Abstract

The self-difference frequency mixing (SDFM) laser is a device that can be used to generate wavelengths in the infrared range. I describe theoretical modeling of the SDFM laser from which it is shown that the stimulated emission is beneficial to the idler and drastically decreases the threshold of idler generation. An experimental check is provided.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
    [CrossRef]
  2. C. Li, R. Moncorgé, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+, Er3+ at 1.57 μm,” Opt. Commun. 107, 61–64 (1994).
    [CrossRef]
  3. S. R. Bowman, M. J. Winings, S. Searles, and B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr, Tm, Ho:YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
    [CrossRef]
  4. W. Ruderman, “Active optics,” Electro-Opt. Syst. Des. 11, 76–77 (1979).
  5. H. Manaa, Y. Guyot, and R. Moncorgé, “Spectroscopic and tunable laser properties of Co2+-doped single crystals,” Phys. Rev. B 48, 3633–3645 (1993).
    [CrossRef]
  6. K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
    [CrossRef]
  7. P. Rambaldi, M. Douard, B. Vezin, and J. P. Wolf, “Broadly tunable KnbO3 OPOs pumped by Ti:sapphire lasers,” Opt. Commun. 142, 262–264 (1997).
    [CrossRef]
  8. D. S. Bethune and A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μm,” Appl. Phys. B 40, 107–113 (1986).
    [CrossRef]
  9. A. R. Geiger, H. Hemmati, W. H. Farr, and N. S. Prasad, “Diode-pumped optical parametric oscillator,” Opt. Lett. 21, 201–203 (1996).
    [CrossRef] [PubMed]
  10. L. F. Johnson and A. A. Ballman, “Coherent emission from rare earth ions in electro-optics crystals,” J. Appl. Phys. 40, 297–302 (1969).
    [CrossRef]
  11. D. Jaque, J. Capmany, F. Molero, and J. Garcia Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
    [CrossRef]
  12. A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
    [CrossRef]
  13. F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “cw blue laser generation by self-sum-frequency mixing in Nd:Ca4GdO(BO3)3(Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
    [CrossRef]
  14. A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable UV generation,” J. Lumin. 86, 125–128 (2000).
    [CrossRef]
  15. A. Brenier, “The self-doubling and summing lasers: overview and modeling,” J. Lumin. 91, 121–132 (2000).
    [CrossRef]
  16. X. Chen, Z. Luo, and Y. Huang, “Modeling of the self-sum-frequency mixing laser,” J. Opt. Soc. Am. B 18, 646–656 (2001).
    [CrossRef]
  17. A. Brenier, C. Tu, J. Li, Z. Zhu, and B. Wu, “Self-sum- and-difference-frequency mixing in GdAl3(BO3)4:Nd3+ for tunable ultraviolet and infrared radiation,” Opt. Lett. 27, 240–242 (2002).
    [CrossRef]
  18. C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4”, J. Cryst. Growth 208, 487–492 (2000).
    [CrossRef]
  19. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
    [CrossRef]
  20. Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re = Y, Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40, 63–73 (2000).
    [CrossRef]
  21. X. Chen, M. Huang, Z. Luo, and Y. Huang, “Determination of the optimum phase-matching directions for the self-frequency conversion of Nd:GdCOB and Nd:YCOB crystals,” Opt. Commun. 196, 299–307 (2001).
    [CrossRef]
  22. Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
    [CrossRef]
  23. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3(Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
    [CrossRef]
  24. A. Yariv, Quantum Electronics (Wiley, New York, 1975).

2002 (1)

2001 (3)

X. Chen, Z. Luo, and Y. Huang, “Modeling of the self-sum-frequency mixing laser,” J. Opt. Soc. Am. B 18, 646–656 (2001).
[CrossRef]

X. Chen, M. Huang, Z. Luo, and Y. Huang, “Determination of the optimum phase-matching directions for the self-frequency conversion of Nd:GdCOB and Nd:YCOB crystals,” Opt. Commun. 196, 299–307 (2001).
[CrossRef]

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

2000 (4)

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4”, J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable UV generation,” J. Lumin. 86, 125–128 (2000).
[CrossRef]

