Abstract

Continuously tunable cw emission near 4.5 μm was generated by difference frequency generation (DFG) within a Nd:YAG pumped optical parametric oscillator (OPO). The periodically poled lithium niobate crystal used for DFG contained eight grating bands that enabled wavelength tuning between 4.25 and 4.65 μm. As much as 90 mW of power at 4.48 μm was achieved for 16.7 W of pump.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
    [CrossRef] [PubMed]
  2. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1671 (1997).
    [CrossRef]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
    [CrossRef] [PubMed]
  4. M. Brown, A. J. W. Brown, C. Miyake, F. Futtere, and D. Smith, “A 10 kHz PPLN OPO operating in a region of very high idler absorption,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 554–557.
  5. D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett. 23, 1895–1897 (1998).
    [CrossRef]
  6. L. Goldberg, W. K. Burns, and R. W. McElhanon, “Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled LiNbO3,” Opt. Lett. 20, 1280–1282 (1995).
    [CrossRef] [PubMed]
  7. P. Loza-Alvarez, C. T. A. Brown, D. T. Reid, W. Sibbett, and M. Missey, “High-repetition-rate ultrashort-pulse optical parametric oscillator continuously tunable from 2.8 to 6.8 μm,” Opt. Lett. 24, 1523–1525 (1999).
    [CrossRef]
  8. D. Chen and K. Masters, “Continuous-wave 4.3-μm intracavity difference frequency generation in an optical parametric oscillator,” Opt. Lett. 26, 25–27 (2001).
    [CrossRef]
  9. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3.” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  10. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  11. P. Canarelli, Z. Bendo, R. Curl, and E. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992).
    [CrossRef]
  12. W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, 207–209 (1998).
    [CrossRef]
  13. C. Q. Xu, H. Okayama, and Y. Ogawa, “Photorefractive damage of LiNbO3 quasiphase matched wavelength converters,” J. Appl. Phys. 87, 3203–3208 (2000).
    [CrossRef]
  14. R. G. Batchko, R. Roussev, and M. H. Sher, “All-optical MgO:LiNbO3 wavelength converter for telecommunications,” in Advanced Solid State Lasers, Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), Post deadline paper PD5.
  15. V. Pruneri, J. Webjörn, P. St. J. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poled lithium niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
    [CrossRef]
  16. T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 837–839 (1998).
    [CrossRef]
  17. H. Karlsson, M. Olson, G. Arvidsson, F. Laurell, U. Bäder, A. Borsutzky, R. Wallenstein, S. Wickström, and M. Gustafsson, “Nanosecond optical parametric oscillator based on large-aperture periodically poled RbTiOAsO4,” Opt. Lett. 24, 330–332 (1999).
    [CrossRef]

2001 (1)

2000 (1)

C. Q. Xu, H. Okayama, and Y. Ogawa, “Photorefractive damage of LiNbO3 quasiphase matched wavelength converters,” J. Appl. Phys. 87, 3203–3208 (2000).
[CrossRef]

1999 (2)

1998 (3)

1997 (2)

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1671 (1997).
[CrossRef]

1996 (2)

1995 (3)

1992 (1)

Alexander, J. I.

Arvidsson, G.

Bäder, U.

Bendo, Z.

Borsutzky, A.

Bosenberg, W. R.

Brown, C. T. A.

Burns, W. K.

Byer, R. L.

Canarelli, P.

Chen, D.

Curl, R.

Drobshoff, A.

Dunn, M. H.

Ebrahimzadeh, M.

Eckardt, R. C.

Edwards, T. J.

Fejer, M. M.

Goldberg, L.

Gustafsson, M.

Hanna, D. C.

V. Pruneri, J. Webjörn, P. St. J. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poled lithium niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
[CrossRef]

Jundt, D. H.

Karlsson, H.

Laurell, F.

Loza-Alvarez, P.

Masters, K.

McElhanon, R. W.

Missey, M.

Myers, L. E.

Ogawa, Y.

C. Q. Xu, H. Okayama, and Y. Ogawa, “Photorefractive damage of LiNbO3 quasiphase matched wavelength converters,” J. Appl. Phys. 87, 3203–3208 (2000).
[CrossRef]

Okayama, H.

C. Q. Xu, H. Okayama, and Y. Ogawa, “Photorefractive damage of LiNbO3 quasiphase matched wavelength converters,” J. Appl. Phys. 87, 3203–3208 (2000).
[CrossRef]

Olson, M.

Pierce, J. W.

