Abstract

A fluorescence-based method to measure an absolute two-photon emission cross section is reported in which we measured the absolute fluorescence power using a commercial luminance meter. An analytical expression between the average fluorescence power and the average pump power is derived. The expression is valid for any arbitrary-shaped pump-laser profile. It was also found that the origin of deviation of fluorescence intensity from expected quadratic dependence on pump power is thermal in nature. The method is used to measure the absolute two-photon-excited (TPE) emission cross section of Rhodamine 6G at an 800-nm excitation wavelength. The measured TPE emission cross section at 800 nm is η δ=(36±6)× 10-50 (cm4/s)/photon. Within experimental error, the result obtained with this method is quite close to the previously reported TPE cross section obtained with the fluorescence method.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science (Washington, DC, U.S.) 248, 73–76 (1990).
    [CrossRef]
  2. X. Wang, H. E. Pudavar, R. Kapoor, L. J. Krebs, E. J. Bergey, C. Liebow, P. N. Prasad, A. Nagy, and A. V. Schally, “Studies on the mechanism of action of a targeted chemotherapeutic drug in living cancer cells by two photon laser scanning microspectrofluorometry,” J. Biomed. Opt. 6, 319–325 (2001).
    [CrossRef] [PubMed]
  3. J. Mertz, C. Xu, and W. W. Webb, “Single-molecule detection by two-photon-excited fluorescence,” Opt. Lett. 20, 2532–2534 (1995).
    [CrossRef] [PubMed]
  4. K. M. Berland, P. T. So, and E. Gratton, “2-photon fluorescence correlation spectroscopy—method and application to the intracellular enviorenment,” Biophys. J. 68, 694–701 (1995).
    [CrossRef] [PubMed]
  5. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
    [CrossRef] [PubMed]
  6. D. A. Parthenopoulos and P. M. Rentzepis, “3-dimensional optical storage memory,” Science 245, 843–845 (1989).
    [CrossRef] [PubMed]
  7. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11, 1009–1017 (1994).
    [CrossRef]
  8. P. Sengupta, J. Balaji, S. Benerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205 (2000).
    [CrossRef]
  9. P. Tian and W. S. Warren, “Ultrafast measurement of two-photon absorption by loss modulation,” Opt. Lett. 27, 1634–1636 (2002).
    [CrossRef]
  10. I. M. Catalano and A. Cingolani, “Absolute 2-photon fluorescence with low-power cw lasers,” Appl. Phys. Lett. 38, 745–747 (1981).
    [CrossRef]
  11. J. P. Hermann and J. Ducuing, “Dispersion of the two-photon cross section in rhodamine dyes,” Opt. Commun. 6, 101–105 (1972).
    [CrossRef]
  12. A. Fischer, C. Cremer, and E. H. K. Stelzer, “Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium–sapphire laser,” Appl. Opt. 34, 1989–2003 (1995).
    [CrossRef] [PubMed]
  13. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
    [CrossRef]
  14. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37, 7352–7356 (1998).
    [CrossRef]
  15. P. Kaatz and D. P. Shelton, “Two-photon fluorescence cross-section measurements calibrated with hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 16, 998–1006 (1999).
    [CrossRef]
  16. R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “An alternative approach to determine the spot-size of a multi-mode laser beam and its application to diode laser beams,” Pramana 53, 307–319 (1999).
    [CrossRef]
  17. A. E. Siegman Lasers (University Science, Mill Valley, Calif., 1986).
  18. J. A. Hermann, “Nonlinear optical absorption in thick media,” J. Opt. Soc. Am. B 14, 814–823 (1997).
    [CrossRef]

2002 (1)

2001 (1)

X. Wang, H. E. Pudavar, R. Kapoor, L. J. Krebs, E. J. Bergey, C. Liebow, P. N. Prasad, A. Nagy, and A. V. Schally, “Studies on the mechanism of action of a targeted chemotherapeutic drug in living cancer cells by two photon laser scanning microspectrofluorometry,” J. Biomed. Opt. 6, 319–325 (2001).
[CrossRef] [PubMed]

2000 (1)

P. Sengupta, J. Balaji, S. Benerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205 (2000).
[CrossRef]

1999 (3)

