Abstract

We applied an erbrium-doped fiber amplifier characterization method previously reported for 1480-nm pumped amplifiers to a 980-nm amplifier, obtaining absorption and emission coefficients, as well as the dopant concentration in fiber. Gain and fluorescence (amplified spontaneous emission) simulations performed from the obtained features agree well with experimental results. Nevertheless, at certain high-gain circumstances, disagreements appear in the form of spectral hole burning, which can present high magnitudes and whose nature is discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, “Gain cross saturation and spectral hole burning in wideband erbium-doped fiber amplifiers,” Opt. Lett. 16, 1499–1501 (1991).
    [CrossRef] [PubMed]
  2. J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole-burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
    [CrossRef]
  3. I. Joindot and F. Dupré, “Spectral hole-burning in silica-based and in fluoride-based optical fibre amplifiers,” Electron. Lett. 33, 1239–1240 (1997).
    [CrossRef]
  4. E. Rudkevich, D. M. Baney, J. Stimple, D. Derickson, and G. Wang, “Nonresonant spectral-hole-burning in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 11, 542–544 (1999).
    [CrossRef]
  5. M. J. Yadlowsky, “Pump wavelength-dependent spectral-hole-burning in EDFA’s,” J. Lightwave Technol. 17, 1643–1648 (1999).
    [CrossRef]
  6. C.-C. Wang and G. J. Cowle, “Optical gain control of erbium-doped fiber amplifiers with a saturable absorber,” IEEE Photon. Technol. Lett. 12, 483–485 (2000).
    [CrossRef]
  7. P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm,” Opt. Lett. 16, 961–963 (1991).
    [CrossRef] [PubMed]
  8. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
    [CrossRef]
  9. D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
    [CrossRef]
  10. D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Basis for a polarized superfluorescent fiber source with increased efficiency,” Opt. Lett. 21, 1900–1902 (1996).
    [CrossRef] [PubMed]
  11. D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22, 160–162 (1997).
    [CrossRef] [PubMed]
  12. F. B. Pedersen, J. H. Povlsen, A. Bjarklev, O. Lumholt, and C. Lester, “Noise optimization of an Er-doped superfluorescent fiber source,” Opt. Lett. 18, 1709–1711 (1993).
    [CrossRef] [PubMed]
  13. L. A. Wang and C. D. Chen, “Characteristics comparison of Er-doped double-pass superfluorescent fiber sources pumped near 980 nm,” IEEE Photon. Technol. Lett. 9, 446–448 (1997).
    [CrossRef]
  14. C. D. Su and L. A. Wang, “Effect of adding a long period grating in a double-pass backward Er-doped superfluorescent fiber source,” J. Lightwave Technol. 17, 1896–1903 (1999).
    [CrossRef]
  15. T.-C. Liang, Y.-S. Lin, and Y.-K. Chen, “Comparison of the characteristics of double-pass erbium-doped superfluorescent fiber sources obtained from different flattening techniques,” Appl. Opt. 38, 522–529 (1999).
    [CrossRef]
  16. D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror,” IEEE Photon. Technol. Lett. 12, 1465–1467 (2000).
    [CrossRef]
  17. C. D. Su and L. A. Wang, “Multiwavelength fiber sources based on double-pass superfluorescent fiber sources,” J. Lightwave Technol. 18, 708–714 (2000).
    [CrossRef]
  18. D. M. Dagenais, L. Goldberg, R. P. Moeller, and W. K. Burns, “Wavelength stability characteristics of a high-power, amplified superfluorescent source,” J. Lightwave Technol. 17, 1415–1421 (1999).
    [CrossRef]
  19. K. Haroud, E. Rochat, and R. Dändliker, “A broad-band superfluorescent fiber laser using single-mode doped silica fiber combinations,” IEEE J. Quantum Electron. 36, 151–154 (2000).
    [CrossRef]
  20. G. Monnom, B. Dussardier, E. Maurice, A. Saissy, and D. B. Ostrowsky, “Fluorescence and superfluorescence line narrowing and tunability of Nd3+ doped fibers,” IEEE J. Quantum Electron. 30, 2361–2367 (1994).
    [CrossRef]
  21. M. A. Mahdi, P. Poopalan, S. Selvakennedy, N. Ismail, and H. Ahmad, “All optical gain-locking in erbium-doped fiber amplifiers using double-pass superfluorescence,” IEEE Photon. Technol. Lett. 11, 1581–1583 (1999).
    [CrossRef]
  22. S. Jarabo and M. A. Rebolledo, “Analytic modeling of erbium-doped fiber amplifiers on the basis of intensity-dependent overlapping factors,” Appl. Opt. 34, 6158–6163 (1995).
    [CrossRef] [PubMed]
  23. S. Jarabo and J. M. Álvarez, “Experimental verification ofanalytic modeling of erbium-doped silica fiber amplifiers pumped at 1480 nm,” Appl. Opt. 35, 4759–4766 (1996).
    [CrossRef] [PubMed]
  24. S. Jarabo and J. M. Álvarez, “Experimental cross sections of erbium-doped silica fibers pumped at 1480 nm,” Appl. Opt. 37, 2288–2295 (1998).
    [CrossRef]
  25. A. Lidgard, J. R. Simpson, and P. C. Becker, “Output saturation characteristics of erbium-doped fiber amplifier pumped at 975 nm,” Appl. Phys. Lett. 56, 2607–2609 (1990).
    [CrossRef]
  26. E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
    [CrossRef]
  27. E. Desurvire, “Analysis of erbium-doped fiber amplifiers pumped in the 4I15/2–4I13/2 band,” IEEE Photon. Technol. Lett. 1, 293–296 (1989).
    [CrossRef]
  28. M. Ohashi, “Design considerations for an Er3+ doped fiber amplifier,” J. Lightwave Technol. 9, 1099–1104 (1991).
    [CrossRef]
  29. B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 1105–1112 (1991).
    [CrossRef]
  30. M. A. Rebolledo and S. Jarabo, “Erbium-doped silica fiber modeling with overlapping factors,” Appl. Opt. 33, 5585–5593 (1994).
    [CrossRef] [PubMed]
  31. W. Demtröder, Laser Spectroscopy. Basic Concepts and Instrumentation, 2nd ed. (Springer, New York, 1998), pp. 436–448.
  32. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 1171–1212.
  33. M. Stübner, E. Schneider, and J. Friedrich, “Hole-burning Stark-effect studies on aromatic aminoacids: I. Phenylalanine in a glycerol-water glass,” Phys. Chem. Chem. Phys. 3, 5369–5372 (2001).
    [CrossRef]
  34. E. Desurvire and J. R. Simpson, “Evaluation of 4I15/2 and 4I13/2 Stark-level energies in erbium-doped aluminosilicate glass fibers,” Opt. Lett. 15, 547–549 (1990).
    [CrossRef] [PubMed]

