Abstract

We report what is to our knowledge the first experimental study of beam quality and prepulse effect for a deeply saturated neonlike Zn soft-x-ray laser at 21.2 nm, comparing two distinct regimes of operation: amplified spontaneous emission (in single pass) and double pass. The single-pass x-ray laser output emitted by a 30-mm-long plasma column delivers a smooth, highly symmetric ellipsoidal beam with horizontal and vertical divergence of 3(±0.5) and 5(±0.5) mrad, respectively. With a half-cavity consisting of a Mo:Si flat multilayer mirror, the x-ray laser output is boosted by factor of ∼11, providing a narrowly collimated beam with horizontal and vertical divergence of 3.8(±0.5) and 5.8(±0.5) mrad, respectively. The dependence of the beam parameters on the half-cavity setup and on the level of prepulse is described and discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Elton, X-Ray Lasers (Academic, New York, 1990).
  2. Y. Kato, H. Takuma, and H. Daido, eds., X-Ray Lasers 1998, Proceedings of the 6th International Conference on X-Ray Lasers, Vol. 159 of Institute of Physics Conference Series (Institute of Physics, London, 1999).
  3. G. Jamelot, C. Möller, and A. Klisnick, eds., X-Ray Lasers 2000, Proceedings of the 7th International Conference on X-Ray Lasers, J. Phys. IV 11, Part 2 (2001).
  4. J. Nilsen, B. J. MacGowan, L. B. DaSilva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
    [CrossRef] [PubMed]
  5. B. Rus, A. Carillon, P. Dhez, P. Jaeglé, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
    [CrossRef]
  6. P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
    [CrossRef]
  7. P. J. Warwick, C. L. S. Lewis, M. P. Kalachnikov, P. V. Nickles, M. Schnurer, A. Behjat, A. Demir, G. J. Tallents, D. Neely, E. Wolfrum, J. Zhang, and G. J. Pert, “Observation of high transient gain in the germanium x-ray laser at 19.6 nm,” J. Opt. Soc. Am. B 15, 1808–1814 (1998).
    [CrossRef]
  8. A. Klisnick, P. Zeitoun, D. Ros, A. Carillon, P. Fourcade, S. Hubert, G. Jamelot, C. L. S. Lewis, A. G. Mac Phee, R. M. N. Rourcke, R. Keenan, P. V. Nickles, K. Janulewicz, M. Kalashnikov, J. Warwick, J.-C. Chanteloup, A. Migus, E. Salmon, C. Sauteret, and J. P. Zou, “Transient pumping of a Ni-like Ag x-ray laser with a subpicosecond pump pulse in a traveling-wave irradiation geometry,” J. Opt. Soc. Am. B 17, 1093–1097 (2000).
    [CrossRef]
  9. J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, and V. N. Shlyaptsev, “Gain saturation regime for laser-driven tabletop, transient Ni-like ion x-ray lasers,” Phys. Rev. Lett. 84, 4834–4837 (2000).
    [CrossRef] [PubMed]
  10. P. B. Holden and G. J. Pert, “Long-wavelength, prepulsed driving as a means to greatly increase the gain in low-Z Ne-like XUV lasers,” J. Phys. B 29, 2151–2157 (1996).
    [CrossRef]
  11. B. Rus, K. Rohlena, J. Skála, B. Králiková, K. Jungwirth, J. Ullschmied, K. J. Witte, and H. Baumhacker, “New high-power laser facility PALS—prospects for laser-plasma research,” Laser Part. Beams 17, 179–194 (1999).
    [CrossRef]
  12. K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
    [CrossRef]
  13. The multilayer mirrors used in this work were fabricated by J. Sobota of the Institute of Scientific Instruments, Brno, Czech Republic.
  14. A. Carillon, P. Dhez, B. Gauthé, P. Jaeglé, G. Jamelot, A. Klisnick, and J. C. Lagron, “Experimental device for XUV experiments especially adapted to the directional emission from a plasma column,” in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, R. Benattar, ed., Proc. SPIE 1140, 271–278 (1989).
    [CrossRef]
  15. B. Rus, T. Mocek, A. R. Präg, M. Kozlová, G. Jamelot, A. Carillon, D. Ros, D. Joyeux, and D. Phalippou, “Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification,” Phys. Rev. A 66, 063806 (2002).
    [CrossRef]

