Abstract

We have numerically and experimentally verified that the sequence of optical elements in a femtosecond Ti:sapphire laser affects the laser’s characteristics. Even with the same net dispersion in a cavity, the output spectrum showed a significant change in width and shape when the sequence of dispersive elements was changed in a Kerr-lens mode-locked Ti:sapphire laser with fused-silica prisms for dispersion compensation. It was also shown that the output coupler’s position can affect the dynamics of pulse formation by the combined action of output coupling and self-phase modulation. We explain such phenomena based on pulse formation in a laser cavity with discrete distribution of dispersion and self-phase modulation.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
    [CrossRef] [PubMed]
  2. M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993).
    [CrossRef] [PubMed]
  3. A. Stingl, C. Spielmann, and F. Krausz, “Generation of 11-fs pulses from a Ti:sapphire laser without the use of prisms,” Opt. Lett. 19, 204–206 (1994).
    [CrossRef] [PubMed]
  4. L. Xu, C. Spielmann, F. Krausz, and R. Szipocs, “Ultrabroadband ring oscillator for sub-10-fs pulse generation,” Opt. Lett. 21, 1259–1261 (1996).
    [CrossRef] [PubMed]
  5. I. D. Jung, F. X. Kartner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett. 22, 1009–1011 (1997).
    [CrossRef] [PubMed]
  6. U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
    [CrossRef]
  7. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999).
    [CrossRef]
  8. Y. H. Cha, K. T. Lee, H. M. Park, J. M. Han, and Y. J. Rhee, “Pulse broadening by discrete distribution of self-phase modulation and dispersion in a femtosecond Ti:sapphire laser,” J. Korean Phys. Soc. 40, 250–255 (2002).
  9. Y. H. Cha, J. M. Han, and Y. J. Rhee, “Effect of discrete distribution of dispersion and self-phase modulation in a ~10-fs Ti:sapphire laser,” Appl. Phys. B Suppl. 74, s283–s289 (2002).
    [CrossRef]
  10. J. Zhou, G. Taft, C. P. Huang, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, “Pulse evolution in a broad-bandwidth Ti:sapphire laser,” Opt. Lett. 19, 1149–1151 (1994).
    [CrossRef] [PubMed]
  11. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  12. Y. Chen, F. X. Kartner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, “Dispersion-managed mode locking,” J. Opt. Soc. Am. B 16, 1999–2004 (1999).
    [CrossRef]
  13. F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992).
    [CrossRef]

2002 (2)

Y. H. Cha, K. T. Lee, H. M. Park, J. M. Han, and Y. J. Rhee, “Pulse broadening by discrete distribution of self-phase modulation and dispersion in a femtosecond Ti:sapphire laser,” J. Korean Phys. Soc. 40, 250–255 (2002).

Y. H. Cha, J. M. Han, and Y. J. Rhee, “Effect of discrete distribution of dispersion and self-phase modulation in a ~10-fs Ti:sapphire laser,” Appl. Phys. B Suppl. 74, s283–s289 (2002).
[CrossRef]

1999 (3)

1997 (1)

1996 (1)

1994 (2)

1993 (1)

1992 (1)

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992).
[CrossRef]

1991 (1)

Angelow, G.

Asaki, M. T.

Brabec, T.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992).
[CrossRef]

Cha, Y. H.

Y. H. Cha, J. M. Han, and Y. J. Rhee, “Effect of discrete distribution of dispersion and self-phase modulation in a ~10-fs Ti:sapphire laser,” Appl. Phys. B Suppl. 74, s283–s289 (2002).
[CrossRef]

Y. H. Cha, K. T. Lee, H. M. Park, J. M. Han, and Y. J. Rhee, “Pulse broadening by discrete distribution of self-phase modulation and dispersion in a femtosecond Ti:sapphire laser,” J. Korean Phys. Soc. 40, 250–255 (2002).

Chen, Y.

Cho, S. H.

Christov, I. P.

Curley, P. F.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992).
[CrossRef]

Fermann, M. E.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992).
[CrossRef]

Fujimoto, J. G.

Gallmann, L.

Garvey, D.

Han, J. M.

Y. H. Cha, J. M. Han, and Y. J. Rhee, “Effect of discrete distribution of dispersion and self-phase modulation in a ~10-fs Ti:sapphire laser,” Appl. Phys. B Suppl. 74, s283–s289 (2002).
[CrossRef]

Y. H. Cha, K. T. Lee, H. M. Park, J. M. Han, and Y. J. Rhee, “Pulse broadening by discrete distribution of self-phase modulation and dispersion in a femtosecond Ti:sapphire laser,” J. Korean Phys. Soc. 40, 250–255 (2002).

Haus, H. A.

Hofer, M.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992).
[CrossRef]

Huang, C. P.