A. Brenier, “The self-doubling and summing lasers: overview and modeling,” J. Lumin. 91, 121–132 (2000).
[CrossRef]

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re = Y, Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40, 63–73 (2000).
[CrossRef]

1999 (2)

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “cw blue laser generation by self-sum-frequency mixing in Nd:Ca4GdO(BO3)3(Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

1998 (1)

D. Jaque, J. Capmany, F. Molero, and J. Garcia Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

1997 (4)

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3(Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

P. Rambaldi, M. Douard, B. Vezin, and J. P. Wolf, “Broadly tunable KnbO3 OPOs pumped by Ti:sapphire lasers,” Opt. Commun. 142, 262–264 (1997).
[CrossRef]

1996 (1)

1994 (1)

C. Li, R. Moncorgé, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+, Er3+ at 1.57 μm,” Opt. Commun. 107, 61–64 (1994).
[CrossRef]

1993 (1)

H. Manaa, Y. Guyot, and R. Moncorgé, “Spectroscopic and tunable laser properties of Co2+-doped single crystals,” Phys. Rev. B 48, 3633–3645 (1993).
[CrossRef]

1991 (2)

K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[CrossRef]

S. R. Bowman, M. J. Winings, S. Searles, and B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr, Tm, Ho:YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

1986 (1)

D. S. Bethune and A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μm,” Appl. Phys. B 40, 107–113 (1986).
[CrossRef]

1979 (1)

W. Ruderman, “Active optics,” Electro-Opt. Syst. Des. 11, 76–77 (1979).

1969 (1)

L. F. Johnson and A. A. Ballman, “Coherent emission from rare earth ions in electro-optics crystals,” J. Appl. Phys. 40, 297–302 (1969).
[CrossRef]

Aka, G.

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “cw blue laser generation by self-sum-frequency mixing in Nd:Ca4GdO(BO3)3(Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3(Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

Ballman, A. A.

L. F. Johnson and A. A. Ballman, “Coherent emission from rare earth ions in electro-optics crystals,” J. Appl. Phys. 40, 297–302 (1969).
[CrossRef]

Benitez, J. M.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3(Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Bethune, D. S.

D. S. Bethune and A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μm,” Appl. Phys. B 40, 107–113 (1986).
[CrossRef]

Borel, C.

C. Li, R. Moncorgé, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+, Er3+ at 1.57 μm,” Opt. Commun. 107, 61–64 (1994).
[CrossRef]

Boulon, G.

A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable UV generation,” J. Lumin. 86, 125–128 (2000).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

Bowman, S. R.

S. R. Bowman, M. J. Winings, S. Searles, and B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr, Tm, Ho:YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

Brenier, A.

A. Brenier, C. Tu, J. Li, Z. Zhu, and B. Wu, “Self-sum- and-difference-frequency mixing in GdAl3(BO3)4:Nd3+ for tunable ultraviolet and infrared radiation,” Opt. Lett. 27, 240–242 (2002).
[CrossRef]

A. Brenier, “The self-doubling and summing lasers: overview and modeling,” J. Lumin. 91, 121–132 (2000).
[CrossRef]

A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable UV generation,” J. Lumin. 86, 125–128 (2000).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

Capmany, J.

D. Jaque, J. Capmany, F. Molero, and J. Garcia Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

Chambon, B.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

Che, H. C.

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

Chen, X.

X. Chen, M. Huang, Z. Luo, and Y. Huang, “Determination of the optimum phase-matching directions for the self-frequency conversion of Nd:GdCOB and Nd:YCOB crystals,” Opt. Commun. 196, 299–307 (2001).
[CrossRef]

X. Chen, Z. Luo, and Y. Huang, “Modeling of the self-sum-frequency mixing laser,” J. Opt. Soc. Am. B 18, 646–656 (2001).
[CrossRef]

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4”, J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

Colin, P.

Coquelin, P.

Damelet, J. P.

Descroix, E.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

Douard, M.

P. Rambaldi, M. Douard, B. Vezin, and J. P. Wolf, “Broadly tunable KnbO3 OPOs pumped by Ti:sapphire lasers,” Opt. Commun. 142, 262–264 (1997).
[CrossRef]

Doury, J.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

Farge, P.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

Farr, W. H.