2002 (1)

B. Rus, T. Mocek, A. R. Präg, M. Kozlová, G. Jamelot, A. Carillon, D. Ros, D. Joyeux, and D. Phalippou, “Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification,” Phys. Rev. A 66, 063806 (2002).
[CrossRef]

2001 (1)

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

2000 (2)

1999 (1)

B. Rus, K. Rohlena, J. Skála, B. Králiková, K. Jungwirth, J. Ullschmied, K. J. Witte, and H. Baumhacker, “New high-power laser facility PALS—prospects for laser-plasma research,” Laser Part. Beams 17, 179–194 (1999).
[CrossRef]

1998 (1)

1997 (2)

B. Rus, A. Carillon, P. Dhez, P. Jaeglé, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

1996 (1)

P. B. Holden and G. J. Pert, “Long-wavelength, prepulsed driving as a means to greatly increase the gain in low-Z Ne-like XUV lasers,” J. Phys. B 29, 2151–2157 (1996).
[CrossRef]

1993 (1)

J. Nilsen, B. J. MacGowan, L. B. DaSilva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
[CrossRef] [PubMed]

1989 (1)

A. Carillon, P. Dhez, B. Gauthé, P. Jaeglé, G. Jamelot, A. Klisnick, and J. C. Lagron, “Experimental device for XUV experiments especially adapted to the directional emission from a plasma column,” in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, R. Benattar, ed., Proc. SPIE 1140, 271–278 (1989).
[CrossRef]

Baumhacker, H.

B. Rus, K. Rohlena, J. Skála, B. Králiková, K. Jungwirth, J. Ullschmied, K. J. Witte, and H. Baumhacker, “New high-power laser facility PALS—prospects for laser-plasma research,” Laser Part. Beams 17, 179–194 (1999).
[CrossRef]

Behjat, A.

Carillon, A.

B. Rus, T. Mocek, A. R. Präg, M. Kozlová, G. Jamelot, A. Carillon, D. Ros, D. Joyeux, and D. Phalippou, “Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification,” Phys. Rev. A 66, 063806 (2002).
[CrossRef]

A. Klisnick, P. Zeitoun, D. Ros, A. Carillon, P. Fourcade, S. Hubert, G. Jamelot, C. L. S. Lewis, A. G. Mac Phee, R. M. N. Rourcke, R. Keenan, P. V. Nickles, K. Janulewicz, M. Kalashnikov, J. Warwick, J.-C. Chanteloup, A. Migus, E. Salmon, C. Sauteret, and J. P. Zou, “Transient pumping of a Ni-like Ag x-ray laser with a subpicosecond pump pulse in a traveling-wave irradiation geometry,” J. Opt. Soc. Am. B 17, 1093–1097 (2000).
[CrossRef]

B. Rus, A. Carillon, P. Dhez, P. Jaeglé, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

A. Carillon, P. Dhez, B. Gauthé, P. Jaeglé, G. Jamelot, A. Klisnick, and J. C. Lagron, “Experimental device for XUV experiments especially adapted to the directional emission from a plasma column,” in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, R. Benattar, ed., Proc. SPIE 1140, 271–278 (1989).
[CrossRef]

Cejnarová, A.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

Chanteloup, J.-C.

DaSilva, L. B.

J. Nilsen, B. J. MacGowan, L. B. DaSilva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
[CrossRef] [PubMed]

Demir, A.

Dhez, P.