2001

M. Stübner, E. Schneider, and J. Friedrich, “Hole-burning Stark-effect studies on aromatic aminoacids: I. Phenylalanine in a glycerol-water glass,” Phys. Chem. Chem. Phys. 3, 5369–5372 (2001).
[CrossRef]

2000

K. Haroud, E. Rochat, and R. Dändliker, “A broad-band superfluorescent fiber laser using single-mode doped silica fiber combinations,” IEEE J. Quantum Electron. 36, 151–154 (2000).
[CrossRef]

C.-C. Wang and G. J. Cowle, “Optical gain control of erbium-doped fiber amplifiers with a saturable absorber,” IEEE Photon. Technol. Lett. 12, 483–485 (2000).
[CrossRef]

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror,” IEEE Photon. Technol. Lett. 12, 1465–1467 (2000).
[CrossRef]

C. D. Su and L. A. Wang, “Multiwavelength fiber sources based on double-pass superfluorescent fiber sources,” J. Lightwave Technol. 18, 708–714 (2000).
[CrossRef]

1999

1998

1997

L. A. Wang and C. D. Chen, “Characteristics comparison of Er-doped double-pass superfluorescent fiber sources pumped near 980 nm,” IEEE Photon. Technol. Lett. 9, 446–448 (1997).
[CrossRef]

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole-burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

I. Joindot and F. Dupré, “Spectral hole-burning in silica-based and in fluoride-based optical fibre amplifiers,” Electron. Lett. 33, 1239–1240 (1997).
[CrossRef]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22, 160–162 (1997).
[CrossRef] [PubMed]