P. Kaatz and D. P. Shelton, “Two-photon fluorescence cross-section measurements calibrated with hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 16, 998–1006 (1999).
[CrossRef]

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “An alternative approach to determine the spot-size of a multi-mode laser beam and its application to diode laser beams,” Pramana 53, 307–319 (1999).
[CrossRef]

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1996 (1)

1995 (3)

1994 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science (Washington, DC, U.S.) 248, 73–76 (1990).
[CrossRef]

1989 (1)

D. A. Parthenopoulos and P. M. Rentzepis, “3-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

1981 (1)

I. M. Catalano and A. Cingolani, “Absolute 2-photon fluorescence with low-power cw lasers,” Appl. Phys. Lett. 38, 745–747 (1981).
[CrossRef]

1972 (1)

J. P. Hermann and J. Ducuing, “Dispersion of the two-photon cross section in rhodamine dyes,” Opt. Commun. 6, 101–105 (1972).
[CrossRef]

Albota, M. A.

Balaji, J.

P. Sengupta, J. Balaji, S. Benerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205 (2000).
[CrossRef]

Benerjee, S.

P. Sengupta, J. Balaji, S. Benerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205 (2000).
[CrossRef]

Bergey, E. J.

X. Wang, H. E. Pudavar, R. Kapoor, L. J. Krebs, E. J. Bergey, C. Liebow, P. N. Prasad, A. Nagy, and A. V. Schally, “Studies on the mechanism of action of a targeted chemotherapeutic drug in living cancer cells by two photon laser scanning microspectrofluorometry,” J. Biomed. Opt. 6, 319–325 (2001).
[CrossRef] [PubMed]

Berland, K. M.

K. M. Berland, P. T. So, and E. Gratton, “2-photon fluorescence correlation spectroscopy—method and application to the intracellular enviorenment,” Biophys. J. 68, 694–701 (1995).
[CrossRef] [PubMed]

Catalano, I. M.

I. M. Catalano and A. Cingolani, “Absolute 2-photon fluorescence with low-power cw lasers,” Appl. Phys. Lett. 38, 745–747 (1981).
[CrossRef]

Cingolani, A.

I. M. Catalano and A. Cingolani, “Absolute 2-photon fluorescence with low-power cw lasers,” Appl. Phys. Lett. 38, 745–747 (1981).
[CrossRef]

Cremer, C.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science (Washington, DC, U.S.) 248, 73–76 (1990).
[CrossRef]

Ducuing, J.

J. P. Hermann and J. Ducuing, “Dispersion of the two-photon cross section in rhodamine dyes,” Opt. Commun. 6, 101–105 (1972).
[CrossRef]

Fischer, A.

George, J.

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “An alternative approach to determine the spot-size of a multi-mode laser beam and its application to diode laser beams,” Pramana 53, 307–319 (1999).
[CrossRef]

Gratton, E.

K. M. Berland, P. T. So, and E. Gratton, “2-photon fluorescence correlation spectroscopy—method and application to the intracellular enviorenment,” Biophys. J. 68, 694–701 (1995).
[CrossRef] [PubMed]

Hagan, D. J.

Haupts, U.

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
[CrossRef] [PubMed]

Hermann, J. A.

Hermann, J. P.

J. P. Hermann and J. Ducuing, “Dispersion of the two-photon cross section in rhodamine dyes,” Opt. Commun. 6, 101–105 (1972).
[CrossRef]

Kaatz, P.

Kapoor, R.

X. Wang, H. E. Pudavar, R. Kapoor, L. J. Krebs, E. J. Bergey, C. Liebow, P. N. Prasad, A. Nagy, and A. V. Schally, “Studies on the mechanism of action of a targeted chemotherapeutic drug in living cancer cells by two photon laser scanning microspectrofluorometry,” J. Biomed. Opt. 6, 319–325 (2001).
[CrossRef] [PubMed]

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “An alternative approach to determine the spot-size of a multi-mode laser beam and its application to diode laser beams,” Pramana 53, 307–319 (1999).
[CrossRef]

Krebs, L. J.