B. Rus, A. Carillon, P. Dhez, P. Jaeglé, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

A. Carillon, P. Dhez, B. Gauthé, P. Jaeglé, G. Jamelot, A. Klisnick, and J. C. Lagron, “Experimental device for XUV experiments especially adapted to the directional emission from a plasma column,” in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, R. Benattar, ed., Proc. SPIE 1140, 271–278 (1989).
[CrossRef]

Dunn, J.

J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, and V. N. Shlyaptsev, “Gain saturation regime for laser-driven tabletop, transient Ni-like ion x-ray lasers,” Phys. Rev. Lett. 84, 4834–4837 (2000).
[CrossRef] [PubMed]

Fourcade, P.

Gauthé, B.

A. Carillon, P. Dhez, B. Gauthé, P. Jaeglé, G. Jamelot, A. Klisnick, and J. C. Lagron, “Experimental device for XUV experiments especially adapted to the directional emission from a plasma column,” in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, R. Benattar, ed., Proc. SPIE 1140, 271–278 (1989).
[CrossRef]

Holden, P. B.

P. B. Holden and G. J. Pert, “Long-wavelength, prepulsed driving as a means to greatly increase the gain in low-Z Ne-like XUV lasers,” J. Phys. B 29, 2151–2157 (1996).
[CrossRef]

Hubert, S.

Hunter, J. R.

J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, and V. N. Shlyaptsev, “Gain saturation regime for laser-driven tabletop, transient Ni-like ion x-ray lasers,” Phys. Rev. Lett. 84, 4834–4837 (2000).
[CrossRef] [PubMed]

Jaeglé, P.

B. Rus, A. Carillon, P. Dhez, P. Jaeglé, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

A. Carillon, P. Dhez, B. Gauthé, P. Jaeglé, G. Jamelot, A. Klisnick, and J. C. Lagron, “Experimental device for XUV experiments especially adapted to the directional emission from a plasma column,” in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, R. Benattar, ed., Proc. SPIE 1140, 271–278 (1989).
[CrossRef]

Jamelot, G.

B. Rus, T. Mocek, A. R. Präg, M. Kozlová, G. Jamelot, A. Carillon, D. Ros, D. Joyeux, and D. Phalippou, “Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification,” Phys. Rev. A 66, 063806 (2002).
[CrossRef]

A. Klisnick, P. Zeitoun, D. Ros, A. Carillon, P. Fourcade, S. Hubert, G. Jamelot, C. L. S. Lewis, A. G. Mac Phee, R. M. N. Rourcke, R. Keenan, P. V. Nickles, K. Janulewicz, M. Kalashnikov, J. Warwick, J.-C. Chanteloup, A. Migus, E. Salmon, C. Sauteret, and J. P. Zou, “Transient pumping of a Ni-like Ag x-ray laser with a subpicosecond pump pulse in a traveling-wave irradiation geometry,” J. Opt. Soc. Am. B 17, 1093–1097 (2000).
[CrossRef]

B. Rus, A. Carillon, P. Dhez, P. Jaeglé, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

A. Carillon, P. Dhez, B. Gauthé, P. Jaeglé, G. Jamelot, A. Klisnick, and J. C. Lagron, “Experimental device for XUV experiments especially adapted to the directional emission from a plasma column,” in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, R. Benattar, ed., Proc. SPIE 1140, 271–278 (1989).
[CrossRef]

Janulewicz, K.

Joyeux, D.

B. Rus, T. Mocek, A. R. Präg, M. Kozlová, G. Jamelot, A. Carillon, D. Ros, D. Joyeux, and D. Phalippou, “Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification,” Phys. Rev. A 66, 063806 (2002).
[CrossRef]

Juha, L.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

Jungwirth, K.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

B. Rus, K. Rohlena, J. Skála, B. Králiková, K. Jungwirth, J. Ullschmied, K. J. Witte, and H. Baumhacker, “New high-power laser facility PALS—prospects for laser-plasma research,” Laser Part. Beams 17, 179–194 (1999).
[CrossRef]

Kalachnikov, M.