1996

1995

S. Jarabo and M. A. Rebolledo, “Analytic modeling of erbium-doped fiber amplifiers on the basis of intensity-dependent overlapping factors,” Appl. Opt. 34, 6158–6163 (1995).
[CrossRef] [PubMed]

D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

1994

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

G. Monnom, B. Dussardier, E. Maurice, A. Saissy, and D. B. Ostrowsky, “Fluorescence and superfluorescence line narrowing and tunability of Nd3+ doped fibers,” IEEE J. Quantum Electron. 30, 2361–2367 (1994).
[CrossRef]

M. A. Rebolledo and S. Jarabo, “Erbium-doped silica fiber modeling with overlapping factors,” Appl. Opt. 33, 5585–5593 (1994).
[CrossRef] [PubMed]

1993

1991

1990

E. Desurvire and J. R. Simpson, “Evaluation of 4I15/2 and 4I13/2 Stark-level energies in erbium-doped aluminosilicate glass fibers,” Opt. Lett. 15, 547–549 (1990).
[CrossRef] [PubMed]

A. Lidgard, J. R. Simpson, and P. C. Becker, “Output saturation characteristics of erbium-doped fiber amplifier pumped at 975 nm,” Appl. Phys. Lett. 56, 2607–2609 (1990).
[CrossRef]

1989

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
[CrossRef]

E. Desurvire, “Analysis of erbium-doped fiber amplifiers pumped in the 4I15/2–4I13/2 band,” IEEE Photon. Technol. Lett. 1, 293–296 (1989).
[CrossRef]

Ahmad, H.

M. A. Mahdi, P. Poopalan, S. Selvakennedy, N. Ismail, and H. Ahmad, “All optical gain-locking in erbium-doped fiber amplifiers using double-pass superfluorescence,” IEEE Photon. Technol. Lett. 11, 1581–1583 (1999).
[CrossRef]

Álvarez, J. M.

Baney, D. M.

E. Rudkevich, D. M. Baney, J. Stimple, D. Derickson, and G. Wang, “Nonresonant spectral-hole-burning in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 11, 542–544 (1999).
[CrossRef]

Becker, P. C.

A. Lidgard, J. R. Simpson, and P. C. Becker, “Output saturation characteristics of erbium-doped fiber amplifier pumped at 975 nm,” Appl. Phys. Lett. 56, 2607–2609 (1990).
[CrossRef]

Bjarklev, A.

F. B. Pedersen, J. H. Povlsen, A. Bjarklev, O. Lumholt, and C. Lester, “Noise optimization of an Er-doped superfluorescent fiber source,” Opt. Lett. 18, 1709–1711 (1993).
[CrossRef] [PubMed]

B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 1105–1112 (1991).
[CrossRef]

Burns, W. K.

D. M. Dagenais, L. Goldberg, R. P. Moeller, and W. K. Burns, “Wavelength stability characteristics of a high-power, amplified superfluorescent source,” J. Lightwave Technol. 17, 1415–1421 (1999).
[CrossRef]

D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

Chen, C. D.

L. A. Wang and C. D. Chen, “Characteristics comparison of Er-doped double-pass superfluorescent fiber sources pumped near 980 nm,” IEEE Photon. Technol. Lett. 9, 446–448 (1997).
[CrossRef]

Chen, Y.-K.

Cowle, G. J.

C.-C. Wang and G. J. Cowle, “Optical gain control of erbium-doped fiber amplifiers with a saturable absorber,” IEEE Photon. Technol. Lett. 12, 483–485 (2000).
[CrossRef]

Dagenais, D. M.

Dändliker, R.

K. Haroud, E. Rochat, and R. Dändliker, “A broad-band superfluorescent fiber laser using single-mode doped silica fiber combinations,” IEEE J. Quantum Electron. 36, 151–154 (2000).
[CrossRef]

Derickson, D.

E. Rudkevich, D. M. Baney, J. Stimple, D. Derickson, and G. Wang, “Nonresonant spectral-hole-burning in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 11, 542–544 (1999).
[CrossRef]

Desurvire, E.

E. Desurvire and J. R. Simpson, “Evaluation of 4I15/2 and 4I13/2 Stark-level energies in erbium-doped aluminosilicate glass fibers,” Opt. Lett. 15, 547–549 (1990).
[CrossRef] [PubMed]

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
[CrossRef]

E. Desurvire, “Analysis of erbium-doped fiber amplifiers pumped in the 4I15/2–4I13/2 band,” IEEE Photon. Technol. Lett. 1, 293–296 (1989).
[CrossRef]

Digonnet, M. J. F.