X. Wang, H. E. Pudavar, R. Kapoor, L. J. Krebs, E. J. Bergey, C. Liebow, P. N. Prasad, A. Nagy, and A. V. Schally, “Studies on the mechanism of action of a targeted chemotherapeutic drug in living cancer cells by two photon laser scanning microspectrofluorometry,” J. Biomed. Opt. 6, 319–325 (2001).
[CrossRef] [PubMed]

Kumar, G. R.

P. Sengupta, J. Balaji, S. Benerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205 (2000).
[CrossRef]

Liebow, C.

X. Wang, H. E. Pudavar, R. Kapoor, L. J. Krebs, E. J. Bergey, C. Liebow, P. N. Prasad, A. Nagy, and A. V. Schally, “Studies on the mechanism of action of a targeted chemotherapeutic drug in living cancer cells by two photon laser scanning microspectrofluorometry,” J. Biomed. Opt. 6, 319–325 (2001).
[CrossRef] [PubMed]

Maiti, S.

P. Sengupta, J. Balaji, S. Benerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205 (2000).
[CrossRef]

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
[CrossRef] [PubMed]

Mertz, J.

Mukhopadhyay, P. K.

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “An alternative approach to determine the spot-size of a multi-mode laser beam and its application to diode laser beams,” Pramana 53, 307–319 (1999).
[CrossRef]

Nagy, A.

X. Wang, H. E. Pudavar, R. Kapoor, L. J. Krebs, E. J. Bergey, C. Liebow, P. N. Prasad, A. Nagy, and A. V. Schally, “Studies on the mechanism of action of a targeted chemotherapeutic drug in living cancer cells by two photon laser scanning microspectrofluorometry,” J. Biomed. Opt. 6, 319–325 (2001).
[CrossRef] [PubMed]

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, “3-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Philip, R.

P. Sengupta, J. Balaji, S. Benerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205 (2000).
[CrossRef]

Prasad, P. N.

X. Wang, H. E. Pudavar, R. Kapoor, L. J. Krebs, E. J. Bergey, C. Liebow, P. N. Prasad, A. Nagy, and A. V. Schally, “Studies on the mechanism of action of a targeted chemotherapeutic drug in living cancer cells by two photon laser scanning microspectrofluorometry,” J. Biomed. Opt. 6, 319–325 (2001).
[CrossRef] [PubMed]

Pudavar, H. E.

X. Wang, H. E. Pudavar, R. Kapoor, L. J. Krebs, E. J. Bergey, C. Liebow, P. N. Prasad, A. Nagy, and A. V. Schally, “Studies on the mechanism of action of a targeted chemotherapeutic drug in living cancer cells by two photon laser scanning microspectrofluorometry,” J. Biomed. Opt. 6, 319–325 (2001).
[CrossRef] [PubMed]

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, “3-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Said, A. A.

Schally, A. V.

X. Wang, H. E. Pudavar, R. Kapoor, L. J. Krebs, E. J. Bergey, C. Liebow, P. N. Prasad, A. Nagy, and A. V. Schally, “Studies on the mechanism of action of a targeted chemotherapeutic drug in living cancer cells by two photon laser scanning microspectrofluorometry,” J. Biomed. Opt. 6, 319–325 (2001).
[CrossRef] [PubMed]

Schwille, P.

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
[CrossRef] [PubMed]

Sengupta, P.

P. Sengupta, J. Balaji, S. Benerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205 (2000).
[CrossRef]

Sharma, S. K.

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “An alternative approach to determine the spot-size of a multi-mode laser beam and its application to diode laser beams,” Pramana 53, 307–319 (1999).
[CrossRef]

Sheik-Bahae, M.

Shelton, D. P.

So, P. T.

K. M. Berland, P. T. So, and E. Gratton, “2-photon fluorescence correlation spectroscopy—method and application to the intracellular enviorenment,” Biophys. J. 68, 694–701 (1995).
[CrossRef] [PubMed]

Stelzer, E. H. K.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science (Washington, DC, U.S.) 248, 73–76 (1990).
[CrossRef]

Tian, P.

Van Stryland, E. W.

Wang, J.

Wang, X.