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

Kalachnikov, M. P.

Kalashnikov, M.

Keenan, R.

Klisnick, A.

A. Klisnick, P. Zeitoun, D. Ros, A. Carillon, P. Fourcade, S. Hubert, G. Jamelot, C. L. S. Lewis, A. G. Mac Phee, R. M. N. Rourcke, R. Keenan, P. V. Nickles, K. Janulewicz, M. Kalashnikov, J. Warwick, J.-C. Chanteloup, A. Migus, E. Salmon, C. Sauteret, and J. P. Zou, “Transient pumping of a Ni-like Ag x-ray laser with a subpicosecond pump pulse in a traveling-wave irradiation geometry,” J. Opt. Soc. Am. B 17, 1093–1097 (2000).
[CrossRef]

B. Rus, A. Carillon, P. Dhez, P. Jaeglé, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

A. Carillon, P. Dhez, B. Gauthé, P. Jaeglé, G. Jamelot, A. Klisnick, and J. C. Lagron, “Experimental device for XUV experiments especially adapted to the directional emission from a plasma column,” in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, R. Benattar, ed., Proc. SPIE 1140, 271–278 (1989).
[CrossRef]

Kozlová, M.

B. Rus, T. Mocek, A. R. Präg, M. Kozlová, G. Jamelot, A. Carillon, D. Ros, D. Joyeux, and D. Phalippou, “Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification,” Phys. Rev. A 66, 063806 (2002).
[CrossRef]

Králiková, B.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

B. Rus, K. Rohlena, J. Skála, B. Králiková, K. Jungwirth, J. Ullschmied, K. J. Witte, and H. Baumhacker, “New high-power laser facility PALS—prospects for laser-plasma research,” Laser Part. Beams 17, 179–194 (1999).
[CrossRef]

Krása, J.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

Krouský, E.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

Krupicková, P.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

Lagron, J. C.

A. Carillon, P. Dhez, B. Gauthé, P. Jaeglé, G. Jamelot, A. Klisnick, and J. C. Lagron, “Experimental device for XUV experiments especially adapted to the directional emission from a plasma column,” in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, R. Benattar, ed., Proc. SPIE 1140, 271–278 (1989).
[CrossRef]

Láska, L.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

Lewis, C. L. S.

Li, Y.

J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, and V. N. Shlyaptsev, “Gain saturation regime for laser-driven tabletop, transient Ni-like ion x-ray lasers,” Phys. Rev. Lett. 84, 4834–4837 (2000).
[CrossRef] [PubMed]

Mac Phee, A. G.

MacGowan, B. J.

J. Nilsen, B. J. MacGowan, L. B. DaSilva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
[CrossRef] [PubMed]

Mašek, K.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

Migus, A.

Mocek, T.

B. Rus, T. Mocek, A. R. Präg, M. Kozlová, G. Jamelot, A. Carillon, D. Ros, D. Joyeux, and D. Phalippou, “Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification,” Phys. Rev. A 66, 063806 (2002).
[CrossRef]

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

Moreno, J. C.

J. Nilsen, B. J. MacGowan, L. B. DaSilva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
[CrossRef] [PubMed]

Nantel, M.

B. Rus, A. Carillon, P. Dhez, P. Jaeglé, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

Neely, D.

Nickles, P. V.

Nilsen, J.

J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, and V. N. Shlyaptsev, “Gain saturation regime for laser-driven tabletop, transient Ni-like ion x-ray lasers,” Phys. Rev. Lett. 84, 4834–4837 (2000).
[CrossRef] [PubMed]

J. Nilsen, B. J. MacGowan, L. B. DaSilva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
[CrossRef] [PubMed]

Osterheld, A. L.

