Abstract

Optical contrast on the surface of mesoscale air–dielectric structures was evaluated with collection-mode near-field scanning optical microscopy. When air holes (300 nm) were smaller than the incident wavelength (400 or 600 nm), the optical field was concentrated in the dielectric region. When air holes (1000 nm) were larger than the incident wavelength (400 or 600 nm), there was topographic edge enhancement. After confirmation with finite-difference time-domain simulation, we conclude that light diffracted off topographic edges is a major contributor to contrast in collection-mode near-field optical images.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10, 283–295 (1993).
    [CrossRef]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
    [CrossRef]
  3. S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
    [CrossRef]
  4. J. D. Joannopoulos, R. D. Meade, and S. N. Winn, Photonic crystals: Molding the Flow of Light (Princeton University, Princeton, N.J., 1995).
  5. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  6. J.-C. Weeber, C. Girard, J. R. Krenn, A. Dereux, and J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).
    [CrossRef]
  7. S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
    [CrossRef]
  8. S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structure in near field,” Eur. Phys. J. AP 5, 277–282 (1999).
    [CrossRef]
  9. P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
    [CrossRef]
  10. A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
    [CrossRef]
  11. D. Mulin, C. Girard, G. Colas Des Francs, M. Spajer, and D. Courjon, “Near-field optical probing of two-dimensional photonic crystals: theory and experiment,” J. Microsc. (Oxford) 202, 110–116 (2001).
    [CrossRef]
  12. A. L. Campillo, J. W. P. Hsu, and G. W. Bryant, “Local imaging of photonic structures: image contrast from impedance mismatch,” Opt. Lett. 27, 415–417 (2002).
    [CrossRef]
  13. R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
    [CrossRef]
  14. D. Courjon, K. Sarayeddine, and M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
    [CrossRef]
  15. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
    [CrossRef]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).
  17. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
    [CrossRef]
  18. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
    [CrossRef]

2002 (1)

2001 (2)

A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
[CrossRef]

D. Mulin, C. Girard, G. Colas Des Francs, M. Spajer, and D. Courjon, “Near-field optical probing of two-dimensional photonic crystals: theory and experiment,” J. Microsc. (Oxford) 202, 110–116 (2001).
[CrossRef]

1999 (6)

J.-C. Weeber, C. Girard, J. R. Krenn, A. Dereux, and J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).
[CrossRef]

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
[CrossRef]

S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structure in near field,” Eur. Phys. J. AP 5, 277–282 (1999).
[CrossRef]

P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[CrossRef]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

1995 (1)

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

1994 (1)

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

1993 (1)

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

1989 (2)

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

D. Courjon, K. Sarayeddine, and M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Aigouy, L.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
[CrossRef]

Appelbaum, I.

S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[CrossRef]

Barchiesi, D.

S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structure in near field,” Eur. Phys. J. AP 5, 277–282 (1999).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Boccara, A. C.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
[CrossRef]

Bryant, G. W.

Campillo, A. L.

A. L. Campillo, J. W. P. Hsu, and G. W. Bryant, “Local imaging of photonic structures: image contrast from impedance mismatch,” Opt. Lett. 27, 415–417 (2002).
[CrossRef]

A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
[CrossRef]

Colas Des Francs, G.

D. Mulin, C. Girard, G. Colas Des Francs, M. Spajer, and D. Courjon, “Near-field optical probing of two-dimensional photonic crystals: theory and experiment,” J. Microsc. (Oxford) 202, 110–116 (2001).
[CrossRef]

Courjon, D.

D. Mulin, C. Girard, G. Colas Des Francs, M. Spajer, and D. Courjon, “Near-field optical probing of two-dimensional photonic crystals: theory and experiment,” J. Microsc. (Oxford) 202, 110–116 (2001).
[CrossRef]

S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structure in near field,” Eur. Phys. J. AP 5, 277–282 (1999).
[CrossRef]

D. Courjon, K. Sarayeddine, and M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Davy, S.

S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structure in near field,” Eur. Phys. J. AP 5, 277–282 (1999).
[CrossRef]

Deckert, V.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Dereux, A.

J.-C. Weeber, C. Girard, J. R. Krenn, A. Dereux, and J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).
[CrossRef]

Desmarest, C.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
[CrossRef]

Fan, S.

S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Ferrell, T. L.

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Fokas, C.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Gadenne, P.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
[CrossRef]

Girard, C.

D. Mulin, C. Girard, G. Colas Des Francs, M. Spajer, and D. Courjon, “Near-field optical probing of two-dimensional photonic crystals: theory and experiment,” J. Microsc. (Oxford) 202, 110–116 (2001).
[CrossRef]

J.-C. Weeber, C. Girard, J. R. Krenn, A. Dereux, and J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).
[CrossRef]

Goudonnet, J.-P.

J.-C. Weeber, C. Girard, J. R. Krenn, A. Dereux, and J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).
[CrossRef]

Grésillon, S.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
[CrossRef]

Grober, R. D.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Hecht, B.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Hsu, J. W. P.

A. L. Campillo, J. W. P. Hsu, and G. W. Bryant, “Local imaging of photonic structures: image contrast from impedance mismatch,” Opt. Lett. 27, 415–417 (2002).
[CrossRef]

A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
[CrossRef]

Joannopoulos, J. D.

S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Karrai, K.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

Knight, J. C.

P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
[CrossRef]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Krenn, J. R.

J.-C. Weeber, C. Girard, J. R. Krenn, A. Dereux, and J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).
[CrossRef]

Mangan, B. J.

