Abstract

Optical and radio frequency standards located in JILA and National Institute of Standards and Technology (NIST) laboratories have been connected through a 3.45-km optical fiber link. An optical frequency standard based on an iodine-stabilized Nd:YAG laser at 1064 nm (with an instability of 4×10-14 at 1 s) has been transferred from JILA to NIST and simultaneously measured in both laboratories. In parallel, a hydrogen maser-based radio frequency standard (with an instability of 2.4×10-13 at 1 s) is transferred from NIST to JILA. Comparison between these frequency standards is made possible by the use of femtosecond frequency combs in both laboratories. The degradation of the optical and rf standards that are due to the instability in the transmission channel has been measured. Active noise cancellation is demonstrated to improve the transfer stability of the fiber link.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567–2596 (1999).
    [CrossRef]
  2. M. Calhoun, R. Sydnor, and W. Diener, “A stabilized 100-megahertz and 1-gigahertz reference frequency distribution for Cassini Radio Science,” in Interplanetary Network Progress Rep. 42–148, Oct.–Dec. 2001 (Jet Propulsion Laboratory, Pasadena, Calif., (15 February 2002), pp. 1–11.
  3. T. P. Celano, S. R. Stein, G. A. Gifford, B. A. Mesander, and B. J. Ramsey, “Subpicosecond active timing control over fiber optic cable,” Proceedings of the 2002 IEEE International Frequency Control Symposium (IEEE, New York, 2002), pp. 510–516.
  4. L. S. Ma, P. A. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
    [CrossRef] [PubMed]
  5. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
    [CrossRef]
  6. R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
    [CrossRef] [PubMed]
  7. T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
    [CrossRef] [PubMed]
  8. B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
    [CrossRef]
  9. S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
    [CrossRef] [PubMed]
  10. J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801/1–4 (2001).
    [CrossRef]
  11. BRAN network, see http://www.branfiber.net/drawings/Bran6.gif.
  12. R. J. Jones, W. Y. Cheng, K. W. Holman, L.-S. Chen, J. L. Hall, and J. Ye, “Absolute frequency measurement of the length standard at 514 nm,” Appl. Phys. B 74, 597–601 (2002).
    [CrossRef]
  13. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–231 (1966).
    [CrossRef]
  14. S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  15. J. Ye, T. H. Yoon, J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L. Marmet, J.-M. Chartier, and A. Chariter, “Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb,” Phys. Rev. Lett. 85, 3797–3800 (2000).
    [CrossRef] [PubMed]
  16. J. Ye, J. L. Hall, and S. A. Diddams, “Precision phase control of ultrawide bandwidth fs laser-A network of ultrastable frequency marks across the visible spectrum,” Opt. Lett. 25, 1675–1677 (2000).
    [CrossRef]
  17. E. N. Ivanov, L. Hollberg, and S. A. Diddams, “Analysis of noise mechanisms limiting frequency stability of microwave signals generated with a femtosecond laser,” in Proceedings of the 2001 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 2001).
  18. S. A. Diddams, L. Hollberg, L. S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability ≤6.3×10−16 in 1 s,” Opt. Lett. 27, 58–60 (2002).
    [CrossRef]
  19. S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall and J. Ye, eds., Proc. SPIE 4269, 77–83 (2001).
    [CrossRef]
  20. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef] [PubMed]
  21. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [CrossRef] [PubMed]
  22. L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
    [CrossRef]
  23. W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
    [CrossRef]
  24. J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, “Control of the comb from a modelocked Erbium doped fiber laser,” Opt. Express 10, 1404–1409 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  25. D. J. Jones, K. W. Holman, M. Notcutt, J. Ye, J. Chandalia, L. Jiang, E. Ippen, and H. Yokoyama, “Ultra-low jitter, 1550-nm mode-locked semiconductor laser synchronized to a visible optical frequency standard,” Opt. Lett. 28, 813–815 (2003).
    [CrossRef] [PubMed]

2003 (1)

2002 (4)

2001 (5)

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall and J. Ye, eds., Proc. SPIE 4269, 77–83 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801/1–4 (2001).
[CrossRef]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

2000 (6)

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Ye, T. H. Yoon, J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L. Marmet, J.-M. Chartier, and A. Chariter, “Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb,” Phys. Rev. Lett. 85, 3797–3800 (2000).
[CrossRef] [PubMed]

J. Ye, J. L. Hall, and S. A. Diddams, “Precision phase control of ultrawide bandwidth fs laser-A network of ultrastable frequency marks across the visible spectrum,” Opt. Lett. 25, 1675–1677 (2000).
[CrossRef]

1999 (2)

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567–2596 (1999).
[CrossRef]

1997 (1)

B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
[CrossRef]

1994 (1)

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–231 (1966).
[CrossRef]

Acef, O.