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror,” IEEE Photon. Technol. Lett. 12, 1465–1467 (2000).
[CrossRef]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22, 160–162 (1997).
[CrossRef] [PubMed]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Basis for a polarized superfluorescent fiber source with increased efficiency,” Opt. Lett. 21, 1900–1902 (1996).
[CrossRef] [PubMed]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm,” Opt. Lett. 16, 961–963 (1991).
[CrossRef] [PubMed]

Dupré, F.

I. Joindot and F. Dupré, “Spectral hole-burning in silica-based and in fluoride-based optical fibre amplifiers,” Electron. Lett. 33, 1239–1240 (1997).
[CrossRef]

Dussardier, B.

G. Monnom, B. Dussardier, E. Maurice, A. Saissy, and D. B. Ostrowsky, “Fluorescence and superfluorescence line narrowing and tunability of Nd3+ doped fibers,” IEEE J. Quantum Electron. 30, 2361–2367 (1994).
[CrossRef]

Dybdal, K.

B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 1105–1112 (1991).
[CrossRef]

Falquier, D. G.

Friedrich, J.

M. Stübner, E. Schneider, and J. Friedrich, “Hole-burning Stark-effect studies on aromatic aminoacids: I. Phenylalanine in a glycerol-water glass,” Phys. Chem. Chem. Phys. 3, 5369–5372 (2001).
[CrossRef]

Goldberg, L.

Hall, D. C.

D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

Haroud, K.

K. Haroud, E. Rochat, and R. Dändliker, “A broad-band superfluorescent fiber laser using single-mode doped silica fiber combinations,” IEEE J. Quantum Electron. 36, 151–154 (2000).
[CrossRef]

Ismail, N.

M. A. Mahdi, P. Poopalan, S. Selvakennedy, N. Ismail, and H. Ahmad, “All optical gain-locking in erbium-doped fiber amplifiers using double-pass superfluorescence,” IEEE Photon. Technol. Lett. 11, 1581–1583 (1999).
[CrossRef]

Jarabo, S.

Joindot, I.

I. Joindot and F. Dupré, “Spectral hole-burning in silica-based and in fluoride-based optical fibre amplifiers,” Electron. Lett. 33, 1239–1240 (1997).
[CrossRef]

Kim, B. Y.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm,” Opt. Lett. 16, 961–963 (1991).
[CrossRef] [PubMed]

Laming, R. I.

Larsen, C. C.

B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 1105–1112 (1991).
[CrossRef]

Lester, C.

Liang, T.-C.

Lidgard, A.

A. Lidgard, J. R. Simpson, and P. C. Becker, “Output saturation characteristics of erbium-doped fiber amplifier pumped at 975 nm,” Appl. Phys. Lett. 56, 2607–2609 (1990).
[CrossRef]

Lin, Y.-S.

Lumholt, O.

Mahdi, M. A.

M. A. Mahdi, P. Poopalan, S. Selvakennedy, N. Ismail, and H. Ahmad, “All optical gain-locking in erbium-doped fiber amplifiers using double-pass superfluorescence,” IEEE Photon. Technol. Lett. 11, 1581–1583 (1999).
[CrossRef]

Maurice, E.

G. Monnom, B. Dussardier, E. Maurice, A. Saissy, and D. B. Ostrowsky, “Fluorescence and superfluorescence line narrowing and tunability of Nd3+ doped fibers,” IEEE J. Quantum Electron. 30, 2361–2367 (1994).
[CrossRef]

Moeller, R. P.

D. M. Dagenais, L. Goldberg, R. P. Moeller, and W. K. Burns, “Wavelength stability characteristics of a high-power, amplified superfluorescent source,” J. Lightwave Technol. 17, 1415–1421 (1999).
[CrossRef]

D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

Monnom, G.

G. Monnom, B. Dussardier, E. Maurice, A. Saissy, and D. B. Ostrowsky, “Fluorescence and superfluorescence line narrowing and tunability of Nd3+ doped fibers,” IEEE J. Quantum Electron. 30, 2361–2367 (1994).
[CrossRef]

Morkel, P. R.

