Abstract

Amplified spontaneous emission (ASE) in high-power, gain-flattened, Er3+Yb3+-codoped fiber amplifiers (EYDFAs) is analyzed by use of a rate-equations model. Numerical results suggest that the ASE noise is more significant in L-band EYDFAs, depending on the pump configuration. ASE noise in C-band EYDFAs is considerably weaker and is almost independent of the pump configuration. Increasing the cladding area improves the noise figure properties, provided that the pump and the signal are injected at opposite ends (backward pumping). The dependence of the noise figure on the Yb3+ concentration and on the pump wavelength in L-band EYDFA is also analyzed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er–Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
    [CrossRef]
  2. F. Di. Pasquale, G. Grasso, F. Meli, G. Sacchi, and S. Turolla, “23 dBm output power Er/Yb codoped fiber amplifier for WDM signals in the 1575–1605 nm wavelength region,” in Optical Fiber Communication Conference, Vol. 2 of Technical Digest Series (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), pp. 4–6, paper WA2.
  3. G. Nykolak, P. F. Szajowski, J. Jacques, H. M. Presby, J. A. Abate, G. E. Tourgee, and J. J. Auborn, “4×2.5 Gb/s 4.4 km WDM free-space optical link at 1550 nm,” in Optical Fiber Communication Conference, Vol. 2 of Technical Digest Series (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), paper PD11/1–3.
  4. E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium doped single mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
    [CrossRef]
  5. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).
  6. A. Bjarklev, Optical Fiber Amplifiers: Design and System Applications (Artech House, Norwood, Mass., 1993).
  7. C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitized Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
    [CrossRef]
  8. A. A. Hardy and R. Oron, “Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers,” J. Lightwave Technol. 16, 1865–1873 (1998).
    [CrossRef]
  9. R. Oron and A. A. Hardy, “Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers,” J. Opt. Soc. Am. B 16, 695–701 (1999).
    [CrossRef]
  10. M. Soderlund, S. Tammela, P. Poyhonen, M. Leppihalme, and N. Peyghambarian, “Amplified spontaneous emission in cladding-pumped L-band erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 22–24 (2001).
    [CrossRef]
  11. E. Yahel and A. Hardy, “Efficiency optimization of high-power Er3+–Yb3+ codoped fiber amplifiers for wavelength-division-multiplexing applications,” J. Opt. Soc. Am. B 20, 1189–1197 (2003).
    [CrossRef]
  12. P. C. Becker, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, San Diego, Calif., 1999).

2003 (1)

2001 (1)

M. Soderlund, S. Tammela, P. Poyhonen, M. Leppihalme, and N. Peyghambarian, “Amplified spontaneous emission in cladding-pumped L-band erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 22–24 (2001).
[CrossRef]

1999 (1)

1998 (1)

1996 (1)

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er–Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

1995 (1)

C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitized Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
[CrossRef]

1989 (1)

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium doped single mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
[CrossRef]

Bjarklev, A.

C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitized Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
[CrossRef]

Desurvire, E.

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium doped single mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
[CrossRef]

DiGiovanni, D.

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er–Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

Dinesen, P. G.

C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitized Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
[CrossRef]

Grubb, S.

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er–Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

Hardy, A.

Hardy, A. A.

Leppihalme, M.

M. Soderlund, S. Tammela, P. Poyhonen, M. Leppihalme, and N. Peyghambarian, “Amplified spontaneous emission in cladding-pumped L-band erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 22–24 (2001).
[CrossRef]

Lester, C.

C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitized Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
[CrossRef]

Oron, R.

Park, N.

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er–Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

Pedrazzani, R.

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er–Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

Peyghambarian, N.

M. Soderlund, S. Tammela, P. Poyhonen, M. Leppihalme, and N. Peyghambarian, “Amplified spontaneous emission in cladding-pumped L-band erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 22–24 (2001).
[CrossRef]

Poyhonen, P.

M. Soderlund, S. Tammela, P. Poyhonen, M. Leppihalme, and N. Peyghambarian, “Amplified spontaneous emission in cladding-pumped L-band erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 22–24 (2001).
[CrossRef]

Rasmussen, T.

C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitized Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
[CrossRef]

Simpson, J. R.

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium doped single mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
[CrossRef]

Soderlund, M.

