Abstract

A significant improvement of the ring-cavity self-pumped phase conjugation response time in the near-infrared cw regime with a photorefractive brown Sn2P2S6 crystal is reported. Brown Sn2P2S6 is grown by the vapor-transport technique with SnI2 as the transport agent. With our Sn2P2S6 samples response times below 50 ms and phase-conjugate reflectivities of 25% can be achieved at a wavelength of 780 nm with a moderate light intensity of 1 W/cm2. We show that the measured reflectivity represents the limit given by the transmission of the ring-cavity arrangement. Reaching this limit is possible because of the large two-wave mixing gain of 18 cm-1 measured in this crystal.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J.-P. Huignard, “Photorefractive effects and materials,” in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 7–73.
  2. M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
    [CrossRef]
  3. N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Characterization and optimization of a ring self-pumped phase-conjugate mirror at 1.06 μm with BaTiO3:Rh,” J. Opt. Soc. Am. B 15, 1992–1999 (1998).
    [CrossRef]
  4. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoika, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13, 2352–2360 (1996).
    [CrossRef]
  5. R. Ryf, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal,” Opt. Lett. 26, 1666–1668 (2001).
    [CrossRef]
  6. C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of thio(seleno)hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed-crystals,” Mater. Res. Bull. 9, 401–410 (1974).
    [CrossRef]
  7. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187–194 (2001).
    [CrossRef]
  8. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, and A. A. Grabar, “Photorefractive beam coupling in tin hypothiodiphosphate in the near infrared,” Opt. Lett. 21, 752–754 (1996).
    [CrossRef] [PubMed]
  9. A. Shumelyuk, S. Odoulov, and G. Brost, “Multiline coherent oscillation in photorefractive crystals with two species of movable carriers,” Appl. Phys. B 68, 959–966 (1999).
    [CrossRef]
  10. A. A. Grabar, “Directional light scattering by domain walls in Sn2P2S6 uniaxial ferroelectrics,” J. Phys. Condens. Matter 10, 2339–2346 (1998).
    [CrossRef]
  11. A. A. Grabar, Yu. M. Vysochanskii, S. I. Perechinskii, L. A. Salo, M. I. Gurzan, and V. Slivka, “Thermooptic investigations of ferroelectric Sn2P2S6,” Sov. Phys. Solid State 26, 2087–2089 (1984)[Fiz. Tverd. Tela (Leningrad) 26, 3469–3472 (1984)].
  12. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. 2. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
    [CrossRef]
  13. G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
    [CrossRef]
  14. D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun. 215, 333–343 (2003).
    [CrossRef]
  15. I. Seres, S. Stepanov, S. Mansurova, and A. Grabar, “Non-steady-state photoelectromotive force effect in photorefractive Sn2P2S6 crystals,” J. Opt. Soc. Am. B 17, 1986–1991 (2000).
    [CrossRef]
  16. J. E. Millerd, E. M. Garmire, and M. B. Klein, “Investigation of photorefractive self-pumped phase-conjugate mirrors in the presence of loss and high modulation depth,” J. Opt. Soc. Am. B 9, 1499–1506 (1992).
    [CrossRef]
  17. K. Nakagawa, M. Zgonik, T. Minemoto, and P. Günter, “Optical thresholding in a self-pumped phase-conjugate mirror with a ring cavity,” Opt. Commun. 122, 43–47 (1995).
    [CrossRef]

2003 (1)

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun. 215, 333–343 (2003).
[CrossRef]

2001 (2)

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187–194 (2001).
[CrossRef]

R. Ryf, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal,” Opt. Lett. 26, 1666–1668 (2001).
[CrossRef]

2000 (1)

1999 (1)

A. Shumelyuk, S. Odoulov, and G. Brost, “Multiline coherent oscillation in photorefractive crystals with two species of movable carriers,” Appl. Phys. B 68, 959–966 (1999).
[CrossRef]

1998 (2)

1997 (1)

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

1996 (2)

1995 (1)

K. Nakagawa, M. Zgonik, T. Minemoto, and P. Günter, “Optical thresholding in a self-pumped phase-conjugate mirror with a ring cavity,” Opt. Commun. 122, 43–47 (1995).
[CrossRef]

1992 (1)

1984 (1)

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. 2. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

1974 (1)

C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of thio(seleno)hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed-crystals,” Mater. Res. Bull. 9, 401–410 (1974).
[CrossRef]

Brost, G.

A. Shumelyuk, S. Odoulov, and G. Brost, “Multiline coherent oscillation in photorefractive crystals with two species of movable carriers,” Appl. Phys. B 68, 959–966 (1999).
[CrossRef]

Caimi, G.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun. 215, 333–343 (2003).
[CrossRef]

Carpentier, C. D.

