Abstract

Holey fibers with small-core dimensions relative to the optical wavelength and large air-filling fractions offer tight mode confinement and are therefore attractive for highly nonlinear fiber applications. We investigated the role of confinement loss in these small-core fibers to optimize the design of practical highly nonlinear fibers. We found that silica holey fibers can exhibit effective nonlinearities as great as 52 W-1 km-1 and that the confinement loss can be less than the losses of standard fiber types. We show that the dispersive properties of some of the designs are suitable for a range of device applications.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  2. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
    [CrossRef]
  3. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
    [CrossRef]
  4. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett. 26, 1233–1235 (2001).
    [CrossRef]
  5. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26, 1660–1662 (2001).
    [CrossRef]
  6. K. Tajima, K. Nakajima, K. Kurokawa, N. Yoshizawa, and M. Ohashi, “Low-loss photonic crystal fibers,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 523–524.
  7. V. Finazzi, T. M. Monro, and D. J. Richardson, “Confinement loss in highly nonlinear holey optical fibers,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 524–525.
  8. Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J. Richardson, “Raman effects in a highly nonlinear holey fiber: amplification and modulation,” Opt. Lett. 27, 424–426 (2002).
    [CrossRef]
  9. T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. M. de Sterke, “Calculations of air-guided modes in photonic crystal fibers using the multipole method,” Opt. Express 9, 721–732 (2001), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  10. W. Wijngaard, “Guided normal modes of two parallel circular dielectric rods,” J. Opt. Soc. Am. 63, 944–949 (1973).
    [CrossRef]
  11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
  12. Lord Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium,” Phil. Mag. 34, 481–502 (1892).
    [CrossRef]
  13. P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Trans. Microwave Theory Tech. MTT-23, 421–429 (1975).
    [CrossRef]
  14. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001).
    [CrossRef]
  15. A. W. Snyder and J. D. Love, in Optical Waveguide Theory (Chapman & Hall, London, 1995), Chap. 30, p. 593.
  16. D. N. Nikogosyan, Optical and Laser-Related Materials (Wiley, Chichester, UK, 1997).
  17. N. Nakazawa, H. Kubota, and K. Tamura, “Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise,” Opt. Lett. 24, 318–320 (1999).
    [CrossRef]
  18. K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–561 (2001).
    [CrossRef]
  19. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air–silica microstructured optical fibers,” Opt. Lett. 24, 1460–1462 (1999).
    [CrossRef]
  20. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
    [CrossRef]
  21. S. R. Friberg and P. W. Smith, “Nonlinear optical-glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
    [CrossRef]
  22. T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson “High nonlinear extruded single-mode holey optical fibers,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), 315–317.
  23. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, and D. J. Richardson, “Extruded single-mode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
    [CrossRef]

2002 (2)

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, and D. J. Richardson, “Extruded single-mode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[CrossRef]

Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J. Richardson, “Raman effects in a highly nonlinear holey fiber: amplification and modulation,” Opt. Lett. 27, 424–426 (2002).
[CrossRef]

2001 (5)

1999 (4)

1997 (1)

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[CrossRef]

1987 (1)

S. R. Friberg and P. W. Smith, “Nonlinear optical-glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[CrossRef]

1975 (1)

P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Trans. Microwave Theory Tech. MTT-23, 421–429 (1975).
[CrossRef]

1973 (1)

1892 (1)

Lord Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium,” Phil. Mag. 34, 481–502 (1892).
[CrossRef]

Asobe, M.

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[CrossRef]

Belardi, W.

Bennett, P. J.

Botten, L. C.

Broderick, N. G. R.

de Sterke, C. M.

Eggleton, B. J.

Frampton, K.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, and D. J. Richardson, “Extruded single-mode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[CrossRef]

Friberg, S. R.

S. R. Friberg and P. W. Smith, “Nonlinear optical-glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[CrossRef]

Furusawa, K.

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–561 (2001).
[CrossRef]

P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett. 26, 1233–1235 (2001).
[CrossRef]

Hewak, D. W.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, and D. J. Richardson, “Extruded single-mode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[CrossRef]

Ishikawa, S.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
[CrossRef]

Kashiwada, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
[CrossRef]

Kiang, K. M.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, and D. J. Richardson, “Extruded single-mode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[CrossRef]

Kubota, H.

Lee, J. H.

McIsaac, P. R.

P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Trans. Microwave Theory Tech. MTT-23, 421–429 (1975).
[CrossRef]

McPhedran, R. C.

Monro, T. M.

Moore, R.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, and D. J. Richardson, “Extruded single-mode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[CrossRef]

Nakazawa, N.

Nishimura, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
[CrossRef]

Okuno, T.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
[CrossRef]

Onishi, M.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
[CrossRef]

Petropoulos, P.

