Abstract

A discrete orthogonal Gauss–Hermite transform (DOGHT) is introduced for the analysis of optical pulse properties in the time and frequency domains. Gaussian quadrature nodes and weights are used to calculate the expansion coefficients. The discrete orthogonal properties of the DOGHT are similar to the ones satisfied by the discrete Fourier transform so the two transforms have many common characteristics. However, it is demonstrated that the DOGHT produces a more compact representation of pulses in the time and frequency domains and needs less expansion coefficients for a given accuracy. It is shown that it can be used advantageously for propagation analysis of optical signals in the linear and nonlinear regimes.

© 2003 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription