Abstract

We have demonstrated that self-written channel waveguides can be formed reproducibly in K+-ion-exchanged Nd-doped Bk7 glass by making use of a photosensitive index change of 6×10-5 induced by illumination at 457 nm. The guidance characteristics of these waveguides have been investigated from 457 to 1550 nm. Detailed experiments have been carried out by exploration of the self-writing process, and these are also used to investigate the photosensitivity of the material. We find that an intensity threshold exists below which photosensitivity does not occur. Numerical simulations of both the evolution and the guidance properties of the self-written waveguides provide excellent agreement with observations.

© 2003 Optical Society of America

Full Article  |  PDF Article

Corrections

Ami M. Ljungström and Tanya M. Monro, "Exploration of self-writing and photosensitivity in ion-exchanged waveguides: erratum," J. Opt. Soc. Am. B 20, 2576-2576 (2003)
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-20-12-2576

References

  • View by:
  • |
  • |
  • |

  1. T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1999).
    [CrossRef]
  2. T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
    [CrossRef]
  3. A. M. Ljungström and T. M. Monro, “Light-induced self-writing effects in bulk chalcogenide glass,” J. Lightwave Technol. 20, 78–85 (2001).
    [CrossRef]
  4. T. M. Monro, C. M. de Sterke, and L. Poladian, “Analysis of self-written waveguide experiments,” J. Opt. Soc. Am. B 16, 1680–1685 (1999).
    [CrossRef]
  5. S. Shoji, S. Kawata, A. A. Sukhorukov, and Y. S. Kivshar, “Self-written waveguides in photopolymerizable resins,” Opt. Lett. 27, 185–187 (2002).
    [CrossRef]
  6. S. S. Sarkisov, V. Grimalsky, M. J. Curley, G. Adamovsky, and C. Martin, “Connection of two-dimensional optic fiber arrays using optical beam self-trapping in photocurable media,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienport, and G. E. Jabbour, eds., Proc. SPIE 4455, 107–118 (2001).
    [CrossRef]
  7. N. Hirose and O. Ibaragi, “Optical solder effects of self-written waveguides in optical circuit devices coupling,” in Electronic Components Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002).
  8. W. S. Brocklesby, S. J. Field, D. C. Hanna, A. C. Large, J. R. Lincoln, D. P. Shepherd, and A. C. Tropper, “Optically written waveguides in ion implanted Bi4Ge3O12,” Opt. Mater. 1, 177–184 (1992).
    [CrossRef]
  9. C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B 15, 2946–2950 (1998).
    [CrossRef]
  10. N. Ho⁁, J. M. Laniel, R. Vallée, and A. Villeneuve, “Creation of microchannels in a photosensitive As2S3 slab waveguide,” J. Opt. Soc. Am. B 19, 875–880 (2002).
    [CrossRef]
  11. A. M. Ljungström and T. M. Monro, “Observation of light-induced refractive index reduction in bulk glass and application to the formation of complex waveguides,” Opt. Express 10, 230–235 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  12. J. E. Roman and K. A. Winick, “Photowritten gratings in ion-exchanged glass waveguides,” Opt. Lett. 18, 808–810 (1993).
    [CrossRef] [PubMed]
  13. S. J. Hettrick, J. I. Mackenzie, R. D. Harris, J. S. Wilkinson, D. P. Shepherd, and A. C. Tropper, “Ion-exchanged tapered-waveguide laser in neodymium-doped BK7 glass,” Opt. Lett. 25, 1433–1435 (2000).
    [CrossRef]
  14. S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. LT-4, 870–875 (1986).
    [CrossRef]
  15. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
    [CrossRef]

2002 (3)

2001 (2)

S. S. Sarkisov, V. Grimalsky, M. J. Curley, G. Adamovsky, and C. Martin, “Connection of two-dimensional optic fiber arrays using optical beam self-trapping in photocurable media,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienport, and G. E. Jabbour, eds., Proc. SPIE 4455, 107–118 (2001).
[CrossRef]

A. M. Ljungström and T. M. Monro, “Light-induced self-writing effects in bulk chalcogenide glass,” J. Lightwave Technol. 20, 78–85 (2001).
[CrossRef]

2000 (1)

1999 (2)

T. M. Monro, C. M. de Sterke, and L. Poladian, “Analysis of self-written waveguide experiments,” J. Opt. Soc. Am. B 16, 1680–1685 (1999).
[CrossRef]

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1999).
[CrossRef]

1998 (1)

1996 (1)

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

1993 (1)

1992 (1)

W. S. Brocklesby, S. J. Field, D. C. Hanna, A. C. Large, J. R. Lincoln, D. P. Shepherd, and A. C. Tropper, “Optically written waveguides in ion implanted Bi4Ge3O12,” Opt. Mater. 1, 177–184 (1992).
[CrossRef]

1986 (1)

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. LT-4, 870–875 (1986).
[CrossRef]

Adamovsky, G.

