Abstract

We performed pulse-shaping and time-reversal experiments using spectral holography based on persistent spectral hole burning in free-base naphthalocyanine-doped films. We demonstrate that we can control the pulses diffracted from the hologram by shaping and then by characterizing these pulses in both amplitude and phase. A dephasing time of 29 ps (i.e., a homogeneous linewidth of 69 GHz) was measured from a photon-echo experiment in the chemically accumulated regime.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rebane, R. K. Kaarli, P. M. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
    [CrossRef]
  2. R. K. Kaarli, P. M. Saari, and H. R. Sonajalg, “Storage and reproduction of an ultrafast optical signal with arbitrarily time dependent wavefront and polarization,” Opt. Commun. 65, 170–174 (1988).
    [CrossRef]
  3. P. Saari, R. Kaarli, and A. Rebane, “Picosecond time- and space-domain holography by photochemical hole burning,” J. Opt. Soc. Am. B 3, 527–534 (1986).
    [CrossRef]
  4. A. Rebane, J. Aaviksoo, and J. Kuhl, “Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography,” Appl. Phys. Lett. 54, 93–95 (1989).
    [CrossRef]
  5. M. Tian, F. Grelet, I. Lorgeré, J.-P. Galaup, and J.-L. Le Gouët, “Persistent spectral hole burning in an organic material for temporal pattern recognition,” J. Opt. Soc. Am. B 16, 74–82 (1999).
    [CrossRef]
  6. A. Rebane, M. Drobizhev, and C. Sigel, “Single femtosecond exposure recording of an image hologram by spectral hole burning in an unstable tautomer of a phthalocyanine derivative,” Opt. Lett. 25, 1633–1635 (2000).
    [CrossRef]
  7. O. Ollikainen, C. Nilsson, J. Gallus, D. Erni, and A. Rebane, “Terahertz bit-rate parallel multiplication by photon echo in low-temperature dye-doped polymer film,” Opt. Commun. 147, 429–435 (1998).
    [CrossRef]
  8. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulator,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  9. M. F. Emde, W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, “Spectral interferometry as an alternative to time-domain heterodyning,” Opt. Lett. 22, 1338–1340 (1997).
    [CrossRef]
  10. S. Matsuo and T. Tahara, “Phase-stabilized optical heterodyne detection of impulsive stimulated Raman scattering,” Chem. Phys. Lett. 264, 636–642 (1997).
    [CrossRef]
  11. A. V. Turukhin, A. A. Gorokhovsky, C. Moser, I. V. Solomatin, and D. Psaltis, “Spectral hole burning in naphthalocyanines derivatives in the region 800 nm for holographic storage applications,” J. Lumin. 86, 399–405 (2000).
    [CrossRef]
  12. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
    [CrossRef]
  13. J.-P. Likforman, M. Joffre, and V. Thierry-Mieg, “Measurement of photon echoes by use of femtosecond Fourier-transform spectral interferometry,” Opt. Lett. 22, 1104–1106 (1997).
    [CrossRef] [PubMed]
  14. This value of the dephasing time corresponds to decaying times of 14.4 ps for the echo amplitude and 7.2 ps for the echo intensity.

2000 (3)

A. Rebane, M. Drobizhev, and C. Sigel, “Single femtosecond exposure recording of an image hologram by spectral hole burning in an unstable tautomer of a phthalocyanine derivative,” Opt. Lett. 25, 1633–1635 (2000).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulator,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

A. V. Turukhin, A. A. Gorokhovsky, C. Moser, I. V. Solomatin, and D. Psaltis, “Spectral hole burning in naphthalocyanines derivatives in the region 800 nm for holographic storage applications,” J. Lumin. 86, 399–405 (2000).
[CrossRef]

1999 (1)

1998 (1)

O. Ollikainen, C. Nilsson, J. Gallus, D. Erni, and A. Rebane, “Terahertz bit-rate parallel multiplication by photon echo in low-temperature dye-doped polymer film,” Opt. Commun. 147, 429–435 (1998).
[CrossRef]

1997 (3)

1995 (1)

1989 (1)

A. Rebane, J. Aaviksoo, and J. Kuhl, “Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography,” Appl. Phys. Lett. 54, 93–95 (1989).
[CrossRef]

1988 (1)

R. K. Kaarli, P. M. Saari, and H. R. Sonajalg, “Storage and reproduction of an ultrafast optical signal with arbitrarily time dependent wavefront and polarization,” Opt. Commun. 65, 170–174 (1988).
[CrossRef]

1986 (1)

1983 (1)

A. Rebane, R. K. Kaarli, P. M. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Aaviksoo, J.

A. Rebane, J. Aaviksoo, and J. Kuhl, “Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography,” Appl. Phys. Lett. 54, 93–95 (1989).
[CrossRef]

Anijalg, A.

