wolfrum, and K. O. Greulich, “Application of laser optical tweezers in immunology and molecular genetics,” Cytometry 12, 497–504 (1991).
[CrossRef] [PubMed]

Itoh, H.

Y. Arai, R. Yasuda, K.-I. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, “Tying a molecular knot with optical tweezers,” Nature 399, 446–448 (1999).
[CrossRef] [PubMed]

Kaplan, P. D.

A. G. Yodh, K.-H. Lin, J. C. Crocker, A. D. Dinsmore, R. Verma, and P. D. Kaplan, “Entropically driven self-assembly and interaction in suspension,” Phil. Trans. R. Soc. London Ser. A 359, 921 (2001).
[CrossRef]

Käs, J.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Kim, J.

Kinosita, K.

Y. Arai, R. Yasuda, K.-I. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, “Tying a molecular knot with optical tweezers,” Nature 399, 446–448 (1999).
[CrossRef] [PubMed]

Kuo, S. C.

S. C. Kuo and M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
[CrossRef] [PubMed]

Lin, K.-H.

A. G. Yodh, K.-H. Lin, J. C. Crocker, A. D. Dinsmore, R. Verma, and P. D. Kaplan, “Entropically driven self-assembly and interaction in suspension,” Phil. Trans. R. Soc. London Ser. A 359, 921 (2001).
[CrossRef]

Mervis, J.

Metha, A. D.

A. D. Metha, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

Miyata, H.

Y. Arai, R. Yasuda, K.-I. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, “Tying a molecular knot with optical tweezers,” Nature 399, 446–448 (1999).
[CrossRef] [PubMed]

Monajembashi, S.

S. Seeger, S. Monajembashi, K. J. Hutter, G. Futtermann, J. Wolfrum, and K. O. Greulich, “Application of laser optical tweezers in immunology and molecular genetics,” Cytometry 12, 497–504 (1991).
[CrossRef] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Prentiss, M.

Quake, S. R.

S. R. Quake, H. Babcock, and S. Chu, “The dynamics of partially extended single molecules of DNA,” Nature 388, 151–154 (1997).
[CrossRef] [PubMed]

Rief, M.

A. D. Metha, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

Ritsch, H.

P. Domokos and H. Ritsch, “Collective cooling and self-organization of atoms in a cavity,” Phys. Rev. Lett. 89, 253003 (2002).
[CrossRef] [PubMed]

Ritsch-Marte, M.

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[CrossRef] [PubMed]

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, “Combined optical tweezers and optical stretcher in microscopy,” in Hybrid and Novel Imaging and New Optical Instrumentation for Biomedical Applications, A.-C. Boccara and A. A. Oraevsky, eds., Proc. SPIE 4434, 227–232 (2001).
[CrossRef]

Rohrbach, A.

A. Rohrbach, E.-L. Florin, and E. H. K. Stelzer, “Photonic force microscopy: simulation of principles and applications,”in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels and M. F. Kaschke, eds., Proc. SPIE 4431, 75–86 (2001).
[CrossRef]

A. Rohrbach and E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” J. Opt. Soc. Am. A 18, 839–853 (2001).
[CrossRef]

Schmidt, C. F.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[CrossRef] [PubMed]

Schnapp, B. J.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[CrossRef] [PubMed]

Seeger, S.

S. Seeger, S. Monajembashi, K. J. Hutter, G. Futtermann, J. Wolfrum, and K. O. Greulich, “Application of laser optical tweezers in immunology and molecular genetics,” Cytometry 12, 497–504 (1991).
[CrossRef] [PubMed]

Sheetz, M. P.

S. C. Kuo and M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
[CrossRef] [PubMed]

Simmons, R. M.

A. D. Metha, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[CrossRef] [PubMed]

Singer, W.

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[CrossRef] [PubMed]

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, “Combined optical tweezers and optical stretcher in microscopy,” in Hybrid and Novel Imaging and New Optical Instrumentation for Biomedical Applications, A.-C. Boccara and A. A. Oraevsky, eds., Proc. SPIE 4434, 227–232 (2001).
[CrossRef]

Smith, D. A.