B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
[CrossRef]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–231 (1966).
[CrossRef]

Bartels, A.

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall and J. Ye, eds., Proc. SPIE 4269, 77–83 (2001).
[CrossRef]

Beall, J. A.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

Bergquist, J. C.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall and J. Ye, eds., Proc. SPIE 4269, 77–83 (2001).
[CrossRef]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Bernard, J. E.

J. Ye, T. H. Yoon, J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L. Marmet, J.-M. Chartier, and A. Chariter, “Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb,” Phys. Rev. Lett. 85, 3797–3800 (2000).
[CrossRef] [PubMed]

Biraben, F.

B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
[CrossRef]

Cagnac, B.

B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
[CrossRef]

Chandalia, J.

Chariter, A.

J. Ye, T. H. Yoon, J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L. Marmet, J.-M. Chartier, and A. Chariter, “Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb,” Phys. Rev. Lett. 85, 3797–3800 (2000).
[CrossRef] [PubMed]

Chartier, J.-M.

J. Ye, T. H. Yoon, J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L. Marmet, J.-M. Chartier, and A. Chariter, “Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb,” Phys. Rev. Lett. 85, 3797–3800 (2000).
[CrossRef] [PubMed]

Chen, L. S.

Chen, L.-S.

R. J. Jones, W. Y. Cheng, K. W. Holman, L.-S. Chen, J. L. Hall, and J. Ye, “Absolute frequency measurement of the length standard at 514 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

Cheng, W. Y.

R. J. Jones, W. Y. Cheng, K. W. Holman, L.-S. Chen, J. L. Hall, and J. Ye, “Absolute frequency measurement of the length standard at 514 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

Cheng, W.-Y.

Clairon, A.

B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
[CrossRef]

Cruz, F. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Cundiff, S. T.

J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, “Control of the comb from a modelocked Erbium doped fiber laser,” Opt. Express 10, 1404–1409 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Cundiff, T.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Curtis, E. A.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall and J. Ye, eds., Proc. SPIE 4269, 77–83 (2001).
[CrossRef]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

deBeauvoir, B.

B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
[CrossRef]

Diddams, S. A.

S. A. Diddams, L. Hollberg, L. S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability ≤6.3×10−16 in 1 s,” Opt. Lett. 27, 58–60 (2002).
[CrossRef]

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall and J. Ye, eds., Proc. SPIE 4269, 77–83 (2001).
[CrossRef]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Ye, J. L. Hall, and S. A. Diddams, “Precision phase control of ultrawide bandwidth fs laser-A network of ultrastable frequency marks across the visible spectrum,” Opt. Lett. 25, 1675–1677 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Drullinger, R. E.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Fortier, T. M.

Hall, J. L.

W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
[CrossRef]

R. J. Jones, W. Y. Cheng, K. W. Holman, L.-S. Chen, J. L. Hall, and J. Ye, “Absolute frequency measurement of the length standard at 514 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801/1–4 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Ye, T. H. Yoon, J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L. Marmet, J.-M. Chartier, and A. Chariter, “Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb,” Phys. Rev. Lett. 85, 3797–3800 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

J. Ye, J. L. Hall, and S. A. Diddams, “Precision phase control of ultrawide bandwidth fs laser-A network of ultrastable frequency marks across the visible spectrum,” Opt. Lett. 25, 1675–1677 (2000).
[CrossRef]

L. S. Ma, P. A. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[CrossRef] [PubMed]

Hänsch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Hilico, L.

B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
[CrossRef]

Hollberg, L.

S. A. Diddams, L. Hollberg, L. S. Ma, and L. Robertsson, “Femtosecond-laser-based optical clockwork with instability ≤6.3×10−16 in 1 s,” Opt. Lett. 27, 58–60 (2002).
[CrossRef]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall and J. Ye, eds., Proc. SPIE 4269, 77–83 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

Holman, K. W.

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Ippen, E.

Itano, W. M.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Ivanov, E. N.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Jiang, L.

Jones, D. J.

D. J. Jones, K. W. Holman, M. Notcutt, J. Ye, J. Chandalia, L. Jiang, E. Ippen, and H. Yokoyama, “Ultra-low jitter, 1550-nm mode-locked semiconductor laser synchronized to a visible optical frequency standard,” Opt. Lett. 28, 813–815 (2003).
[CrossRef] [PubMed]

J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, “Control of the comb from a modelocked Erbium doped fiber laser,” Opt. Express 10, 1404–1409 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Jones, R. J.

R. J. Jones, W. Y. Cheng, K. W. Holman, L.-S. Chen, J. L. Hall, and J. Ye, “Absolute frequency measurement of the length standard at 514 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

Julien, L.

B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
[CrossRef]

Jungner, P. A.

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Lee, W. D.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

Levine, J.

J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567–2596 (1999).
[CrossRef]

Ma, L. S.