Ohashi, M.

M. Ohashi, “Design considerations for an Er3+ doped fiber amplifier,” J. Lightwave Technol. 9, 1099–1104 (1991).
[CrossRef]

Ostrowsky, D. B.

G. Monnom, B. Dussardier, E. Maurice, A. Saissy, and D. B. Ostrowsky, “Fluorescence and superfluorescence line narrowing and tunability of Nd3+ doped fibers,” IEEE J. Quantum Electron. 30, 2361–2367 (1994).
[CrossRef]

Payne, D. N.

Pedersen, B.

B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 1105–1112 (1991).
[CrossRef]

Pedersen, F. B.

Poopalan, P.

M. A. Mahdi, P. Poopalan, S. Selvakennedy, N. Ismail, and H. Ahmad, “All optical gain-locking in erbium-doped fiber amplifiers using double-pass superfluorescence,” IEEE Photon. Technol. Lett. 11, 1581–1583 (1999).
[CrossRef]

Povlsen, J. H.

F. B. Pedersen, J. H. Povlsen, A. Bjarklev, O. Lumholt, and C. Lester, “Noise optimization of an Er-doped superfluorescent fiber source,” Opt. Lett. 18, 1709–1711 (1993).
[CrossRef] [PubMed]

B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 1105–1112 (1991).
[CrossRef]

Rebolledo, M. A.

Rochat, E.

K. Haroud, E. Rochat, and R. Dändliker, “A broad-band superfluorescent fiber laser using single-mode doped silica fiber combinations,” IEEE J. Quantum Electron. 36, 151–154 (2000).
[CrossRef]

Rudkevich, E.

E. Rudkevich, D. M. Baney, J. Stimple, D. Derickson, and G. Wang, “Nonresonant spectral-hole-burning in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 11, 542–544 (1999).
[CrossRef]

Saissy, A.

G. Monnom, B. Dussardier, E. Maurice, A. Saissy, and D. B. Ostrowsky, “Fluorescence and superfluorescence line narrowing and tunability of Nd3+ doped fibers,” IEEE J. Quantum Electron. 30, 2361–2367 (1994).
[CrossRef]

Schneider, E.

M. Stübner, E. Schneider, and J. Friedrich, “Hole-burning Stark-effect studies on aromatic aminoacids: I. Phenylalanine in a glycerol-water glass,” Phys. Chem. Chem. Phys. 3, 5369–5372 (2001).
[CrossRef]

Selvakennedy, S.

M. A. Mahdi, P. Poopalan, S. Selvakennedy, N. Ismail, and H. Ahmad, “All optical gain-locking in erbium-doped fiber amplifiers using double-pass superfluorescence,” IEEE Photon. Technol. Lett. 11, 1581–1583 (1999).
[CrossRef]

Shaw, H. J.

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror,” IEEE Photon. Technol. Lett. 12, 1465–1467 (2000).
[CrossRef]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Polarized superfluorescent fiber source,” Opt. Lett. 22, 160–162 (1997).
[CrossRef] [PubMed]

D. G. Falquier, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, “Basis for a polarized superfluorescent fiber source with increased efficiency,” Opt. Lett. 21, 1900–1902 (1996).
[CrossRef] [PubMed]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Simpson, J. R.

A. Lidgard, J. R. Simpson, and P. C. Becker, “Output saturation characteristics of erbium-doped fiber amplifier pumped at 975 nm,” Appl. Phys. Lett. 56, 2607–2609 (1990).
[CrossRef]

E. Desurvire and J. R. Simpson, “Evaluation of 4I15/2 and 4I13/2 Stark-level energies in erbium-doped aluminosilicate glass fibers,” Opt. Lett. 15, 547–549 (1990).
[CrossRef] [PubMed]

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
[CrossRef]

Srivastava, A. K.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole-burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

Stimple, J.

E. Rudkevich, D. M. Baney, J. Stimple, D. Derickson, and G. Wang, “Nonresonant spectral-hole-burning in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 11, 542–544 (1999).
[CrossRef]

Stübner, M.

M. Stübner, E. Schneider, and J. Friedrich, “Hole-burning Stark-effect studies on aromatic aminoacids: I. Phenylalanine in a glycerol-water glass,” Phys. Chem. Chem. Phys. 3, 5369–5372 (2001).
[CrossRef]

Su, C. D.

