Abstract

A three-dimensional, metallic photonic crystal is realized and its absorption measured at infrared wavelengths. The metallic absorption rate is found to be suppressed in the photonic bandgap regime (λ820 μm). On the other hand, order-of-magnitude absorption enhancement is observed at the photonic band edge (λ5.8 μm). The enhancement is attributed to the slower group velocity of light at the photonic band edge, a longer photon–matter interaction length, and a finite intrinsic absorption of tungsten.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1983), Chap. 1, pp. 13–17 and Chap. 5.
  2. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
    [CrossRef]
  3. N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
    [CrossRef]
  4. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, New York, 2001), Chap. 5, p. 108.
  5. V. I. Koop, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
    [CrossRef]
  6. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
    [CrossRef] [PubMed]
  7. S. John and T. Quang, “Localization of Superradiance near a Photonic Band Gap,” Phys. Rev. Lett. 74, 3419–3422 (1995).
    [CrossRef] [PubMed]
  8. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
    [CrossRef]
  9. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 252–253 (1998).
    [CrossRef]
  10. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
    [CrossRef] [PubMed]
  11. J. G. Fleming and S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm,” Opt. Lett. 24, 49–51 (1999).
    [CrossRef]
  12. J. F. McClelland, R. W. Jones, S. Lou, and L. M. Seaverson, “A practical guide to FTIR photoacoustic spectroscopy,” in Practical Sampling Techniques for Infrared Analysis, P. B. Coleman, ed. (CRC Press, Boca Raton, Fla., 1993), Chap. 5.
  13. Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38 (2003).
    [CrossRef]
  14. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, London, 1998), pp. 555–568.

2003

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38 (2003).
[CrossRef]

2002

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

2001

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
[CrossRef]

1999

1998

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 252–253 (1998).
[CrossRef]

V. I. Koop, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
[CrossRef]

1995

S. John and T. Quang, “Localization of Superradiance near a Photonic Band Gap,” Phys. Rev. Lett. 74, 3419–3422 (1995).
[CrossRef] [PubMed]

1994

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Bhat, N. A. R.

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
[CrossRef]

Biswas, R.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 252–253 (1998).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 252–253 (1998).
[CrossRef]

Chan, C. T.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

El-Kady, I.

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

Fan, B.

Fleming, J. G.

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

J. G. Fleming and S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm,” Opt. Lett. 24, 49–51 (1999).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 252–253 (1998).
[CrossRef]

Genack, A. Z.

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 252–253 (1998).
[CrossRef]

Ho, K. M.

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 252–253 (1998).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

John, S.

S. John and T. Quang, “Localization of Superradiance near a Photonic Band Gap,” Phys. Rev. Lett. 74, 3419–3422 (1995).
[CrossRef] [PubMed]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

Koop, V. I.

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 252–253 (1998).
[CrossRef]

Li, Z. Y.

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38 (2003).
[CrossRef]

Lin, S. Y.

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

J. G. Fleming and S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm,” Opt. Lett. 24, 49–51 (1999).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 252–253 (1998).
[CrossRef]

Quang, T.

S. John and T. Quang, “Localization of Superradiance near a Photonic Band Gap,” Phys. Rev. Lett. 74, 3419–3422 (1995).
[CrossRef] [PubMed]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Sigalas, M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 252–253 (1998).
[CrossRef]

Sipe, J. E.

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 252–253 (1998).
[CrossRef]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

Vithana, H. K. M.

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 252–253 (1998).
[CrossRef]

J. Appl. Phys.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38 (2003).
[CrossRef]

Nature

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 252–253 (1998).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef] [PubMed]

Phys. Rev. E

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
[CrossRef]

Phys. Rev. Lett.

S. John and T. Quang, “Localization of Superradiance near a Photonic Band Gap,” Phys. Rev. Lett. 74, 3419–3422 (1995).
[CrossRef] [PubMed]

Solid State Commun.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band-gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994).
[CrossRef]

Other

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, New York, 2001), Chap. 5, p. 108.

J. F. McClelland, R. W. Jones, S. Lou, and L. M. Seaverson, “A practical guide to FTIR photoacoustic spectroscopy,” in Practical Sampling Techniques for Infrared Analysis, P. B. Coleman, ed. (CRC Press, Boca Raton, Fla., 1993), Chap. 5.

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, London, 1998), pp. 555–568.

R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1983), Chap. 1, pp. 13–17 and Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross-sectional scanning-electron-microscopy view of 3D silicon (a) and tungsten (b) photonic crystals built using a layer-stacking design. Within each layer, the one-dimensional rod width is 1.2 μm and the rod-to-rod spacing is 4.2 μm.

Fig. 2
Fig. 2

(a) Measured reflection (black) and absorption (blue) spectra for a silicon, 3D photonic crystal. The photonic bandgap is at λ1014 μm. Despite the intricate reflection spectra, the absorption spectrum is featureless and its amplitude low, i.e., <0.2%. (b) Measured reflection (black) and absorption (blue) spectra for the tungsten, 3D photonic crystal. The photonic bandgap is at λ820 μm and band edge at λ5.8 μm. While the absorption nearly vanishes in the bandgap regime, it shows peak of 22% at the photonic band edge. Thus, the absorption rate (1/τ12) of a tungsten photonic crystal structure is selectively enhanced at the band edge.

Fig. 3
Fig. 3

Computed reflection (black) and absorption (blue) spectra for samples with different rod thickness h=(a) 1.5, (b) 2.0, and (c) 2.4 μm, respectively. As h is increased, the reflectance band edge is shifted systematically from λ6 to 6.6 to 7.4 μm. The absorption peak always occurs at the band edge. The absorption amplitude is also increased from 18 to 36 to 46%. Meanwhile, the second bandgap becomes better developed as h is increased and is also shifted from λ5 to 6 to 7 μm.

Fig. 4
Fig. 4

Computed peak absorption as a function of number of layers N or sample thickness. The absorptance amplitude increases sharply for N=48 and becomes nearly saturated at ∼60% for N>12. Clearly, light is being continuously absorbed as it traverses the whole photonic crystal structure.

Fig. 5
Fig. 5

Summary of peak absorptance versus βi(ω) for a series of tungsten, 3D photonic crystal samples. The absorptance of a uniform tungsten film (open circles) is also shown as a reference. The absorptance vanishes for a perfect conductor (β=0) and increases linearly with material absorption βi(ω) for N=4. For N=10, the absorptance (triangles) rises sharply for β<50% and reaches a saturation value of ∼54% at β=100%.

Metrics