S. S. Sarkisov, V. Grimalsky, M. J. Curley, G. Adamovsky, and C. Martin, “Connection of two-dimensional optic fiber arrays using optical beam self-trapping in photocurable media,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienport, and G. E. Jabbour, eds., Proc. SPIE 4455, 107–118 (2001).
[CrossRef]

Bazylenko, M.

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1999).
[CrossRef]

Brocklesby, W. S.

W. S. Brocklesby, S. J. Field, D. C. Hanna, A. C. Large, J. R. Lincoln, D. P. Shepherd, and A. C. Tropper, “Optically written waveguides in ion implanted Bi4Ge3O12,” Opt. Mater. 1, 177–184 (1992).
[CrossRef]

Curley, M. J.

S. S. Sarkisov, V. Grimalsky, M. J. Curley, G. Adamovsky, and C. Martin, “Connection of two-dimensional optic fiber arrays using optical beam self-trapping in photocurable media,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienport, and G. E. Jabbour, eds., Proc. SPIE 4455, 107–118 (2001).
[CrossRef]

de Sterke, C. M.

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Fermann, M. E.

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. LT-4, 870–875 (1986).
[CrossRef]

Field, S. J.

W. S. Brocklesby, S. J. Field, D. C. Hanna, A. C. Large, J. R. Lincoln, D. P. Shepherd, and A. C. Tropper, “Optically written waveguides in ion implanted Bi4Ge3O12,” Opt. Mater. 1, 177–184 (1992).
[CrossRef]

Grimalsky, V.

S. S. Sarkisov, V. Grimalsky, M. J. Curley, G. Adamovsky, and C. Martin, “Connection of two-dimensional optic fiber arrays using optical beam self-trapping in photocurable media,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienport, and G. E. Jabbour, eds., Proc. SPIE 4455, 107–118 (2001).
[CrossRef]

Hanna, D. C.

W. S. Brocklesby, S. J. Field, D. C. Hanna, A. C. Large, J. R. Lincoln, D. P. Shepherd, and A. C. Tropper, “Optically written waveguides in ion implanted Bi4Ge3O12,” Opt. Mater. 1, 177–184 (1992).
[CrossRef]

Harris, R. D.

Hettrick, S. J.

Ho?, N.

Kawata, S.

Kivshar, Y. S.

Laming, R. I.

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. LT-4, 870–875 (1986).
[CrossRef]

Laniel, J. M.

Large, A. C.

W. S. Brocklesby, S. J. Field, D. C. Hanna, A. C. Large, J. R. Lincoln, D. P. Shepherd, and A. C. Tropper, “Optically written waveguides in ion implanted Bi4Ge3O12,” Opt. Mater. 1, 177–184 (1992).
[CrossRef]

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Lincoln, J. R.

W. S. Brocklesby, S. J. Field, D. C. Hanna, A. C. Large, J. R. Lincoln, D. P. Shepherd, and A. C. Tropper, “Optically written waveguides in ion implanted Bi4Ge3O12,” Opt. Mater. 1, 177–184 (1992).
[CrossRef]

Ljungström, A. M.

Mackenzie, J. I.

Martin, C.

S. S. Sarkisov, V. Grimalsky, M. J. Curley, G. Adamovsky, and C. Martin, “Connection of two-dimensional optic fiber arrays using optical beam self-trapping in photocurable media,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienport, and G. E. Jabbour, eds., Proc. SPIE 4455, 107–118 (2001).
[CrossRef]

Mears, R. J.

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. LT-4, 870–875 (1986).
[CrossRef]

Meneghini, C.

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Monro, T. M.

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Moss, D.

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1999).
[CrossRef]

Payne, D. N.

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. LT-4, 870–875 (1986).
[CrossRef]

Poladian, L.

Poole, S. B.

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. LT-4, 870–875 (1986).
[CrossRef]

Roman, J. E.

Sarkisov, S. S.

S. S. Sarkisov, V. Grimalsky, M. J. Curley, G. Adamovsky, and C. Martin, “Connection of two-dimensional optic fiber arrays using optical beam self-trapping in photocurable media,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienport, and G. E. Jabbour, eds., Proc. SPIE 4455, 107–118 (2001).
[CrossRef]

Shepherd, D. P.

S. J. Hettrick, J. I. Mackenzie, R. D. Harris, J. S. Wilkinson, D. P. Shepherd, and A. C. Tropper, “Ion-exchanged tapered-waveguide laser in neodymium-doped BK7 glass,” Opt. Lett. 25, 1433–1435 (2000).
[CrossRef]

W. S. Brocklesby, S. J. Field, D. C. Hanna, A. C. Large, J. R. Lincoln, D. P. Shepherd, and A. C. Tropper, “Optically written waveguides in ion implanted Bi4Ge3O12,” Opt. Mater. 1, 177–184 (1992).
[CrossRef]

Shoji, S.

Sukhorukov, A. A.