Pruneri, V.

V. Pruneri, J. Webjörn, P. St. J. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poled lithium niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
[CrossRef]

Reid, D. T.

Russell, P. St. J.

V. Pruneri, J. Webjörn, P. St. J. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poled lithium niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
[CrossRef]

Sibbett, W.

Stothard, D. J. M.

Tittel, E. K.

Turnbull, G. A.

Wallace, R. W.

Wallenstein, R.

Webjörn, J.

V. Pruneri, J. Webjörn, P. St. J. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poled lithium niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
[CrossRef]

Wickström, S.

Xu, C. Q.

C. Q. Xu, H. Okayama, and Y. Ogawa, “Photorefractive damage of LiNbO3 quasiphase matched wavelength converters,” J. Appl. Phys. 87, 3203–3208 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

V. Pruneri, J. Webjörn, P. St. J. Russell, and D. C. Hanna, “532 nm pumped optical parametric oscillator in bulk periodically poled lithium niobate,” Appl. Phys. Lett. 67, 2126–2128 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1671 (1997).
[CrossRef]

J. Appl. Phys. (1)

C. Q. Xu, H. Okayama, and Y. Ogawa, “Photorefractive damage of LiNbO3 quasiphase matched wavelength converters,” J. Appl. Phys. 87, 3203–3208 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (10)

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[CrossRef] [PubMed]

D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett. 23, 1895–1897 (1998).
[CrossRef]

L. Goldberg, W. K. Burns, and R. W. McElhanon, “Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled LiNbO3,” Opt. Lett. 20, 1280–1282 (1995).
[CrossRef] [PubMed]

P. Loza-Alvarez, C. T. A. Brown, D. T. Reid, W. Sibbett, and M. Missey, “High-repetition-rate ultrashort-pulse optical parametric oscillator continuously tunable from 2.8 to 6.8 μm,” Opt. Lett. 24, 1523–1525 (1999).
[CrossRef]

D. Chen and K. Masters, “Continuous-wave 4.3-μm intracavity difference frequency generation in an optical parametric oscillator,” Opt. Lett. 26, 25–27 (2001).
[CrossRef]

W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, 207–209 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 837–839 (1998).
[CrossRef]

H. Karlsson, M. Olson, G. Arvidsson, F. Laurell, U. Bäder, A. Borsutzky, R. Wallenstein, S. Wickström, and M. Gustafsson, “Nanosecond optical parametric oscillator based on large-aperture periodically poled RbTiOAsO4,” Opt. Lett. 24, 330–332 (1999).
[CrossRef]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
[CrossRef] [PubMed]

Other (2)

R. G. Batchko, R. Roussev, and M. H. Sher, “All-optical MgO:LiNbO3 wavelength converter for telecommunications,” in Advanced Solid State Lasers, Vol. 68 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), Post deadline paper PD5.

M. Brown, A. J. W. Brown, C. Miyake, F. Futtere, and D. Smith, “A 10 kHz PPLN OPO operating in a region of very high idler absorption,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 554–557.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical schematic of the cw tunable MWIR OPO DFG resonator device.

Fig. 2
Fig. 2

MWIR wavelength tuning versus temperature for each DFG PPLN grating period. The filled circles and the solid lines denote the experimental data and curve fits for each of the eight DFG grating bands (see Subsection 3.B) that range from 29.5 μm (top) to 30.8 μm (bottom). The dashed curves were calculated with the Sellmeier equation of Ref. 10 for the same grating periods.

Fig. 3
Fig. 3

MWIR output power performances for the 30- and 50-mm DFG crystal at 4.5 μm versus 1.06-μm pump power.

Fig. 4
Fig. 4

MWIR spectral profile measured by the IR spectrometer. The solid curve is the theoretical DFG spectral profile calculated with the Sellmeier equation given in Ref. 10 at 100 °C for a 30-μm PPLN grating. The calculated peak was shifted to match the data.

Tables (1)

Tables Icon

Table 1 Calculated Phase-Matching Wavelengths and Acceptance Bandwidths for DFG in a 30-μm Grating Period PPLN at 100 °C

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ΔkQ=kp-ks-ki-2π/Λ,
1/λp=1/λs+1/λi,
np/λp=ns/λs+ni/λi+1/Λ1.
1/λMWIR=1/λs-1/λi,
nMWIR/λMWIR=ns/λs-ni/λi-1/Λ2.
I(ΔkDFG)/I(0)=sinc2(ΔkDFGL/2),

Metrics