A. Rebane, R. K. Kaarli, P. M. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Chériaux, G.

de Boeij, W. P.

Drobizhev, M.

Emde, M. F.

Erni, D.

O. Ollikainen, C. Nilsson, J. Gallus, D. Erni, and A. Rebane, “Terahertz bit-rate parallel multiplication by photon echo in low-temperature dye-doped polymer film,” Opt. Commun. 147, 429–435 (1998).
[CrossRef]

Galaup, J.-P.

Gallus, J.

O. Ollikainen, C. Nilsson, J. Gallus, D. Erni, and A. Rebane, “Terahertz bit-rate parallel multiplication by photon echo in low-temperature dye-doped polymer film,” Opt. Commun. 147, 429–435 (1998).
[CrossRef]

Gorokhovsky, A. A.

A. V. Turukhin, A. A. Gorokhovsky, C. Moser, I. V. Solomatin, and D. Psaltis, “Spectral hole burning in naphthalocyanines derivatives in the region 800 nm for holographic storage applications,” J. Lumin. 86, 399–405 (2000).
[CrossRef]

Grelet, F.

Joffre, M.

Kaarli, R.

Kaarli, R. K.

R. K. Kaarli, P. M. Saari, and H. R. Sonajalg, “Storage and reproduction of an ultrafast optical signal with arbitrarily time dependent wavefront and polarization,” Opt. Commun. 65, 170–174 (1988).
[CrossRef]

A. Rebane, R. K. Kaarli, P. M. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Kuhl, J.

A. Rebane, J. Aaviksoo, and J. Kuhl, “Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography,” Appl. Phys. Lett. 54, 93–95 (1989).
[CrossRef]

Le Gouët, J.-L.

Lepetit, L.

Likforman, J.-P.

Lorgeré, I.

Matsuo, S.

S. Matsuo and T. Tahara, “Phase-stabilized optical heterodyne detection of impulsive stimulated Raman scattering,” Chem. Phys. Lett. 264, 636–642 (1997).
[CrossRef]

Moser, C.

A. V. Turukhin, A. A. Gorokhovsky, C. Moser, I. V. Solomatin, and D. Psaltis, “Spectral hole burning in naphthalocyanines derivatives in the region 800 nm for holographic storage applications,” J. Lumin. 86, 399–405 (2000).
[CrossRef]

Nilsson, C.

O. Ollikainen, C. Nilsson, J. Gallus, D. Erni, and A. Rebane, “Terahertz bit-rate parallel multiplication by photon echo in low-temperature dye-doped polymer film,” Opt. Commun. 147, 429–435 (1998).
[CrossRef]

Ollikainen, O.

O. Ollikainen, C. Nilsson, J. Gallus, D. Erni, and A. Rebane, “Terahertz bit-rate parallel multiplication by photon echo in low-temperature dye-doped polymer film,” Opt. Commun. 147, 429–435 (1998).
[CrossRef]

Psaltis, D.

A. V. Turukhin, A. A. Gorokhovsky, C. Moser, I. V. Solomatin, and D. Psaltis, “Spectral hole burning in naphthalocyanines derivatives in the region 800 nm for holographic storage applications,” J. Lumin. 86, 399–405 (2000).
[CrossRef]

Pshenichnikov, M. S.

Rebane, A.

A. Rebane, M. Drobizhev, and C. Sigel, “Single femtosecond exposure recording of an image hologram by spectral hole burning in an unstable tautomer of a phthalocyanine derivative,” Opt. Lett. 25, 1633–1635 (2000).
[CrossRef]

O. Ollikainen, C. Nilsson, J. Gallus, D. Erni, and A. Rebane, “Terahertz bit-rate parallel multiplication by photon echo in low-temperature dye-doped polymer film,” Opt. Commun. 147, 429–435 (1998).
[CrossRef]

A. Rebane, J. Aaviksoo, and J. Kuhl, “Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography,” Appl. Phys. Lett. 54, 93–95 (1989).
[CrossRef]

P. Saari, R. Kaarli, and A. Rebane, “Picosecond time- and space-domain holography by photochemical hole burning,” J. Opt. Soc. Am. B 3, 527–534 (1986).
[CrossRef]

A. Rebane, R. K. Kaarli, P. M. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Saari, P.

Saari, P. M.