C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of thio(seleno)hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed-crystals,” Mater. Res. Bull. 9, 401–410 (1974).
[CrossRef]

Cronin-Golomb, M.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

Fischer, B.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

Garmire, E. M.

Grabar, A.

Grabar, A. A.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun. 215, 333–343 (2003).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187–194 (2001).
[CrossRef]

R. Ryf, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal,” Opt. Lett. 26, 1666–1668 (2001).
[CrossRef]

A. A. Grabar, “Directional light scattering by domain walls in Sn2P2S6 uniaxial ferroelectrics,” J. Phys. Condens. Matter 10, 2339–2346 (1998).
[CrossRef]

S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, and A. A. Grabar, “Photorefractive beam coupling in tin hypothiodiphosphate in the near infrared,” Opt. Lett. 21, 752–754 (1996).
[CrossRef] [PubMed]

S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoika, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13, 2352–2360 (1996).
[CrossRef]

Günter, P.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun. 215, 333–343 (2003).
[CrossRef]

R. Ryf, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal,” Opt. Lett. 26, 1666–1668 (2001).
[CrossRef]

K. Nakagawa, M. Zgonik, T. Minemoto, and P. Günter, “Optical thresholding in a self-pumped phase-conjugate mirror with a ring cavity,” Opt. Commun. 122, 43–47 (1995).
[CrossRef]

Gurzan, M. I.

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187–194 (2001).
[CrossRef]

Haertle, D.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun. 215, 333–343 (2003).
[CrossRef]

Haldi, A.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun. 215, 333–343 (2003).
[CrossRef]

Hellwig, U.

Huot, N.

Jonathan, J. M. C.

Kedyk, I. V.

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187–194 (2001).
[CrossRef]

Klein, M. B.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. 2. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

Mansurova, S.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. 2. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

Millerd, J. E.

Minemoto, T.

K. Nakagawa, M. Zgonik, T. Minemoto, and P. Günter, “Optical thresholding in a self-pumped phase-conjugate mirror with a ring cavity,” Opt. Commun. 122, 43–47 (1995).
[CrossRef]

Molnar, A. A.

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187–194 (2001).
[CrossRef]

Montemezzani, G.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun. 215, 333–343 (2003).
[CrossRef]

R. Ryf, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal,” Opt. Lett. 26, 1666–1668 (2001).
[CrossRef]

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Nakagawa, K.

K. Nakagawa, M. Zgonik, T. Minemoto, and P. Günter, “Optical thresholding in a self-pumped phase-conjugate mirror with a ring cavity,” Opt. Commun. 122, 43–47 (1995).
[CrossRef]

Nitsche, R.

C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of thio(seleno)hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed-crystals,” Mater. Res. Bull. 9, 401–410 (1974).
[CrossRef]

Odoulov, S.

A. Shumelyuk, S. Odoulov, and G. Brost, “Multiline coherent oscillation in photorefractive crystals with two species of movable carriers,” Appl. Phys. B 68, 959–966 (1999).
[CrossRef]

Odoulov, S. G.

Roosen, G.

Rupp, R. A.

Ryf, R.

Rytz, D.

Seres, I.

Shumelyuk, A.

A. Shumelyuk, S. Odoulov, and G. Brost, “Multiline coherent oscillation in photorefractive crystals with two species of movable carriers,” Appl. Phys. B 68, 959–966 (1999).
[CrossRef]

Shumelyuk, A. N.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. 2. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

Stepanov, S.

Stoika, I. M.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun. 215, 333–343 (2003).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187–194 (2001).
[CrossRef]

R. Ryf, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal,” Opt. Lett. 26, 1666–1668 (2001).
[CrossRef]

S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoika, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13, 2352–2360 (1996).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. 2. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

Vysochanskii, Yu. M.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun. 215, 333–343 (2003).
[CrossRef]

R. Ryf, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “High-frame-rate joint Fourier-transform correlator based on Sn2P2S6 crystal,” Opt. Lett. 26, 1666–1668 (2001).
[CrossRef]

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187–194 (2001).
[CrossRef]

White, J. O.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

Yariv, A.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

Zgonik, M.