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–561 (2001).
[CrossRef]

P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett. 26, 1233–1235 (2001).
[CrossRef]

Rayleigh, Lord

Lord Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium,” Phil. Mag. 34, 481–502 (1892).
[CrossRef]

Richardson, D. J.

Smith, G. H.

Smith, P. W.

S. R. Friberg and P. W. Smith, “Nonlinear optical-glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[CrossRef]

Spälter, S.

Steel, M. J.

Strasser, T. A.

Tamura, K.

Teh, P. C.

Tucknott, J.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, and D. J. Richardson, “Extruded single-mode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[CrossRef]

Westbrook, P. S.

White, T. P.

Wijngaard, W.

Windeler, R. S.

Yusoff, Z.

Electron. Lett. (2)

K. Furusawa, T. M. Monro, P. Petropoulos, and D. J. Richardson, “Modelocked laser based on ytterbium doped holey fibre,” Electron. Lett. 37, 560–561 (2001).
[CrossRef]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, and D. J. Richardson, “Extruded single-mode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. R. Friberg and P. W. Smith, “Nonlinear optical-glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5, 1385–1391 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides. I. Summary of results,” IEEE Trans. Microwave Theory Tech. MTT-23, 421–429 (1975).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Opt. Fiber Technol. (1)

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[CrossRef]

Opt. Lett. (7)

Phil. Mag. (1)

Lord Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium,” Phil. Mag. 34, 481–502 (1892).
[CrossRef]

Other (7)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

A. W. Snyder and J. D. Love, in Optical Waveguide Theory (Chapman & Hall, London, 1995), Chap. 30, p. 593.

D. N. Nikogosyan, Optical and Laser-Related Materials (Wiley, Chichester, UK, 1997).

K. Tajima, K. Nakajima, K. Kurokawa, N. Yoshizawa, and M. Ohashi, “Low-loss photonic crystal fibers,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 523–524.

V. Finazzi, T. M. Monro, and D. J. Richardson, “Confinement loss in highly nonlinear holey optical fibers,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 524–525.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson “High nonlinear extruded single-mode holey optical fibers,” in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), 315–317.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Typical small-core silica holey fiber with 12 rings of regularly spaced air holes (only the central region is shown).

Fig. 2
Fig. 2

Small-core holey fibers with (a) two rings of large air holes, and (b) four rings of large air holes.

Fig. 3
Fig. 3

Fundamental mode (2-fold degenerate) of Fiber A at 1550 nm: calculated Poynting vector (contours spaced by 2 dB).

Fig. 4
Fig. 4

Typical structures considered in this study (dark regions are silica, n=1.444; white regions are air, n=1.0).

Fig. 5
Fig. 5

Confinement loss for (left) several air-filling fractions and (right) various numbers of rings of air holes as functions of hole-to-hole spacing Λ. The dashed line at the left corresponds to JASR as defined in Fig. 4(c). Dotted horizontal line, loss of conventional fibers (0.2 dB/km). Two fibers (A and B) are labeled for reference.

Fig. 6
Fig. 6

Predicted effective mode area as a function of hole-to-hole spacing Λ. Dashed curve, silica JASR of diameter Λ as defined in Fig. 4(c).

Fig. 7
Fig. 7

Predictions of confinement loss versus effective mode area for fixed hole-to-hole spacing Λ=1.2 μm for several numbers of rings and air-filling fractions. Dotted horizontal line, loss of conventional fibers (0.2 dB/km).

Fig. 8
Fig. 8

Predictions of confinement loss versus effective mode area for a range of Λ and d/Λ with a fixed number of rings. Filled symbols, values for JASRs. Dotted horizontal line, loss of conventional fibers (0.2 dB/km). Shaded regions represent combinations of effective area and confinement loss that cannot be achieved with the specified number of rings.

Fig. 9
Fig. 9

Dispersion and effective mode area at a wavelength of 1550 nm as a function of hole-to-hole spacing Λ for different numbers of rings for large air-filling fraction HFs.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

γ=2πλn2Aeff,
Ez(r, z)=m=-[AmElJm(ke|r-cl|)+BmElHm(1)(ke|r-cl|)]exp{im[arg(r-cl)]}exp(iβz),
Ez(r, z)=l=1Ncm=-BmElHm(1)(ke|r-cl|)×exp{im[arg(r-cl)]}exp(iβz)+m=-AmE0Jm(ker)exp(imθ)exp(iβz).
MB[I-R(H˜+J˜B0R˜0J˜0B)]B=0,
confinementloss[dB/m]=20×106ln 102πλ[μm]Im(neff).
Sz=½(ErHθ*-EθHr*),
Aeff=n2[ Et(x, y)Et*(x, y)dxdy]2 n˜2(x, y)[Et(x, y)Et*(x, y)]2dxdy,

Metrics