P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
[CrossRef]

Mulin, D.

D. Mulin, C. Girard, G. Colas Des Francs, M. Spajer, and D. Courjon, “Near-field optical probing of two-dimensional photonic crystals: theory and experiment,” J. Microsc. (Oxford) 202, 110–116 (2001).
[CrossRef]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Phillips, P. L.

P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
[CrossRef]

Quelin, X.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
[CrossRef]

Reddick, R. C.

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Rivoal, J. C.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
[CrossRef]

Rosenberg, A.

A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
[CrossRef]

Russell, P. St. J.

P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
[CrossRef]

Sarayeddine, K.

D. Courjon, K. Sarayeddine, and M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Sarychev, A. K.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
[CrossRef]

Shalaev, V. M.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
[CrossRef]

Shubin, V. A.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
[CrossRef]

Sick, B.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Spajer, M.

D. Mulin, C. Girard, G. Colas Des Francs, M. Spajer, and D. Courjon, “Near-field optical probing of two-dimensional photonic crystals: theory and experiment,” J. Microsc. (Oxford) 202, 110–116 (2001).
[CrossRef]

S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structure in near field,” Eur. Phys. J. AP 5, 277–282 (1999).
[CrossRef]

D. Courjon, K. Sarayeddine, and M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Stöckle, R.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Warmack, R. J.

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Weeber, J.-C.

J.-C. Weeber, C. Girard, J. R. Krenn, A. Dereux, and J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).
[CrossRef]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

White, C. A.

A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
[CrossRef]

Wickramasinghe, H. K.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Wild, U. P.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Yablonovitch, E.

Zenhausern, F.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Zenobi, R.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

Appl. Phys. Lett. (4)

S. Fan, I. Appelbaum, and J. D. Joannopoulos, “Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: a computational study,” Appl. Phys. Lett. 75, 3461–3463 (1999).
[CrossRef]

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[CrossRef]

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

Eur. Phys. J. AP (1)

S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structure in near field,” Eur. Phys. J. AP 5, 277–282 (1999).
[CrossRef]

J. Appl. Phys. (3)

P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Near-field optical microscopy of thin photonic crystal films,” J. Appl. Phys. 85, 6337–6342 (1999).
[CrossRef]

A. L. Campillo, J. W. P. Hsu, C. A. White, and A. Rosenberg, “Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope,” J. Appl. Phys. 89, 2801–2807 (2001).
[CrossRef]

J.-C. Weeber, C. Girard, J. R. Krenn, A. Dereux, and J.-P. Goudonnet, “Near-field optical properties of localized plasmons around lithographically designed nanostructures,” J. Appl. Phys. 86, 2576–2583 (1999).
[CrossRef]

J. Microsc. (Oxford) (1)

D. Mulin, C. Girard, G. Colas Des Francs, M. Spajer, and D. Courjon, “Near-field optical probing of two-dimensional photonic crystals: theory and experiment,” J. Microsc. (Oxford) 202, 110–116 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Opt. Commun. (1)

D. Courjon, K. Sarayeddine, and M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999).
[CrossRef]

Science (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, R. D. Meade, and S. N. Winn, Photonic crystals: Molding the Flow of Light (Princeton University, Princeton, N.J., 1995).

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for a collection-mode NSOM. At the heart is a chemically etched fiber probe with a tuning-fork-based shear force detection system. The light source is a xenon lamp and the incident wavelength is controlled by a monochromator.

Fig. 2
Fig. 2

(a) Topographic (upper) and NSOM images illuminated by 400-nm wavelength (middle) and 600-nm wavelength (lower) for 1000-nm holes. (b) The topographic (upper) and NSOM images illuminated by 400-nm wavelength (middle) and 600-nm wavelength (lower) for 300-nm holes. The dashed lines show the positions of the cross-sectional plots.

Fig. 3
Fig. 3

Cross-sectional plots of the topographic and NSOM images for Fig. 2. (a) The topographic plot (solid curve) and NSOM plot (dashed curve) for 1000-nm holes. The incident wavelength is 400 nm. (b) The topographic plot (solid curve) and NSOM plot (dashed curve) for 300-nm holes. The incident wavelength is 600 nm. The NSOM plot shows enhancement at the edges of 1000-nm holes. For 300-nm holes, the NSOM plot shows that the optical field is located at the dielectric region.

Fig. 4
Fig. 4

FDTD simulations for light across a step-function object with 0.2-μm step thickness (n=1.5 for both film and substrate). The incident wavelengths are (a) 600 nm and (b) 400 nm. (c) A schematic illustration of diffraction-induced NSOM images for micrometer scale holes. Only field enhancement is found at the edges. (d) Diffraction-induced NSOM images for mesoscale holes; the enhancement disappears and the film becomes uniformly bright.

Fig. 5
Fig. 5

FDTD simulations for periodic air–dielectric structures (500-nm holes). The incident wavelengths are (a) 400 nm and (b) 600 nm. The solid lines are the surface of the air–dielectric structures. The dashed curves indicate the region in which the fiber probe scans. (c) The measured optical image taken with the tip ∼1 μm above the sample. The image shows bright spots with periods the same as for the PMMA-hole arrays, which is consistent with the FDTD calculations in Fig. 5(b).

Fig. 6
Fig. 6

(a) Topographic and NSOM images for different incident angles to 1-μm holes. The incident angles are (b) 30° and (c) 60°. The small-angle NSOM image shows that enhancement is located at one side. For a large incident angle, the enhancement is further concentrated at the sides of holes, which shows half-bright and half-dark regions in the holes.

Metrics