R. K. Kaarli, P. M. Saari, and H. R. Sonajalg, “Storage and reproduction of an ultrafast optical signal with arbitrarily time dependent wavefront and polarization,” Opt. Commun. 65, 170–174 (1988).
[CrossRef]

A. Rebane, R. K. Kaarli, P. M. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Sigel, C.

Solomatin, I. V.

A. V. Turukhin, A. A. Gorokhovsky, C. Moser, I. V. Solomatin, and D. Psaltis, “Spectral hole burning in naphthalocyanines derivatives in the region 800 nm for holographic storage applications,” J. Lumin. 86, 399–405 (2000).
[CrossRef]

Sonajalg, H. R.

R. K. Kaarli, P. M. Saari, and H. R. Sonajalg, “Storage and reproduction of an ultrafast optical signal with arbitrarily time dependent wavefront and polarization,” Opt. Commun. 65, 170–174 (1988).
[CrossRef]

Tahara, T.

S. Matsuo and T. Tahara, “Phase-stabilized optical heterodyne detection of impulsive stimulated Raman scattering,” Chem. Phys. Lett. 264, 636–642 (1997).
[CrossRef]

Thierry-Mieg, V.

Tian, M.

Timpmann, K.

A. Rebane, R. K. Kaarli, P. M. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Turukhin, A. V.

A. V. Turukhin, A. A. Gorokhovsky, C. Moser, I. V. Solomatin, and D. Psaltis, “Spectral hole burning in naphthalocyanines derivatives in the region 800 nm for holographic storage applications,” J. Lumin. 86, 399–405 (2000).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulator,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Wiersma, D. A.

Appl. Phys. Lett. (1)

A. Rebane, J. Aaviksoo, and J. Kuhl, “Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography,” Appl. Phys. Lett. 54, 93–95 (1989).
[CrossRef]

Chem. Phys. Lett. (1)

S. Matsuo and T. Tahara, “Phase-stabilized optical heterodyne detection of impulsive stimulated Raman scattering,” Chem. Phys. Lett. 264, 636–642 (1997).
[CrossRef]

J. Lumin. (1)

A. V. Turukhin, A. A. Gorokhovsky, C. Moser, I. V. Solomatin, and D. Psaltis, “Spectral hole burning in naphthalocyanines derivatives in the region 800 nm for holographic storage applications,” J. Lumin. 86, 399–405 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (3)

O. Ollikainen, C. Nilsson, J. Gallus, D. Erni, and A. Rebane, “Terahertz bit-rate parallel multiplication by photon echo in low-temperature dye-doped polymer film,” Opt. Commun. 147, 429–435 (1998).
[CrossRef]

A. Rebane, R. K. Kaarli, P. M. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

R. K. Kaarli, P. M. Saari, and H. R. Sonajalg, “Storage and reproduction of an ultrafast optical signal with arbitrarily time dependent wavefront and polarization,” Opt. Commun. 65, 170–174 (1988).
[CrossRef]

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulator,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Other (1)

This value of the dephasing time corresponds to decaying times of 14.4 ps for the echo amplitude and 7.2 ps for the echo intensity.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transmitted spectra (on a log scale) before (thick dotted curve) and after (thick solid curve) the writing procedure. The thin solid curve represents the spectral intensity of the two-pulse sequence that was used to write the hologram, measured in transmission through the sample.

Fig. 2
Fig. 2

(a) Squares, spectral phase of the echo for a delay of +τ between writing pulses; solid curve, spectral phase difference between the two writing pulses; dotted curve, echo spectral amplitude. (b) Same as (a) but for a time delay of -τ. (c) Time domain, electric field of the echo in case (a). The field is shown in a rotating frame centered at 360 THz to make the chirp more evident. (d) Same as (c) but for a time delay of -τ.

Fig. 3
Fig. 3

Echo amplitude as a function of time delay between the two pump pulses (circles). The solid curve is a fit by use of a double exponential function with a main decay time of 14.4 ps. The inset shows schematically the writing procedure by use of two pulses separated by τ and the reading procedure by use of two pulses separated by τ-1 ps. The echo (E) originates from the diffraction of the first reading pulse (3) on the spectral grating formed by the two writing pulses. The spectral interference fringes between the second reading pulse (Ref.) and the echo (E) separated by 1 ps were recorded by use of a spectrometer and a CCD camera.

Metrics