Ippen, E. P.

Jung, I. D.

Kapteyn, H. C.

Kartner, F. X.

Kean, P. N.

Keller, U.

Krausz, F.

Lee, K. T.

Y. H. Cha, K. T. Lee, H. M. Park, J. M. Han, and Y. J. Rhee, “Pulse broadening by discrete distribution of self-phase modulation and dispersion in a femtosecond Ti:sapphire laser,” J. Korean Phys. Soc. 40, 250–255 (2002).

Matuschek, N.

Morgner, U.

Morier-Genoud, F.

Murnane, M. M.

Ober, M. H.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992).
[CrossRef]

Park, H. M.

Y. H. Cha, K. T. Lee, H. M. Park, J. M. Han, and Y. J. Rhee, “Pulse broadening by discrete distribution of self-phase modulation and dispersion in a femtosecond Ti:sapphire laser,” J. Korean Phys. Soc. 40, 250–255 (2002).

Rhee, Y. J.

Y. H. Cha, K. T. Lee, H. M. Park, J. M. Han, and Y. J. Rhee, “Pulse broadening by discrete distribution of self-phase modulation and dispersion in a femtosecond Ti:sapphire laser,” J. Korean Phys. Soc. 40, 250–255 (2002).

Y. H. Cha, J. M. Han, and Y. J. Rhee, “Effect of discrete distribution of dispersion and self-phase modulation in a ~10-fs Ti:sapphire laser,” Appl. Phys. B Suppl. 74, s283–s289 (2002).
[CrossRef]

Scheuer, V.

Schmidt, A. J.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992).
[CrossRef]

Sibbett, W.

Spence, D. E.

Spielmann, C.

Steinmeyer, G.

Stingl, A.

Sutter, D. H.

Szipocs, R.

Taft, G.

Tilsch, M.

Tschudi, T.

Wintner, E.

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992).
[CrossRef]

Xu, L.

Zhang, G.

Zhou, J.

Appl. Phys. B Suppl. (1)

Y. H. Cha, J. M. Han, and Y. J. Rhee, “Effect of discrete distribution of dispersion and self-phase modulation in a ~10-fs Ti:sapphire laser,” Appl. Phys. B Suppl. 74, s283–s289 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid-state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. H. Cha, K. T. Lee, H. M. Park, J. M. Han, and Y. J. Rhee, “Pulse broadening by discrete distribution of self-phase modulation and dispersion in a femtosecond Ti:sapphire laser,” J. Korean Phys. Soc. 40, 250–255 (2002).

J. Opt. Soc. Am. B (1)

Opt. Lett. (8)

I. D. Jung, F. X. Kartner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett. 22, 1009–1011 (1997).
[CrossRef] [PubMed]

U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999).
[CrossRef]

L. Xu, C. Spielmann, F. Krausz, and R. Szipocs, “Ultrabroadband ring oscillator for sub-10-fs pulse generation,” Opt. Lett. 21, 1259–1261 (1996).
[CrossRef] [PubMed]

D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
[CrossRef] [PubMed]

M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993).
[CrossRef] [PubMed]

A. Stingl, C. Spielmann, and F. Krausz, “Generation of 11-fs pulses from a Ti:sapphire laser without the use of prisms,” Opt. Lett. 19, 204–206 (1994).
[CrossRef] [PubMed]

J. Zhou, G. Taft, C. P. Huang, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, “Pulse evolution in a broad-bandwidth Ti:sapphire laser,” Opt. Lett. 19, 1149–1151 (1994).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a Kerr-lens mode-locked Ti:sapphire laser. C, Ti:sapphire crystal; L, pump-beam focusing lens; OC, output coupler; M, end mirror; CM1, CM2, curved mirrors.

Fig. 2
Fig. 2

(a) Dispersion curve of mirrors (dashed curve) and net dispersion inside the Ti:sapphire laser with (solid curve) and without (dashed–dotted curve) mirror dispersion taken into account. (b) Dashed and dashed–dotted curves, calculated output spectrum with and without mirror dispersion; solid curve, experimental output spectrum of the Ti:sapphire laser.

Fig. 3
Fig. 3

Distribution status of SPM and dispersion with respect to the fused-silica window’s position. The fused-silica window is positioned (a) on the prism side or (b) on the crystal side.

Fig. 4
Fig. 4

(a) Calculated output spectra with respect to window position. Dashed curve, window on the prism side; dashed–dotted and solid curves, window on the crystal side. (b) Experimental output spectra with respect to the window position. Dashed and solid curves, window on the prism and the crystal sides, respectively.

Fig. 5
Fig. 5

(a) Calculated and (b) experimental intracavity spectra at the crystal side inside the laser with respect to the output coupler’s position. Dashed and solid curves, output coupler on the crystal and the prism sides, respectively.

Metrics