Feldman, B. J.

S. R. Bowman, M. J. Winings, S. Searles, and B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr, Tm, Ho:YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

Fu, K.

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

Garcia Solé, J.

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, and J. Garcia Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

Garnier, N.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

Geiger, A. R.

Guillet, H.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

Guyot, Y.

H. Manaa, Y. Guyot, and R. Moncorgé, “Spectroscopic and tunable laser properties of Co2+-doped single crystals,” Phys. Rev. B 48, 3633–3645 (1993).
[CrossRef]

Hemmati, H.

Huang, M.

X. Chen, M. Huang, Z. Luo, and Y. Huang, “Determination of the optimum phase-matching directions for the self-frequency conversion of Nd:GdCOB and Nd:YCOB crystals,” Opt. Commun. 196, 299–307 (2001).
[CrossRef]

Huang, Y.

X. Chen, M. Huang, Z. Luo, and Y. Huang, “Determination of the optimum phase-matching directions for the self-frequency conversion of Nd:GdCOB and Nd:YCOB crystals,” Opt. Commun. 196, 299–307 (2001).
[CrossRef]

X. Chen, Z. Luo, and Y. Huang, “Modeling of the self-sum-frequency mixing laser,” J. Opt. Soc. Am. B 18, 646–656 (2001).
[CrossRef]

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4”, J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

Hubert, H.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3(Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Jaque, D.

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

D. Jaque, J. Capmany, F. Molero, and J. Garcia Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

Jiang, A.

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4”, J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

Jiang, H. D.

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

Jiang, M.

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re = Y, Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40, 63–73 (2000).
[CrossRef]

Johnson, L. F.

L. F. Johnson and A. A. Ballman, “Coherent emission from rare earth ions in electro-optics crystals,” J. Appl. Phys. 40, 297–302 (1969).
[CrossRef]

Kahn-Harari, A.

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “cw blue laser generation by self-sum-frequency mixing in Nd:Ca4GdO(BO3)3(Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3(Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Kato, K.

K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[CrossRef]

Laporte, P.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

Li, C.

C. Li, R. Moncorgé, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+, Er3+ at 1.57 μm,” Opt. Commun. 107, 61–64 (1994).
[CrossRef]

Li, J.

Liu, J. H.

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

Liu, Y. G.

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

Lu, J.

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re = Y, Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40, 63–73 (2000).
[CrossRef]

Luntz, A. C.

D. S. Bethune and A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μm,” Appl. Phys. B 40, 107–113 (1986).
[CrossRef]

Luo, Z.

X. Chen, M. Huang, Z. Luo, and Y. Huang, “Determination of the optimum phase-matching directions for the self-frequency conversion of Nd:GdCOB and Nd:YCOB crystals,” Opt. Commun. 196, 299–307 (2001).
[CrossRef]

X. Chen, Z. Luo, and Y. Huang, “Modeling of the self-sum-frequency mixing laser,” J. Opt. Soc. Am. B 18, 646–656 (2001).
[CrossRef]

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4”, J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

Manaa, H.

H. Manaa, Y. Guyot, and R. Moncorgé, “Spectroscopic and tunable laser properties of Co2+-doped single crystals,” Phys. Rev. B 48, 3633–3645 (1993).
[CrossRef]

Mareschal, J.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

Molero, F.

D. Jaque, J. Capmany, F. Molero, and J. Garcia Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

Moncorgé, R.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

C. Li, R. Moncorgé, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+, Er3+ at 1.57 μm,” Opt. Commun. 107, 61–64 (1994).
[CrossRef]

H. Manaa, Y. Guyot, and R. Moncorgé, “Spectroscopic and tunable laser properties of Co2+-doped single crystals,” Phys. Rev. B 48, 3633–3645 (1993).
[CrossRef]

Mougel, F.

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “cw blue laser generation by self-sum-frequency mixing in Nd:Ca4GdO(BO3)3(Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3(Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Pelenc, D.

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

Prasad, N. S.

Qiu, M.

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4”, J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

Rambaldi, P.