Madej, A. A.

J. Ye, T. H. Yoon, J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L. Marmet, J.-M. Chartier, and A. Chariter, “Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb,” Phys. Rev. Lett. 85, 3797–3800 (2000).
[CrossRef] [PubMed]

Marmet, L.

J. Ye, T. H. Yoon, J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L. Marmet, J.-M. Chartier, and A. Chariter, “Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb,” Phys. Rev. Lett. 85, 3797–3800 (2000).
[CrossRef] [PubMed]

Nez, F.

B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
[CrossRef]

Notcutt, M.

Oates, C. W.

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall and J. Ye, eds., Proc. SPIE 4269, 77–83 (2001).
[CrossRef]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

Rafac, R. J.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Rauschenberger, J.

Robertsson, L.

Robinson, H. G.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Russell, P. S. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Siemsen, K. J.

J. Ye, T. H. Yoon, J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L. Marmet, J.-M. Chartier, and A. Chariter, “Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb,” Phys. Rev. Lett. 85, 3797–3800 (2000).
[CrossRef] [PubMed]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Touahri, D.

B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
[CrossRef]

Udem, T.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Udem, Th.

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall and J. Ye, eds., Proc. SPIE 4269, 77–83 (2001).
[CrossRef]

Vogel, K. R.

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall and J. Ye, eds., Proc. SPIE 4269, 77–83 (2001).
[CrossRef]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Windeler, R. S.

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall and J. Ye, eds., Proc. SPIE 4269, 77–83 (2001).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Wineland, D. J.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

Ye, J.

D. J. Jones, K. W. Holman, M. Notcutt, J. Ye, J. Chandalia, L. Jiang, E. Ippen, and H. Yokoyama, “Ultra-low jitter, 1550-nm mode-locked semiconductor laser synchronized to a visible optical frequency standard,” Opt. Lett. 28, 813–815 (2003).
[CrossRef] [PubMed]

J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, “Control of the comb from a modelocked Erbium doped fiber laser,” Opt. Express 10, 1404–1409 (2002), http://www.opticsexpress.org.
[CrossRef] [PubMed]

W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
[CrossRef]

R. J. Jones, W. Y. Cheng, K. W. Holman, L.-S. Chen, J. L. Hall, and J. Ye, “Absolute frequency measurement of the length standard at 514 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801/1–4 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Ye, T. H. Yoon, J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L. Marmet, J.-M. Chartier, and A. Chariter, “Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb,” Phys. Rev. Lett. 85, 3797–3800 (2000).
[CrossRef] [PubMed]

J. Ye, J. L. Hall, and S. A. Diddams, “Precision phase control of ultrawide bandwidth fs laser-A network of ultrastable frequency marks across the visible spectrum,” Opt. Lett. 25, 1675–1677 (2000).
[CrossRef]

L. S. Ma, P. A. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994).
[CrossRef] [PubMed]

Yokoyama, H.

Yoon, T. H.

W.-Y. Cheng, L. S. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002).
[CrossRef]

J. Ye, T. H. Yoon, J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L. Marmet, J.-M. Chartier, and A. Chariter, “Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb,” Phys. Rev. Lett. 85, 3797–3800 (2000).
[CrossRef] [PubMed]

Young, B. C.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

Zondy, J. J.

B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
[CrossRef]

Appl. Phys. B (1)

R. J. Jones, W. Y. Cheng, K. W. Holman, L.-S. Chen, J. L. Hall, and J. Ye, “Absolute frequency measurement of the length standard at 514 nm,” Appl. Phys. B 74, 597–601 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. Lett. (8)

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[CrossRef]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[CrossRef] [PubMed]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

B. deBeauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, and J. J. Zondy, “Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: new determination of the Rydberg constant,” Phys. Rev. Lett. 78, 440–443 (1997).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Molecular iodine clock,” Phys. Rev. Lett. 87, 270801/1–4 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Ye, T. H. Yoon, J. L. Hall, A. A. Madej, J. E. Bernard, K. J. Siemsen, L. Marmet, J.-M. Chartier, and A. Chariter, “Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb,” Phys. Rev. Lett. 85, 3797–3800 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–231 (1966).
[CrossRef]

Proc. SPIE (1)

S. A. Diddams, Th. Udem, K. R. Vogel, C. W. Oates, E. A. Curtis, R. S. Windeler, A. Bartels, J. C. Bergquist, and L. Hollberg, “A compact femtosecond-laser-based optical clockwork,” in Laser Frequency Stabilization, Standards, Measurement, and Applications, J. L. Hall and J. Ye, eds., Proc. SPIE 4269, 77–83 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567–2596 (1999).
[CrossRef]

Science (2)

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg-199(+) ion,” Science 293, 825–828 (2001).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Other (4)

E. N. Ivanov, L. Hollberg, and S. A. Diddams, “Analysis of noise mechanisms limiting frequency stability of microwave signals generated with a femtosecond laser,” in Proceedings of the 2001 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 2001).