A. D. Metha, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

Spudich, J. A.

A. D. Metha, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[CrossRef] [PubMed]

Stelzer, E. H. K.

A. Rohrbach and E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” J. Opt. Soc. Am. A 18, 839–853 (2001).
[CrossRef]

A. Rohrbach, E.-L. Florin, and E. H. K. Stelzer, “Photonic force microscopy: simulation of principles and applications,”in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels and M. F. Kaschke, eds., Proc. SPIE 4431, 75–86 (2001).
[CrossRef]

Svoboda, K.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[CrossRef] [PubMed]

Verma, R.

A. G. Yodh, K.-H. Lin, J. C. Crocker, A. D. Dinsmore, R. Verma, and P. D. Kaplan, “Entropically driven self-assembly and interaction in suspension,” Phil. Trans. R. Soc. London Ser. A 359, 921 (2001).
[CrossRef]

Webb, W. W.

Wolfrum, J.

S. Seeger, S. Monajembashi, K. J. Hutter, G. Futtermann, J. Wolfrum, and K. O. Greulich, “Application of laser optical tweezers in immunology and molecular genetics,” Cytometry 12, 497–504 (1991).
[CrossRef] [PubMed]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

Yasuda, R.

Y. Arai, R. Yasuda, K.-I. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, “Tying a molecular knot with optical tweezers,” Nature 399, 446–448 (1999).
[CrossRef] [PubMed]

Yodh, A. G.

A. G. Yodh, K.-H. Lin, J. C. Crocker, A. D. Dinsmore, R. Verma, and P. D. Kaplan, “Entropically driven self-assembly and interaction in suspension,” Phil. Trans. R. Soc. London Ser. A 359, 921 (2001).
[CrossRef]

Zarinetchi, F.

Biophys. J. (2)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1993).
[CrossRef]

W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, “Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers,” Biophys. J. 84, 1344–1351 (2003).
[CrossRef] [PubMed]

Curr. Opin. Colloid Interface Sci. (1)

D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2, 264–270 (1997).
[CrossRef]

Cytometry (1)

S. Seeger, S. Monajembashi, K. J. Hutter, G. Futtermann, J. Wolfrum, and K. O. Greulich, “Application of laser optical tweezers in immunology and molecular genetics,” Cytometry 12, 497–504 (1991).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nature (6)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[CrossRef] [PubMed]

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef] [PubMed]

S. R. Quake, H. Babcock, and S. Chu, “The dynamics of partially extended single molecules of DNA,” Nature 388, 151–154 (1997).
[CrossRef] [PubMed]

Y. Arai, R. Yasuda, K.-I. Akashi, Y. Harada, H. Miyata, K. Kinosita, and H. Itoh, “Tying a molecular knot with optical tweezers,” Nature 399, 446–448 (1999).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phil. Trans. R. Soc. London Ser. A (1)

A. G. Yodh, K.-H. Lin, J. C. Crocker, A. D. Dinsmore, R. Verma, and P. D. Kaplan, “Entropically driven self-assembly and interaction in suspension,” Phil. Trans. R. Soc. London Ser. A 359, 921 (2001).
[CrossRef]

Phys. Rev. Lett. (4)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

P. Domokos and H. Ritsch, “Collective cooling and self-organization of atoms in a cavity,” Phys. Rev. Lett. 89, 253003 (2002).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Proc. SPIE (2)

A. Rohrbach, E.-L. Florin, and E. H. K. Stelzer, “Photonic force microscopy: simulation of principles and applications,”in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels and M. F. Kaschke, eds., Proc. SPIE 4431, 75–86 (2001).
[CrossRef]

W. Singer, M. Frick, T. Haller, P. Dietl, S. Bernet, and M. Ritsch-Marte, “Combined optical tweezers and optical stretcher in microscopy,” in Hybrid and Novel Imaging and New Optical Instrumentation for Biomedical Applications, A.-C. Boccara and A. A. Oraevsky, eds., Proc. SPIE 4434, 227–232 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69, 1974–1977 (1998).
[CrossRef]