P. Rambaldi, M. Douard, B. Vezin, and J. P. Wolf, “Broadly tunable KnbO3 OPOs pumped by Ti:sapphire lasers,” Opt. Commun. 142, 262–264 (1997).
[CrossRef]

Rivoire, J. Y.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

Roy, S.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

Ruderman, W.

W. Ruderman, “Active optics,” Electro-Opt. Syst. Des. 11, 76–77 (1979).

Salin, F.

Searles, S.

S. R. Bowman, M. J. Winings, S. Searles, and B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr, Tm, Ho:YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

Shao, Z.

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re = Y, Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40, 63–73 (2000).
[CrossRef]

Shao, Z. S.

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

Song, R. B.

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

Souriau, J. C.

C. Li, R. Moncorgé, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+, Er3+ at 1.57 μm,” Opt. Commun. 107, 61–64 (1994).
[CrossRef]

Tu, C.

A. Brenier, C. Tu, J. Li, Z. Zhu, and B. Wu, “Self-sum- and-difference-frequency mixing in GdAl3(BO3)4:Nd3+ for tunable ultraviolet and infrared radiation,” Opt. Lett. 27, 240–242 (2002).
[CrossRef]

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4”, J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

Vezin, B.

P. Rambaldi, M. Douard, B. Vezin, and J. P. Wolf, “Broadly tunable KnbO3 OPOs pumped by Ti:sapphire lasers,” Opt. Commun. 142, 262–264 (1997).
[CrossRef]

Vivien, D.

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “cw blue laser generation by self-sum-frequency mixing in Nd:Ca4GdO(BO3)3(Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3(Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

Wang, C. Q.

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

Wang, J.

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re = Y, Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40, 63–73 (2000).
[CrossRef]

Wang, J. Y.

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

Wang, Z.

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re = Y, Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40, 63–73 (2000).
[CrossRef]

Wang, Z. P.

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

Wie, J. Q.

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

Winings, M. J.

S. R. Bowman, M. J. Winings, S. Searles, and B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr, Tm, Ho:YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

Wolf, J. P.

P. Rambaldi, M. Douard, B. Vezin, and J. P. Wolf, “Broadly tunable KnbO3 OPOs pumped by Ti:sapphire lasers,” Opt. Commun. 142, 262–264 (1997).
[CrossRef]

Wu, B.

Wyon, Ch.

C. Li, R. Moncorgé, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+, Er3+ at 1.57 μm,” Opt. Commun. 107, 61–64 (1994).
[CrossRef]

Zhang, S. J.

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

Zhu, Z.

, J. Cryst. Growth (1)

C. Tu, M. Qiu, Y. Huang, X. Chen, A. Jiang, and Z. Luo, “The study of a self-frequency-doubling laser crystal Nd3+:GdAl3(BO3)4”, J. Cryst. Growth 208, 487–492 (2000).
[CrossRef]

Appl. Phys. B (1)

D. S. Bethune and A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μm,” Appl. Phys. B 40, 107–113 (1986).
[CrossRef]

Appl. Phys. Lett. (1)

D. Jaque, J. Capmany, F. Molero, and J. Garcia Solé, “Blue-light laser source by sum-frequency mixing in Nd:YAl3(BO3)4,” Appl. Phys. Lett. 73, 3659–3661 (1998).
[CrossRef]

Chin. Phys. Lett. (1)

Z. P. Wang, J. H. Liu, R. B. Song, H. D. Jiang, S. J. Zhang, K. Fu, C. Q. Wang, J. Y. Wang, Y. G. Liu, J. Q. Wie, H. C. Che, and Z. S. Shao, “Anisotropy of nonlinear optical property of RCOB (R = Gd, Y) crystal,” Chin. Phys. Lett. 18, 385–387 (2001).
[CrossRef]

Electro-Opt. Syst. Des. (1)

W. Ruderman, “Active optics,” Electro-Opt. Syst. Des. 11, 76–77 (1979).

IEEE J. Quantum Electron. (2)

K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[CrossRef]

S. R. Bowman, M. J. Winings, S. Searles, and B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr, Tm, Ho:YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

J. Appl. Phys. (1)

L. F. Johnson and A. A. Ballman, “Coherent emission from rare earth ions in electro-optics crystals,” J. Appl. Phys. 40, 297–302 (1969).
[CrossRef]