X. Wang, H. E. Pudavar, R. Kapoor, L. J. Krebs, E. J. Bergey, C. Liebow, P. N. Prasad, A. Nagy, and A. V. Schally, “Studies on the mechanism of action of a targeted chemotherapeutic drug in living cancer cells by two photon laser scanning microspectrofluorometry,” J. Biomed. Opt. 6, 319–325 (2001).
[CrossRef] [PubMed]

Warren, W. S.

Webb, W. W.

Xu, C.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

I. M. Catalano and A. Cingolani, “Absolute 2-photon fluorescence with low-power cw lasers,” Appl. Phys. Lett. 38, 745–747 (1981).
[CrossRef]

Biophys. J. (2)

K. M. Berland, P. T. So, and E. Gratton, “2-photon fluorescence correlation spectroscopy—method and application to the intracellular enviorenment,” Biophys. J. 68, 694–701 (1995).
[CrossRef] [PubMed]

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

X. Wang, H. E. Pudavar, R. Kapoor, L. J. Krebs, E. J. Bergey, C. Liebow, P. N. Prasad, A. Nagy, and A. V. Schally, “Studies on the mechanism of action of a targeted chemotherapeutic drug in living cancer cells by two photon laser scanning microspectrofluorometry,” J. Biomed. Opt. 6, 319–325 (2001).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

P. Sengupta, J. Balaji, S. Benerjee, R. Philip, G. R. Kumar, and S. Maiti, “Sensitive measurement of absolute two-photon absorption cross sections,” J. Chem. Phys. 112, 9201–9205 (2000).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

J. P. Hermann and J. Ducuing, “Dispersion of the two-photon cross section in rhodamine dyes,” Opt. Commun. 6, 101–105 (1972).
[CrossRef]

Opt. Lett. (2)

Pramana (1)

R. Kapoor, P. K. Mukhopadhyay, J. George, and S. K. Sharma, “An alternative approach to determine the spot-size of a multi-mode laser beam and its application to diode laser beams,” Pramana 53, 307–319 (1999).
[CrossRef]

Science (1)

D. A. Parthenopoulos and P. M. Rentzepis, “3-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Science (Washington, DC, U.S.) (1)

W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science (Washington, DC, U.S.) 248, 73–76 (1990).
[CrossRef]

Other (1)

A. E. Siegman Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. ND, neutral density, BE, beam expander.

Fig. 2
Fig. 2

CCD images of the beam profile near the interaction zone (top) and far from the interaction zone (bottom).

Fig. 3
Fig. 3

Typical plot of the near-field position profile along the x axis. The solid curve is a Gaussian fit to the experimental data.

Fig. 4
Fig. 4

Typical plot of the far-field position profile along the x axis. The solid curve is a Gaussian fit to the experimental data.

Fig. 5
Fig. 5

Variation of fluorescence power with incident power in a flowing condition.

Fig. 6
Fig. 6

Variation of fluorescence power with incident power in a flowing condition on a log–log scale.

Fig. 7
Fig. 7

Variation of fluorescence power with incident power in a nonflowing condition.

Fig. 8
Fig. 8

Variation of a two-photon emission spectrum of Rhodamine 6G with concentration. The concentration changes from 3.09× 10-4 M to 3.09×10-6 M.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ΔNex=δC2(hν)2V-T/2T/2I2(t, r)dtdrdz,
I(t, r)=Pinrp f(t)F(r),
f(t)=1πτexp(-t2/τ2),
F(r)=2πωx(z)ωy(z)exp[-2x2/ωx(z)2-2y2/ωy(z)2],
ωj(z)=Mjωj01+zλπωj0221/2.
ΔNex
=δC Pin22(rphν)2-T/2T/2f(t)2dt-L/2L/2--F(r)2dxdydz.
ΔNex=δC Pin2(rphν)21τ2π×ω0xelliptic Fi arcsinhLλ2πω0x2,ω0xω0y4iMxMyλω0y,
ΔNex=δC Pin2(rphν)2 1τ2π arctanLλ2πω02M2λ.
Pem=ηΔNexrphν2,
Pem=ηδC ν2Pin2rphν2 1τ2π×ω0xellipticFi arcsinhLλ2πω0x2,ω0xω0y4iMxMyλω0y,

Metrics