Science (5)

M. M. Burns, J.-M. Fournier, J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
[CrossRef] [PubMed]

S. Chu, “Laser manipulation of atoms and particles,” Science 253, 861–866 (1991).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. D. Metha, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283, 1689–1695 (1999).
[CrossRef]

S. C. Kuo and M. P. Sheetz, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
[CrossRef] [PubMed]

Other (8)

C. Cohen-Tannoudji, “Atomic motion in laser light,” in Fundamental Systems in Quantum Optics, J. Dalibard, J.-M. Raimond, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1992), pp. 19–30.

S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, S. Grinstein and K. Foskett, eds. (Wiley, New York, 1990), pp. 375–402.

K. O. Greulich, Micromanipulation by Light in Biology and Medicine (Birkhäuser, Basel, Switzerland, 1999).

M. P. Sheetz, L. Wilson, and P. Matsudaira, eds., Laser Tweezers in Cell Biology (Academic, San Diego, Calif., 1998).

D. G. Grier, “A revolution in optical manipulation,” Nature (to be published).

A. van Blaaderen, K. P. Velikov, J. P. Hoogenboom, D. L. J. Vossen, A. Yethiraj, R. Dullens, T. v. Dillen, and A. Polman, “Manipulation of colloidal crystallization for photonic applications: from self-organization to do-it-yourself organization,” in Photonic Crystals and Light Localization in the 21st Century, NATO Advanced Study Institute, C. M. Soukoulis, ed. (Kluwer Academic, Dordrecht, The Netherlands, 2001), pp. 239–251.

R. H. Boundy and R. F. Boyer, Styrene, Its Polymers, Copolymers and Derivatives (Reinhold, New York, 1952), pp 523–525.

D. R. Lide, CRC Handbook of Chemistry and Physics, 79th ed. (Chemical Rubber, Cleveland, Ohio, 1998–1999), pp. 8–81.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic drawing of our combined optical tweezers and fiber-optical trap setup. Light from the ytterbium fiber laser can be distributed between the optical tweezers and the fiber-optical trap consisting of two single-mode fibers (S1, S2) by using a set of half-wave plates (λ/2) and polarizing beam splitters (PBS).

Fig. 2
Fig. 2

Equidistant spacing within chains of trapped microbeads. (a) Array of beads with a diameter of D=1 μm (spacing L=5.7±0.6 μm), and (b) with D=1.44 μm (L=10.9±0.4 μm).

Fig. 3
Fig. 3

(a) Dependence of bead spacing L on the bead diameter D for polystyrene beads (n=1.57) in water (n=1.33). (b) Bead spacings for different refractive indices n of the surrounding liquid (refractive index difference Δnd=0.24 corresponds to n=1.33, Δnd=0.19 to n=1.38, Δnd=0.16 to n=1.41). Open circles indicate the mean value, error bars the standard deviation.

Fig. 4
Fig. 4

The spacing L of the chain of point scatterers (beads) determines the scattering angle α.

Fig. 5
Fig. 5

(a) Calculated light interference pattern for the scattering of one plane wave (traveling from the left to the right side) by a stationary array of point scatterers. The position of the scattering beads is at the peaks of the cylinder-symmetrical cones. (b) Incoherent superposition of the interference patterns created by two counterpropagating incident beams and their diffracted components. The resulting light intensity distribution shows a longitudinal (on-axis) and a cylinder-symmetrical transverse periodicity.

Fig. 6
Fig. 6

Calculated dependence of the bead spacing L on the bead diameter D for polystyrene beads in water. The solid curve represents the physically accessible part of the two branches of the solution of Eq. (5); the dotted curve on the left represents the theoretically expected bead spacing for bead diameters less than λ/2. For comparison the experimentally obtained bead spacings are displayed as well as data points with error bars.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

cos α=1-λ/nL.
d=λ/n2 sin(α).
L=λ/n1±1-(λ/n)24d21/2.
d=D.
L=λ/n1±1+(λ/n)24(aD)21/2.

Metrics