M. Soderlund, S. Tammela, P. Poyhonen, M. Leppihalme, and N. Peyghambarian, “Amplified spontaneous emission in cladding-pumped L-band erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 22–24 (2001).
[CrossRef]

Tammela, S.

M. Soderlund, S. Tammela, P. Poyhonen, M. Leppihalme, and N. Peyghambarian, “Amplified spontaneous emission in cladding-pumped L-band erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 22–24 (2001).
[CrossRef]

Walker, K.

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er–Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

Wysocki, P.

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er–Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

Yahel, E.

IEEE Photon. Technol. Lett. (2)

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er–Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

M. Soderlund, S. Tammela, P. Poyhonen, M. Leppihalme, and N. Peyghambarian, “Amplified spontaneous emission in cladding-pumped L-band erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 22–24 (2001).
[CrossRef]

J. Lightwave Technol. (3)

C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-sensitized Er3+-doped silica waveguide amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).
[CrossRef]

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium doped single mode fibers,” J. Lightwave Technol. 7, 835–845 (1989).
[CrossRef]

A. A. Hardy and R. Oron, “Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers,” J. Lightwave Technol. 16, 1865–1873 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Other (5)

P. C. Becker, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, San Diego, Calif., 1999).

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

A. Bjarklev, Optical Fiber Amplifiers: Design and System Applications (Artech House, Norwood, Mass., 1993).

F. Di. Pasquale, G. Grasso, F. Meli, G. Sacchi, and S. Turolla, “23 dBm output power Er/Yb codoped fiber amplifier for WDM signals in the 1575–1605 nm wavelength region,” in Optical Fiber Communication Conference, Vol. 2 of Technical Digest Series (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), pp. 4–6, paper WA2.

G. Nykolak, P. F. Szajowski, J. Jacques, H. M. Presby, J. A. Abate, G. E. Tourgee, and J. J. Auborn, “4×2.5 Gb/s 4.4 km WDM free-space optical link at 1550 nm,” in Optical Fiber Communication Conference, Vol. 2 of Technical Digest Series (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1999), paper PD11/1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Relative population density [N2(z)/NEr] along the fiber length of gain-flattened C-band and L-band EYDFAs for three pumping configurations. The position along the fiber is normalized with respect to the optimal flattest-gain fiber length.

Fig. 2
Fig. 2

Signal-band ASE± power (integrated over all channels in the signal band) at the fiber ends as a function of total input signal power for three pumping configurations, in gain-flattened (a) C-band and (b) L-band EYDFAs. ASE+, forward-propagating ASE power; ASE-, backward-propagating ASE power.

Fig. 3
Fig. 3

Calculated signal-band output spectrum of gain-flattened C-band and L-band EYDFAs, showing the WDM signal superimposed upon the ASE output spectrum for (a) forward and (b) backward pumping. The resolution of the ASE power spectra is 1 nm.

Fig. 4
Fig. 4

Dependence of the worst channel noise figure at the fiber output end on the total input signal power, for three pumping configurations in (a) a gain-flattened C-band EYDFA and (b) a gain-flattened L-band EYDFA.

Fig. 5
Fig. 5

Dependence of the worst channel noise figure at the fiber output end on the ratio of cladding to core area (Aclad/Acore) for three different pumping configurations in (a) a gain-flattened C-band EYDFA and (b) a gain-flattened L-band EYDFA. The core area is assumed to be constant: Acore=3.42×10-11 m2 [note the different scales of the x axis in (a) and (b)].

Fig. 6
Fig. 6

Worst channel noise figure at the fiber output end, versus the pump wavelength, in a gain-flattened L-band EYDFA for three Yb3+ concentrations (NYb) and for two pumping configurations: (a) forward and (b) backward pumping.

Fig. 7
Fig. 7

Pump-band ASE± output power (integrated over all ASE channels in the pump band), as a function of the ratio of cladding to core area (Aclad/Acore) for (a) a gain-flattened C-band EYDFA and (b) a gain-flattened L-band EYDFA, each in three different pumping configurations.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F0(z)SNR(z=0)SNR(z),
F0(L, λs)=1G(0, L, λs)2PEr,ASE+(L, λs)P0(λs)+1.

Metrics