J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, and V. N. Shlyaptsev, “Gain saturation regime for laser-driven tabletop, transient Ni-like ion x-ray lasers,” Phys. Rev. Lett. 84, 4834–4837 (2000).
[CrossRef] [PubMed]

Pert, G. J.

Pfeifer, M.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

Phalippou, D.

B. Rus, T. Mocek, A. R. Präg, M. Kozlová, G. Jamelot, A. Carillon, D. Ros, D. Joyeux, and D. Phalippou, “Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification,” Phys. Rev. A 66, 063806 (2002).
[CrossRef]

Präg, A.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

Präg, A. R.

B. Rus, T. Mocek, A. R. Präg, M. Kozlová, G. Jamelot, A. Carillon, D. Ros, D. Joyeux, and D. Phalippou, “Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification,” Phys. Rev. A 66, 063806 (2002).
[CrossRef]

Renner, O.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

Rohlena, K.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

B. Rus, K. Rohlena, J. Skála, B. Králiková, K. Jungwirth, J. Ullschmied, K. J. Witte, and H. Baumhacker, “New high-power laser facility PALS—prospects for laser-plasma research,” Laser Part. Beams 17, 179–194 (1999).
[CrossRef]

Ros, D.

Rourcke, R. M. N.

Rus, B.

B. Rus, T. Mocek, A. R. Präg, M. Kozlová, G. Jamelot, A. Carillon, D. Ros, D. Joyeux, and D. Phalippou, “Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification,” Phys. Rev. A 66, 063806 (2002).
[CrossRef]

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

B. Rus, K. Rohlena, J. Skála, B. Králiková, K. Jungwirth, J. Ullschmied, K. J. Witte, and H. Baumhacker, “New high-power laser facility PALS—prospects for laser-plasma research,” Laser Part. Beams 17, 179–194 (1999).
[CrossRef]

B. Rus, A. Carillon, P. Dhez, P. Jaeglé, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

Salmon, E.

Sandner, W.

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

Sauteret, C.

Schnurer, M.

Schnürer, M.

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

Shlyaptsev, V. N.

J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, and V. N. Shlyaptsev, “Gain saturation regime for laser-driven tabletop, transient Ni-like ion x-ray lasers,” Phys. Rev. Lett. 84, 4834–4837 (2000).
[CrossRef] [PubMed]

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

Skála, J.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

B. Rus, K. Rohlena, J. Skála, B. Králiková, K. Jungwirth, J. Ullschmied, K. J. Witte, and H. Baumhacker, “New high-power laser facility PALS—prospects for laser-plasma research,” Laser Part. Beams 17, 179–194 (1999).
[CrossRef]

Straka, P.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

Tallents, G. J.

Ullschmied, J.

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

B. Rus, K. Rohlena, J. Skála, B. Králiková, K. Jungwirth, J. Ullschmied, K. J. Witte, and H. Baumhacker, “New high-power laser facility PALS—prospects for laser-plasma research,” Laser Part. Beams 17, 179–194 (1999).
[CrossRef]

Warwick, J.

Warwick, P. J.

Will, I.

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

Witte, K. J.

B. Rus, K. Rohlena, J. Skála, B. Králiková, K. Jungwirth, J. Ullschmied, K. J. Witte, and H. Baumhacker, “New high-power laser facility PALS—prospects for laser-plasma research,” Laser Part. Beams 17, 179–194 (1999).
[CrossRef]

Wolfrum, E.

Zeitoun, P.

Zhang, J.

Zou, J. P.