Tropper, A. C.

S. J. Hettrick, J. I. Mackenzie, R. D. Harris, J. S. Wilkinson, D. P. Shepherd, and A. C. Tropper, “Ion-exchanged tapered-waveguide laser in neodymium-doped BK7 glass,” Opt. Lett. 25, 1433–1435 (2000).
[CrossRef]

W. S. Brocklesby, S. J. Field, D. C. Hanna, A. C. Large, J. R. Lincoln, D. P. Shepherd, and A. C. Tropper, “Optically written waveguides in ion implanted Bi4Ge3O12,” Opt. Mater. 1, 177–184 (1992).
[CrossRef]

Vallée, R.

Villeneuve, A.

Wilkinson, J. S.

Winick, K. A.

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

J. Lightwave Technol. (2)

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. LT-4, 870–875 (1986).
[CrossRef]

A. M. Ljungström and T. M. Monro, “Light-induced self-writing effects in bulk chalcogenide glass,” J. Lightwave Technol. 20, 78–85 (2001).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (1)

W. S. Brocklesby, S. J. Field, D. C. Hanna, A. C. Large, J. R. Lincoln, D. P. Shepherd, and A. C. Tropper, “Optically written waveguides in ion implanted Bi4Ge3O12,” Opt. Mater. 1, 177–184 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

T. M. Monro, D. Moss, M. Bazylenko, C. M. de Sterke, and L. Poladian, “Observation of self-trapping of light in a self-written channel in photosensitive glass,” Phys. Rev. Lett. 80, 4072–4075 (1999).
[CrossRef]

Proc. SPIE (1)

S. S. Sarkisov, V. Grimalsky, M. J. Curley, G. Adamovsky, and C. Martin, “Connection of two-dimensional optic fiber arrays using optical beam self-trapping in photocurable media,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienport, and G. E. Jabbour, eds., Proc. SPIE 4455, 107–118 (2001).
[CrossRef]

Other (1)

N. Hirose and O. Ibaragi, “Optical solder effects of self-written waveguides in optical circuit devices coupling,” in Electronic Components Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Left, light propagates in the 2.5-μm-deep ion-exchanged layer. Right, output beam profiles during waveguide evolution (writing wavelength, 457 nm; power, 38 mW; FWHM, 7 μm; sample length, 6.5 mm).

Fig. 2
Fig. 2

Change in FWHM and peak intensity at the output face for the experiment shown in Fig. 1 (black) and corresponding simulations (gray). Solid curves ignore loss, dashed curves include LPS, and dotted curves include both LPS and LC (see text). The inset shows the change in power during the experiment.

Fig. 3
Fig. 3

(a) Final output beam shapes in the 6.5-mm sample: solid curve, experiment and dotted curve, simulation by use of fitted material parameters. (b) and (c) Simulated index distribution during evolution (the contour levels are separated by 2 dB and the transverse distance has been scaled; only the central 0.3-mm region is shown) and cross sections of the index along the propagation axis.

Fig. 4
Fig. 4

Experimental and numerical results (by use of fitted material parameters) from the longer (14-mm) sample during the first 175 h. Here power is 20 mW.

Fig. 5
Fig. 5

(a) Initial experiment together with reexposures. The inset shows the relationship between output FWHM and Δn. (b) Corresponding decay in index after the initial exposure and a numerical fit. The inset shows the index decay prediction over a time scale of years.

Fig. 6
Fig. 6

Factor by which the FWHM is reduced during the first hour of exposure at different input powers. Stars, experiment with a 7-μm beam; dots, 12.5-μm beam. Dotted curves, corresponding simulation by use of the original numerical model; solid curves, the model including an intensity threshold. Note that all the simulations assume that p=2, Δns=5.2×10-5, and no loss.

Fig. 7
Fig. 7

Reduced diffraction in a SWW in comparison with a uniform material for a range of beam sizes.

Fig. 8
Fig. 8

Dashed curves, beams that emerge from the waveguide; solid curves, propagation in a uniform material. (a) Front launch at 457 nm by use of an input FWHM of 3 μm, (b) front launch at 633 nm by use of a FWHM of 3.6 μm, (c) back launch into the waveguide at 457 nm, (d) back launch at 633 nm.

Fig. 9
Fig. 9

Left, index distribution for (a) FWHM=7μm, Δns=5.2×10-5 as in our experiment; (b) FWHM of 9 μm, Δns=5.2×10-5; (c) FWHM of 7 μm, Δns=9×10-5. Right, waveguide shape as a function of FWHM and Δns: above the curve, channels are formed and below, tapers are obtained. The inset shows the relationship between the FWHM and the resulting channel width.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δn(t, z, x)T=Ip(t, z, x)1-Δn(t, z, x)Δns,
Δnλ,t(λ, t, z, x)=D(t)W(λ)Δn(λω, t0, z, x)
ΔnT=I2+αI tanhβI-Ithres1-ΔnΔns,

Metrics