M. Calhoun, R. Sydnor, and W. Diener, “A stabilized 100-megahertz and 1-gigahertz reference frequency distribution for Cassini Radio Science,” in Interplanetary Network Progress Rep. 42–148, Oct.–Dec. 2001 (Jet Propulsion Laboratory, Pasadena, Calif., (15 February 2002), pp. 1–11.

T. P. Celano, S. R. Stein, G. A. Gifford, B. A. Mesander, and B. J. Ramsey, “Subpicosecond active timing control over fiber optic cable,” Proceedings of the 2002 IEEE International Frequency Control Symposium (IEEE, New York, 2002), pp. 510–516.

BRAN network, see http://www.branfiber.net/drawings/Bran6.gif.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical time-delay reflectometer measurement of the fiber link between JILA and NIST Boulder laboratories, showing the various interconnects along the link as exposed in the peaks of the reflected signal. The round-trip distance between the respective JILA and NIST laboratories is 6.89 km.

Fig. 2
Fig. 2

Schematic of the rf transmission system from NIST to JILA. The inset shows the actively maintained dc bias point for the light power launched into the BRAN fiber.

Fig. 3
Fig. 3

Dark curve indicates the homodyne detection of phase fluctuations in the NIST–JILA–NIST fiber transmission channel taken over a 16-h period. The corresponding fractional frequency change of the 1-GHz rf signal is also shown with respect to the right vertical axis for an averaging time of 10 s.

Fig. 4
Fig. 4

Measured instability of amplitude-modulated light transmitted through a short (∼2-m) fiber (squares) and through a round trip of the BRAN fiber (diamonds). The rf modulation signal carried by the fiber-transmitted light is heterodyne detected against the original signal source, which has been frequency shifted by 10 kHz by means of a single-sideband-generation rf interferometer.

Fig. 5
Fig. 5

Measured instability between the JILA iodine standard and the transmitted hydrogen maser-based signal from NIST by use of a femtosecond frequency comb. Top panel shows the measured optical frequency for a 10-s gate time and the bottom panel shows the associated Allan deviation.

Fig. 6
Fig. 6

Top panel, 3-h time record of the beat frequency between the BRAN-delivered maser-based signal and the frep of a femtosecond comb stabilized to an I2-based optical frequency standard (I2 optical clock). Bottom panel, corresponding Allan deviation determined from a few such beat records. (Data for the averaging times between 1 and 20 s were obtained from separate beat records with correspondingly varying gate times.) The NIST maser model is also shown.

Fig. 7
Fig. 7

Simultaneous femtosecond comb-based measurements of JILA’s iodine standard versus the NIST maser reference. Measurements made at JILA and NIST both use 10-s gate time per sample, averaged over ten samples. Agreement between the two measurements is within 0.74 Hz, with a standard deviation of 9.1 Hz at 100-s averaging time. The most likely cause of instability between the two comb measurements is due to the noise introduced by the transmission of the maser reference frequency. (CIPM: International Committee for Weights and Measures.)

Fig. 8
Fig. 8

Experimental setup for comparison of two remotely located optical frequency standards with the NIST femtosecond comb as the flywheel. The rf transmission channel is also shown.

Fig. 9
Fig. 9

Optical measurement between the I2 and the Hg+ standards is shown as filled circles and the maser-based rf measurement of the optical standard is shown as open circles. Top panel, time records of the beat frequency; bottom panel, the associated Allan deviations.

Fig. 10
Fig. 10

Active cancellation of the optical phase noise induced by the BRAN fiber. The first-order diffracted beam is used after each AOM. The phase servo electronics can provide accurate cancellation of the single-pass fiber phase noise, based on the measured round-trip deviations.

Fig. 11
Fig. 11

Fourier spectral analysis of the heterodyne beat linewidth between the original laser beam (before AOM 1) and the returned light. Without phase compensation, the beat linewidth is broadened by the fiber to ∼2 kHz. The inset shows the display of a beat signal at a 1-kHz span and a 0.048-Hz resolution bandwidth when the fiber noise cancellation is activated. This is in contrast with the white-noise floor that shows in the same spectral window when phase noise is not canceled. Note the lowered noise level that is due to the emergence of the recovered carrier signal when cancellation is activated.

Fig. 12
Fig. 12

Counted heterodyne beat signal between the original laser and the returned light after a round trip. The top left panel corresponds to the case when the fiber noise is uncompensated, and the bottom left panel shows the compensated case, both with a 1-s counter gate time. Allan deviations determined from the time records are shown at right.

Tables (1)

Tables Icon

Table 1 Instabilities of Various Elements in the Fiber-Transfer System, All Measured at 10-s Averaging Time

Metrics