Sulhoff, J. W.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole-burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

Sun, Y.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole-burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

Tachibana, M.

Wagener, J. L.

Wang, C.-C.

C.-C. Wang and G. J. Cowle, “Optical gain control of erbium-doped fiber amplifiers with a saturable absorber,” IEEE Photon. Technol. Lett. 12, 483–485 (2000).
[CrossRef]

Wang, G.

E. Rudkevich, D. M. Baney, J. Stimple, D. Derickson, and G. Wang, “Nonresonant spectral-hole-burning in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 11, 542–544 (1999).
[CrossRef]

Wang, L. A.

Wolf, C.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole-burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

Wysocki, P. F.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, and B. Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm,” Opt. Lett. 16, 961–963 (1991).
[CrossRef] [PubMed]

Yadlowsky, M. J.

Zyskind, J. L.

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole-burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Lidgard, J. R. Simpson, and P. C. Becker, “Output saturation characteristics of erbium-doped fiber amplifier pumped at 975 nm,” Appl. Phys. Lett. 56, 2607–2609 (1990).
[CrossRef]

Electron. Lett.

I. Joindot and F. Dupré, “Spectral hole-burning in silica-based and in fluoride-based optical fibre amplifiers,” Electron. Lett. 33, 1239–1240 (1997).
[CrossRef]

IEEE J. Quantum Electron.

K. Haroud, E. Rochat, and R. Dändliker, “A broad-band superfluorescent fiber laser using single-mode doped silica fiber combinations,” IEEE J. Quantum Electron. 36, 151–154 (2000).
[CrossRef]

G. Monnom, B. Dussardier, E. Maurice, A. Saissy, and D. B. Ostrowsky, “Fluorescence and superfluorescence line narrowing and tunability of Nd3+ doped fibers,” IEEE J. Quantum Electron. 30, 2361–2367 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

M. A. Mahdi, P. Poopalan, S. Selvakennedy, N. Ismail, and H. Ahmad, “All optical gain-locking in erbium-doped fiber amplifiers using double-pass superfluorescence,” IEEE Photon. Technol. Lett. 11, 1581–1583 (1999).
[CrossRef]

E. Desurvire, “Analysis of erbium-doped fiber amplifiers pumped in the 4I15/2–4I13/2 band,” IEEE Photon. Technol. Lett. 1, 293–296 (1989).
[CrossRef]

E. Rudkevich, D. M. Baney, J. Stimple, D. Derickson, and G. Wang, “Nonresonant spectral-hole-burning in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 11, 542–544 (1999).
[CrossRef]

J. W. Sulhoff, A. K. Srivastava, C. Wolf, Y. Sun, and J. L. Zyskind, “Spectral-hole-burning in erbium-doped silica and fluoride fibers,” IEEE Photon. Technol. Lett. 9, 1578–1579 (1997).
[CrossRef]

D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, “A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror,” IEEE Photon. Technol. Lett. 12, 1465–1467 (2000).
[CrossRef]

C.-C. Wang and G. J. Cowle, “Optical gain control of erbium-doped fiber amplifiers with a saturable absorber,” IEEE Photon. Technol. Lett. 12, 483–485 (2000).
[CrossRef]

L. A. Wang and C. D. Chen, “Characteristics comparison of Er-doped double-pass superfluorescent fiber sources pumped near 980 nm,” IEEE Photon. Technol. Lett. 9, 446–448 (1997).
[CrossRef]

J. Lightwave Technol.

C. D. Su and L. A. Wang, “Effect of adding a long period grating in a double-pass backward Er-doped superfluorescent fiber source,” J. Lightwave Technol. 17, 1896–1903 (1999).
[CrossRef]

C. D. Su and L. A. Wang, “Multiwavelength fiber sources based on double-pass superfluorescent fiber sources,” J. Lightwave Technol. 18, 708–714 (2000).
[CrossRef]

D. M. Dagenais, L. Goldberg, R. P. Moeller, and W. K. Burns, “Wavelength stability characteristics of a high-power, amplified superfluorescent source,” J. Lightwave Technol. 17, 1415–1421 (1999).
[CrossRef]

M. J. Yadlowsky, “Pump wavelength-dependent spectral-hole-burning in EDFA’s,” J. Lightwave Technol. 17, 1643–1648 (1999).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

D. C. Hall, W. K. Burns, and R. P. Moeller, “High-stability Er3+-doped superfluorescent fiber sources,” J. Lightwave Technol. 13, 1452–1460 (1995).
[CrossRef]

M. Ohashi, “Design considerations for an Er3+ doped fiber amplifier,” J. Lightwave Technol. 9, 1099–1104 (1991).
[CrossRef]

B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen, “The design of erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 1105–1112 (1991).
[CrossRef]

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
[CrossRef]

Opt. Lett.

