Abstract

We report a quasi-phase-matched optical parametric oscillator that incorporates a chirped nonlinear crystal and uses prechirped pulses matched to the crystal chirp to improve the conversion efficiency and reduce the operational threshold. A 20-mm crystal of aperiodically poled KTiOPO4 is phase matched to stretched Ti:sapphire pump pulses. The Ti:sapphire laser produces 104-MHz output pulses at 850 nm that are stretched from 190 to 900 fs with an average output power of 750 mW. The system has demonstrated a pump depletion of more than 80%, a signal slope efficiency of 35%, and a threshold of 14.4 mW. The cavity showed tuning from 1194 to 1455 nm over a length range of 130 μm. The approach described demonstrates the potential of using chirped-pulse–chirped-crystal quasi-phase matching in long nonlinear crystals as a method to reduce ultrafast optical parametric oscillator thresholds.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989).
    [CrossRef]
  2. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
    [CrossRef] [PubMed]
  3. W. S. Pelouch, P. E. Powers, and C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, 1070–1072 (1992).
    [CrossRef] [PubMed]
  4. P. E. Powers, C. L. Tang, and L. K. Cheng, “High-repetition-rate femtosecond optical parametric oscillator based on RbTiOAsO4,” Opt. Lett. 19, 1439–1441 (1994).
    [CrossRef] [PubMed]
  5. P. E. Powers, C. L. Tang, and L. K. Cheng, “High-repetition-rate femtosecond optical parametric oscillator based on CsTiOAsO4,” Opt. Lett. 19, 37–39 (1994).
    [CrossRef] [PubMed]
  6. P. E. Powers, S. Ramakrishna, C. L. Tang, and L. K. Cheng, “Optical parametric oscillation with KTiOAsO4,” Opt. Lett. 18, 1171–1173 (1993).
    [CrossRef]
  7. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  8. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
    [CrossRef]
  9. D. Artigas and D. T. Reid, “Efficient femtosecond optical parametric oscillators based on aperiodically poled nonlinear crystals,” Opt. Lett. 27, 851–853 (2002).
    [CrossRef]
  10. M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
    [CrossRef] [PubMed]
  11. T. Beddard, M. Ebrahimzadeh, D. T. Reid, and W. Sibbett, “Five-optical-cycle pulse generation in the mid infrared from an optical parametric oscillator based on aperiodically poled lithium niobate,” Opt. Lett. 25, 1052–1054 (2000).
    [CrossRef]
  12. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723–2723 (1999).
    [CrossRef]
  13. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
    [CrossRef] [PubMed]
  14. B. Proctor and F. Wise, “Quartz prism sequence for reduction of cubic phase in a mode-locked TiAl2O3 laser,” Opt. Lett. 17, 1295–1297 (1992).
    [CrossRef] [PubMed]
  15. M. V. O’Connor, M. A. Watson, D. P. Shepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, and D. J. Richardson, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27, 1052–1054 (2002).
    [CrossRef]
  16. S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618–620 (1997).
    [CrossRef] [PubMed]
  17. L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
    [CrossRef]
  18. D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurel, “Broadly tunable infrared femtosecond optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 22, 1397–1399 (1997).
    [CrossRef]

2002

2000

1999

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723–2723 (1999).
[CrossRef]

1998

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

1997

1994

1993

1992

1991

1989

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989).
[CrossRef]

1984

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Arbore, M. A.

M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
[CrossRef] [PubMed]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

Arie, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723–2723 (1999).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Artigas, D.

Beddard, T.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Broderick, N. G. R.

Burr, K. C.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

Butterworth, S. D.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618–620 (1997).
[CrossRef] [PubMed]

Cheng, L. K.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Ebrahimzadeh, M.

Edelstein, D. C.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989).
[CrossRef]

Fejer, M. M.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
[CrossRef] [PubMed]

Fork, R. L.

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723–2723 (1999).
[CrossRef]

Gordon, J. P.

Hanna, D. C.

Jundt, D. H.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

Karlsson, H.

Kean, P. N.

Laurel, F.

Lefort, L.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

Malinowski, A.

Marco, O.

Martinez, O. E.

Nilsson, J.

O’Connor, M. V.

Pelouch, W. S.

Penman, Z.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Powers, P. E.

Price, J. H. V.

Proctor, B.

Puech, K.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

Ramakrishna, S.

Reid, D. T.

Richardson, D. J.

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723–2723 (1999).
[CrossRef]

Ross, G. W.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

Shepherd, D. P.

Sibbett, W.

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723–2723 (1999).
[CrossRef]

Smith, P. G. R.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618–620 (1997).
[CrossRef] [PubMed]

Spence, D. E.

Tang, C. L.

Wachman, E. S.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989).
[CrossRef]

Watson, M. A.

Wise, F.