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

P. B. Holden and G. J. Pert, “Long-wavelength, prepulsed driving as a means to greatly increase the gain in low-Z Ne-like XUV lasers,” J. Phys. B 29, 2151–2157 (1996).
[CrossRef]

Laser Part. Beams (1)

B. Rus, K. Rohlena, J. Skála, B. Králiková, K. Jungwirth, J. Ullschmied, K. J. Witte, and H. Baumhacker, “New high-power laser facility PALS—prospects for laser-plasma research,” Laser Part. Beams 17, 179–194 (1999).
[CrossRef]

Phys. Plasmas (1)

K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, and J. Ullschmied, “The Prague Asterix Laser System,” Phys. Plasmas 8, 2495–2501 (2001).
[CrossRef]

Phys. Rev. A (3)

J. Nilsen, B. J. MacGowan, L. B. DaSilva, and J. C. Moreno, “Prepulse technique for producing low-Z Ne-like x-ray lasers,” Phys. Rev. A 48, 4682–4685 (1993).
[CrossRef] [PubMed]

B. Rus, A. Carillon, P. Dhez, P. Jaeglé, G. Jamelot, A. Klisnick, M. Nantel, and P. Zeitoun, “Efficient, high-brightness soft-x-ray laser at 21.2 nm,” Phys. Rev. A 55, 3858–3873 (1997).
[CrossRef]

B. Rus, T. Mocek, A. R. Präg, M. Kozlová, G. Jamelot, A. Carillon, D. Ros, D. Joyeux, and D. Phalippou, “Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification,” Phys. Rev. A 66, 063806 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schnürer, I. Will, and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[CrossRef]

J. Dunn, Y. Li, A. L. Osterheld, J. Nilsen, J. R. Hunter, and V. N. Shlyaptsev, “Gain saturation regime for laser-driven tabletop, transient Ni-like ion x-ray lasers,” Phys. Rev. Lett. 84, 4834–4837 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. Carillon, P. Dhez, B. Gauthé, P. Jaeglé, G. Jamelot, A. Klisnick, and J. C. Lagron, “Experimental device for XUV experiments especially adapted to the directional emission from a plasma column,” in X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, R. Benattar, ed., Proc. SPIE 1140, 271–278 (1989).
[CrossRef]

Other (4)

R. C. Elton, X-Ray Lasers (Academic, New York, 1990).

Y. Kato, H. Takuma, and H. Daido, eds., X-Ray Lasers 1998, Proceedings of the 6th International Conference on X-Ray Lasers, Vol. 159 of Institute of Physics Conference Series (Institute of Physics, London, 1999).

G. Jamelot, C. Möller, and A. Klisnick, eds., X-Ray Lasers 2000, Proceedings of the 7th International Conference on X-Ray Lasers, J. Phys. IV 11, Part 2 (2001).

The multilayer mirrors used in this work were fabricated by J. Sobota of the Institute of Scientific Instruments, Brno, Czech Republic.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the setup for the x-ray laser experiment. Inset, detail of the half-cavity mirror geometry. Note that the main pump pulse is focused into a much wider preplasma column (see text).

Fig. 2
Fig. 2

Far-field pattern (footprint) of the single-pass Ne-like Zn XRL beam, showing its horizontal and vertical lineouts. The target surface is on the left side of the footprint.

Fig. 3
Fig. 3

The 21.2 nm XRL output as a function of the level of prepulse.

Fig. 4
Fig. 4

Far-field images of the single-pass XRL obtained with the XUV spectrometer for prepulse energies of (a) 1.6 and (b) 6.9 J. In (c) the horizontal and vertical divergences are shown as functions of the prepulse energy. The horizontal wires (120-μm diameter) belong to cross hairs positioned in front of the spectrometer’s slit and are employed as a spatial–dimensional fiducial field.

Fig. 5
Fig. 5

Recorded footprints of the double-pass XRL beam for prepulse energies of (a) 0.7, (b) 1.6, and (c) 6.1 J.

Fig. 6
Fig. 6

(a) Horizontal and (b) vertical divergence of the double-pass XRL as a function of prepulse energy.

Fig. 7
Fig. 7

Dependence of (a) the horizontal and (b) the vertical divergence of the double-pass XRL on the beam reinjection angle.

Metrics