Phys. Chem. Chem. Phys.

M. Stübner, E. Schneider, and J. Friedrich, “Hole-burning Stark-effect studies on aromatic aminoacids: I. Phenylalanine in a glycerol-water glass,” Phys. Chem. Chem. Phys. 3, 5369–5372 (2001).
[CrossRef]

Other

W. Demtröder, Laser Spectroscopy. Basic Concepts and Instrumentation, 2nd ed. (Springer, New York, 1998), pp. 436–448.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 1171–1212.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup: PL, pump laser (980 nm); SD, signal diode (1550 nm); PC, polished fiber connector; I, Ii, and I0, optical isolators; WDMi and WDM0, wavelength division multiplexer (980–1550 nm), Si and S0, splices between nondoped fiber and EDF; Dp and Ds, detectors; M, monochromator; L, lock-in amplifier; Ref, modulation reference.

Fig. 2
Fig. 2

Gain and pump power absorption measurements fitted by means of straight lines at several wavelengths (1500, 1533, 1550, and 1600 nm) along the gain spectral profile. The lengths of the EDF samples employed are 17.77 m and 22 cm (reference sample), and the ten coupled pump powers are 17.8, 14.7, 12.6, 11.0, 9.8, 8.9, 8.1, 7.5, 7.0, and 6.4 dBm.

Fig. 3
Fig. 3

Spectral parameters of the EDF determined by means of fitting the gain and pump power absorption measurements: (a) β and (b) absorption and stimulated emission coefficients γa and γe. These parameters are obtained by measurement with three samples at 9.94, 17.77, and 22.64 m.

Fig. 4
Fig. 4

Comparison between experimental and theoretical values applied to (a) spectral gain and (b) copropagating ASE power. The pump powers coupled into the EDF samples (9.94 m and 22 cm) are 17.8, 9.2, and 5.4 dBm.

Fig. 5
Fig. 5

Comparison between experimental and theoretical values applied to (a) spectral gain and (b) copropagating ASE power. The pump powers coupled into the EDF samples (17.77 m and 22 cm) are 17.8, 9.8, and 6.4 dBm.

Fig. 6
Fig. 6

Comparison between experimental and theoretical values applied to (a) spectral gain and (b) copropagating ASE power. The pump powers coupled into the EDF sample (22.64 m and 22 cm) are 15.9, 9.5, and 6.8 dBm.

Fig. 7
Fig. 7

(a) Gain and (b) ASE power spectra when pump power is coupled into the EDF sample (22.64 m and 22 cm) are 15.9, 16.6, and 17.8 dBm. With these values of pump power, a spectral hole appears at the gain profile.

Fig. 8
Fig. 8

Gain at several wavelengths as a function of pump power coupled into the EDF sample (22.64 m and 22 cm).

Fig. 9
Fig. 9

Spectral gain measurements when isolator Ii is suppressed in the experimental setup (L=17.83 m and L0=22 cm) and comparison with gain when the isolator is present (L=17.77 m and L0=22 cm).

Fig. 10
Fig. 10

Spectral gain measurements when isolator Ii is suppressed in the experimental setup (solid curves, L=9.99 m and L0=22 cm) and a comparison with gain when the isolator is present (dotted curves, L=9.94 m and L0=22 cm). The coupled pump powers are 17.8, 9.2, and 5.4 dBm.

Fig. 11
Fig. 11

Gain variation produced by isolator suppression. These variations were computed with gain measurements gathered in Fig. 10. The coupled pump powers are (a) 17.8, (b) 9.2, and (c) 5.4 dBm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G(L, ν)G(L0, ν)=exp[γe(ν)(L-L0)]Pp(L)Pp(L0)β(ν),
β(ν)=γa(ν)+γe(ν)γa(νp).

Metrics