Appl. Phys. Lett.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70, 3341–3343 (1997).
[CrossRef]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable mid infrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 2723–2723 (1999).
[CrossRef]

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989).
[CrossRef]

Opt. Commun.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

Opt. Lett.

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
[CrossRef] [PubMed]

D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
[CrossRef] [PubMed]

W. S. Pelouch, P. E. Powers, and C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator,” Opt. Lett. 17, 1070–1072 (1992).
[CrossRef] [PubMed]

B. Proctor and F. Wise, “Quartz prism sequence for reduction of cubic phase in a mode-locked TiAl2O3 laser,” Opt. Lett. 17, 1295–1297 (1992).
[CrossRef] [PubMed]

P. E. Powers, S. Ramakrishna, C. L. Tang, and L. K. Cheng, “Optical parametric oscillation with KTiOAsO4,” Opt. Lett. 18, 1171–1173 (1993).
[CrossRef]

P. E. Powers, C. L. Tang, and L. K. Cheng, “High-repetition-rate femtosecond optical parametric oscillator based on CsTiOAsO4,” Opt. Lett. 19, 37–39 (1994).
[CrossRef] [PubMed]

P. E. Powers, C. L. Tang, and L. K. Cheng, “High-repetition-rate femtosecond optical parametric oscillator based on RbTiOAsO4,” Opt. Lett. 19, 1439–1441 (1994).
[CrossRef] [PubMed]

S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618–620 (1997).
[CrossRef] [PubMed]

M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
[CrossRef] [PubMed]

D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurel, “Broadly tunable infrared femtosecond optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 22, 1397–1399 (1997).
[CrossRef]

T. Beddard, M. Ebrahimzadeh, D. T. Reid, and W. Sibbett, “Five-optical-cycle pulse generation in the mid infrared from an optical parametric oscillator based on aperiodically poled lithium niobate,” Opt. Lett. 25, 1052–1054 (2000).
[CrossRef]

D. Artigas and D. T. Reid, “Efficient femtosecond optical parametric oscillators based on aperiodically poled nonlinear crystals,” Opt. Lett. 27, 851–853 (2002).
[CrossRef]

M. V. O’Connor, M. A. Watson, D. P. Shepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, and D. J. Richardson, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27, 1052–1054 (2002).
[CrossRef]

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic illustrating the concept of chirped-pulse pumping in an APP crystal. (b) Time versus crystal length, showing a schematic representation of where the redder and bluer wavelengths within the chirped pump pulse will be converted to the signal in the aperiodically poled crystal.

Fig. 2
Fig. 2

Schematic showing the Proctor–Wise pulse stretching prism sequence and the overall cavity configuration of the APP KTP OPO. Steering mirrors M1 and M3 send the stretched pump pulse into the OPO, M2 is the end mirror of the prism sequence, mirrors M4 and M5 provide OPO cavity focusing, and M6 is the OPO end mirror–output coupler.

Fig. 3
Fig. 3

(a) Ti:sapphire pump-pulse spectrum and (b) intensity autocorrelation, showing the prestretched (190-fs) pulse and the poststretched (900-fs) pulse.

Fig. 4
Fig. 4

Pump spectrum depletion recorded with the OPO running compared to the pump spectrum with the OPO turned off by cavity detuning.

Fig. 5
Fig. 5

Experimental data used to evaluate the slope efficiency shown with a linear fit and corresponding to operation with an 8% output coupler.

Fig. 6
Fig. 6

Variation of the OPO output power as the cavity length of the OPO was scanned over a range of 130 μm.

Fig. 7
Fig. 7

Representative signal spectra recorded from the OPO as the length of the cavity was tuned over the total output range. The spectra have been normalized for clarity.

Fig. 8
Fig. 8

(a) Variation of the OPO oscillation frequency as the cavity was tuned over its operating range and (b) comparison of the calculated experimental cavity dispersion with a polynomial best fit with the theoretical dispersion calculated by use of the Sellmeier equations for KTP.

Fig. 9
Fig. 9

(a) Signal spectrum produced in the single-line operating region of the OPO. (b) Fringe-resolved interferometric autocorrelation of the signal pulses corresponding to the spectrum shown and (c) the corresponding intensity autocorrelation, indicating a pulse duration of 804 fs with a sech2 intensity profile assumed.

Fig. 10
Fig. 10

(a) Signal spectrum recorded from the multiple-line output region of the OPO. (b) Corresponding intensity autocorrelation, indicating an autocorrelation duration of 12.9 ps.

Tables (1)

Tables Icon

Table 1 Comparison of Various Reports Citing Operational Threshold Values

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δτp=L21vp-1vs,
Λ=(np-ni)λp+(ni-ns)λs-1,
2φω2=λ22πc2dλdl-1,

Metrics