J. Lumin. (2)

A. Brenier and G. Boulon, “Self-frequency summing NYAB laser for tunable UV generation,” J. Lumin. 86, 125–128 (2000).
[CrossRef]

A. Brenier, “The self-doubling and summing lasers: overview and modeling,” J. Lumin. 91, 121–132 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

X. Chen, M. Huang, Z. Luo, and Y. Huang, “Determination of the optimum phase-matching directions for the self-frequency conversion of Nd:GdCOB and Nd:YCOB crystals,” Opt. Commun. 196, 299–307 (2001).
[CrossRef]

P. Rambaldi, M. Douard, B. Vezin, and J. P. Wolf, “Broadly tunable KnbO3 OPOs pumped by Ti:sapphire lasers,” Opt. Commun. 142, 262–264 (1997).
[CrossRef]

C. Li, R. Moncorgé, J. C. Souriau, C. Borel, and Ch. Wyon, “Room temperature cw laser action of Y2SiO5:Yb3+, Er3+ at 1.57 μm,” Opt. Commun. 107, 61–64 (1994).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (4)

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3(Nd:GdCOB),” Opt. Mater. 8, 161–173 (1997).
[CrossRef]

A. Brenier, G. Boulon, D. Jaque, and J. Garcia Solé, “Self-frequency-summing NYAB laser for tunable blue generation,” Opt. Mater. 13, 311–317 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, and D. Vivien, “cw blue laser generation by self-sum-frequency mixing in Nd:Ca4GdO(BO3)3(Nd:GdCOB) single crystal,” Opt. Mater. 13, 293–297 (1999).
[CrossRef]

Phys. Rev. B (1)

H. Manaa, Y. Guyot, and R. Moncorgé, “Spectroscopic and tunable laser properties of Co2+-doped single crystals,” Phys. Rev. B 48, 3633–3645 (1993).
[CrossRef]

Prog. Cryst. Growth Charact. Mater. (1)

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re = Y, Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40, 63–73 (2000).
[CrossRef]

Other (1)

A. Yariv, Quantum Electronics (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Effective nonlinear optical coefficient deff for the 1/588-1/1060=1/λidler SDFM process and laser emission cross section σe in GdCOB:Nd3+.

Fig. 2
Fig. 2

Idler and signal output yield from SDFM versus absorption cross section for two values of the pump power: 0.1 times the OPO threshold (solid curve) and 1.1 times the OPO threshold (dotted curves). The vertical arrows clearly illustrate the magnitude of idler and signal enhancement.

Fig. 3
Fig. 3

Curve (a), Nd3+ absorption cross section in NGAB; curve (b), idler intensity in arbitrary units; curve (c), phase-matching condition for the OPO process: 1/λpump-1/λlaser=1/λidler.

Tables (2)

Tables Icon

Table 1 Nonlinear Optical Coefficients (pm/V) of GdCOB Crystal

Tables Icon

Table 2 Crystal Properties for the SDFM Process Demonstrated in Ref. 17

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ω1n1(θ, φ)+ω2n2(θ, φ)=ω3n3(θ, φ),
1/λpump-1/λlaser=1/λidler,
deff=ijkPi(ω3)dijkej(ω1)ek(ω2),
σ(θ, φ)=σXσYσZ(σY2σZ2eX2+σX2σZ2eY2+σX2σY2eZ2)1/2,
1=N+N0,
0=-Nτ+I3σpN0-(I1++I1-)σLN,
I3=0n3λ32h |E3|2,
I1±=0n1Lλ12h |E1±|2.
dE1+dz=iω1dn1c E3E2*+σLNC-αL2 E1+,
dE2dz=iω2dn2c E1+*E3,
dE3dz=iω3dn3c E2E1+-σpN0C2 E3,
dE1-dz=-σLNC-αL2E1-.
I3OPOT=0n1n2n3c32ω1ω2d2 γT2,
I3LT=-ln(TF4R)+αLlητ(σL-αL/C),
σpT=-ln1--ln(TF4R)+αLlτ(σL-αL/C)I3Cl.
1/5881/1061.9=1/λidler,
1/585=1/λsignal+1/λidler,

Metrics