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

K. Nakagawa, M. Zgonik, T. Minemoto, and P. Günter, “Optical thresholding in a self-pumped phase-conjugate mirror with a ring cavity,” Opt. Commun. 122, 43–47 (1995).
[CrossRef]

Appl. Phys. B (1)

A. Shumelyuk, S. Odoulov, and G. Brost, “Multiline coherent oscillation in photorefractive crystals with two species of movable carriers,” Appl. Phys. B 68, 959–966 (1999).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. 2. Beam coupling—light amplification,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Condens. Matter (1)

A. A. Grabar, “Directional light scattering by domain walls in Sn2P2S6 uniaxial ferroelectrics,” J. Phys. Condens. Matter 10, 2339–2346 (1998).
[CrossRef]

Mater. Res. Bull. (1)

C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of thio(seleno)hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed-crystals,” Mater. Res. Bull. 9, 401–410 (1974).
[CrossRef]

Opt. Commun. (3)

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Yu. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187–194 (2001).
[CrossRef]

K. Nakagawa, M. Zgonik, T. Minemoto, and P. Günter, “Optical thresholding in a self-pumped phase-conjugate mirror with a ring cavity,” Opt. Commun. 122, 43–47 (1995).
[CrossRef]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Yu. M. Vysochanskii, “Electro-optic properties of Sn2P2S6,” Opt. Commun. 215, 333–343 (2003).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. E (1)

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Other (2)

A. A. Grabar, Yu. M. Vysochanskii, S. I. Perechinskii, L. A. Salo, M. I. Gurzan, and V. Slivka, “Thermooptic investigations of ferroelectric Sn2P2S6,” Sov. Phys. Solid State 26, 2087–2089 (1984)[Fiz. Tverd. Tela (Leningrad) 26, 3469–3472 (1984)].

P. Günter and J.-P. Huignard, “Photorefractive effects and materials,” in Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988), pp. 7–73.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fringe spacing Λ dependencies of (a) two-wave coupling gain coefficient Γ and (b) two-wave mixing response time τtwm in brown Sn2P2S6. Filled squares, x-polarized light; diamonds, y-polarized light; total input light intensity is 0.2 W/cm2. The solid curves represent the theoretical curves according to Eq. (1).

Fig. 2
Fig. 2

Experimental setup for ring-cavity self-pumped phase conjugation with brown Sn2P2S6 under optimum conditions of 2θ=30° and β=45°. Without the external loop, input beam 3 was fanned toward the +x direction. The transmission of the loop was changed by addition of ND filters in the cavity. All the beams are polarized in the plane of the loop. The transmission grating with grating vector K is written by beam 3 with its self-diffracted beam 4 and by beams 1 and 2 that counterpropagate in the loop.

Fig. 3
Fig. 3

Time evolution of phase-conjugate reflectivity R after turning on input beam 3 with intensity I3=1.6 W/cm2 (P=50 mW). The reflectivity rise time is defined as3 τ0=τ90%-τ10%, where τ10% is the time needed to reach 10% of the saturated reflectivity.

Fig. 4
Fig. 4

(a) Saturated phase-conjugate reflectivity R and (b) rise time τ0 of the phase-conjugate signal versus the transmission of the ND filter TND added to the loop. Input intensity I3=1.6 W/cm2. The solid line represents a linear fit and is used to estimate the intrinsic transmission of the loop.

Fig. 5
Fig. 5

(a) Measured saturated phase-conjugate reflectivity R as a function of loop transmission T (squares) and calculated reflectivities for coupling strengths ΓL=4.7 (solid curve), ΓL=5.4 (dotted curve), and ΓL=4.0 (dashed curve). (b) Calculated dependencies of saturated reflectivity R on the coupling strength for total loop transmissions T|tL|4=T0|tL|4=0.28 (solid curve), T|tL|4=0.38 (dotted curve), and T|tL|4=0.17 (dashed curve). The two rightmost measured points in (a) are included.

Fig. 6
Fig. 6

(a) Saturated phase-conjugate reflectivity R and (b) response rate 1/τ0 of the phase-conjugate signal versus the incident intensity I3. The solid curve represents the calculated intensity dependence for T|tL|4=0.28 and ΓL=4.7. The solution of Eq. (3) with an additional uniform charge generation corresponding to an effective background intensity Iβ=0.08 W/cm2 has been considered. The dashed line represents a linear fit of the response rate dependence.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Γ=2πλ nSnP2cos βPe^Se^Pcos θS reffESC,
ESC=EDEqED+Eq,
|t0|2tanh κLs+σ tanh κL=s-I0tanh κL(σI0-s2)tanh κL+(I0-σ)s,
σ=I0|t0|2-1|t0|2+1,
s=[σ2+(I0-σ)2|ρ|2]1/2,
κ=sΓ*4I0,
|ρ|2=A2(L)A3*(L)2.
κ=sΓ*4(I0+Iβ).

Metrics