Abstract

A rate-equations model that takes into account the energy transfer between Er3+ and Yb3+, as well as Er3+ clustering, is employed to analyze the power conversion efficiency (PCE) of high-power, gain-flattened, Er3+Yb3+-codoped fiber amplifiers (EYDFA). Numerical results for C-band EYDFA and L-band EYDFA show that the PCE strongly depends on the excess pump losses and on the pump-band amplified spontaneous emission (ASE). It is found that the L-band EYDFA is more efficient in the limit of strong injected signal powers and large cladding areas. It is also shown that the PCE significantly improves on increasing the Yb3+ concentration in the C-band EYDFA, whereas in the L-band EYDFA it mainly depends on the pump wavelength. The effect of Er3+ clusters on the PCE is discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er-Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
    [CrossRef]
  2. F. Di Pasquale, G. Grasso, F. Meli, G. Sacchi, and S. Turolla, “23 dBm output power Er/Yb codoped fiber amplifier for WDM signals in the 1575–1605 nm wavelength region,” in Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication Vol. 2 of Technical Digest Series (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 4–6.
  3. J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 383–385 (1994).
    [CrossRef]
  4. J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photon. Technol. Lett. 5, 301–303 (1993).
    [CrossRef]
  5. G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nils-son, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990–2001 (1998).
    [CrossRef]
  6. G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol.: Mater., Devices Syst. 7, 21–44 (2001).
    [CrossRef]
  7. P. F. Wysocki, “Erbium-doped fiber amplifiers: advanced topics,” in Rare-Earth-Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, New York, 2001), pp. 583–680.
  8. Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical fiber amplifiers for WDM optical networks,” Bell Syst. Tech. J. 4, 187–206 (1999).
    [CrossRef]
  9. E. Yahel and A. Hardy, “Amplified spontaneous emission in high-power Er3+–Yb3+-codoped fiber amplifiers for WDM applications,” J. Opt. Soc. Am. B 20, 1198–1203 (2002).
    [CrossRef]
  10. C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–205 (2001).
    [CrossRef]
  11. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  12. M. Ding and P. K. Cheo, “Effects of Yb:Er-codoping on suppressing self-pulsing in Er-doped fiber lasers,” IEEE Photon. Technol. Lett. 9, 324–326 (1997).
    [CrossRef]
  13. M. J. F. Digonnet, M. K. Davis, and R. H. Pantell, “Rate equations for clusters in rare earth-doped fibers,” Opt. Fiber Technol.: Mater., Devices Syst. 1, 48–54 (1994).
    [CrossRef]
  14. M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE J. Quantum Electron. 7, 303–305 (1995).
  15. R. S. Quimby, “Output saturation in a 980-nm pumped erbium-doped fiber amplifier,” Appl. Opt. 30, 2546–2552 (1991).
    [CrossRef] [PubMed]
  16. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering effects on double energy transfer in heavily ytterbium-erbium-codoped silica fibers,” J. Opt. Soc. Am. B 13, 693–701 (1996).
    [CrossRef]
  17. V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14, 189–196 (1982).
    [CrossRef]
  18. A. G. Murzin, E. G. Pivinskii, D. S. Prilezhaev, and V. A. Fromzel, “Experimental observation of bleaching of ytterbium-erbium glasses on pumping by a neodymium-glass laser,” Opt. Spectrosc. 61, 121–122 (1986).
  19. M. Karasek, “Optimum design of Er3+–Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699–1705 (1997).
    [CrossRef]
  20. C. H. Henry, “Theory of spontaneous emission noise and its application to lasers and optical amplifiersJ. Lightwave Technol. 4, 288–297 (1986).
    [CrossRef]
  21. A. A. Hardy and R. Oron, “Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers,” J. Lightwave Technol. 16, 1865–1873 (1998).
    [CrossRef]
  22. M. Achtenhagen, R. J. Beeson, F. Pan, B. Nyman, and A. Hardy, “Gain and noise in ytterbium sensitized erbium doped amplifiers: measurement and simulations,” J. Lightwave Technol. 19, 1521–1526 (2001).
    [CrossRef]
  23. W. J. Miniscalco, “Optical and electronic properties of rare earth ions in glasses,” in Rare-Earth-Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, New York, 2001), pp. 17–112.
  24. F. Di Pasquale, “Modeling of highly-efficient grating-feedback and Fabry–Perot Er3+–Yb3+ codoped fiber laser,” IEEE J. Quantum Electron. 32, 326–332 (1996).
    [CrossRef]
  25. M. Achtenhagen, JDS Uniphase Corporation, Eatontown, N.J. 07724 (personal communication, 2001).
  26. A. Bjarklev, Optical Fiber Amplifiers: Design and System Applications (Artech House, Norwood, Mass., 1993).
  27. P. F. Wysocki, G. Nykolak, and D. S. Shenk, “Noise figure limitation in ytterbium-codoped erbium-doped fiber amplifiers pumped at 1064 nm,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 32–33.
  28. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, “Characterization of clusters in rare-earth-doped fibers by transmission measurements,” J. Lightwave Technol. 13, 120–126 (1995).
    [CrossRef]
  29. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20, 2487–2489 (1995).
    [CrossRef] [PubMed]
  30. M. Kakui and S. Ishikawa, “Long-wavelength-band optical amplifiers employing silica based erbium doped fibers designed for wavelength division multiplexing systems and networks,” IEICE Trans. Electron. E83-C, 799–815 (2000).
  31. P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “+26 dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
    [CrossRef]
  32. A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
    [CrossRef]
  33. S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Windhorn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, and J. E. Townsend, “+21 dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser,” IEEE Photon. Technol. Lett. 4, 553–555 (1992).
    [CrossRef]
  34. F. Leplingard, P. Bousselet, M. Bettiati, L. Gasca, L. Lorey, A. Tardy, and D. Bayart, “High-power (+24 dBm) double-clad erbium-doped fiber amplifier for WDM applications in the C-band (1528 nm–1562 nm),” in Conference on Lasers and Electro-Optics, Europe, Conference Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2000), p. 386.

2002

2001

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–205 (2001).
[CrossRef]

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol.: Mater., Devices Syst. 7, 21–44 (2001).
[CrossRef]

M. Achtenhagen, R. J. Beeson, F. Pan, B. Nyman, and A. Hardy, “Gain and noise in ytterbium sensitized erbium doped amplifiers: measurement and simulations,” J. Lightwave Technol. 19, 1521–1526 (2001).
[CrossRef]

2000

M. Kakui and S. Ishikawa, “Long-wavelength-band optical amplifiers employing silica based erbium doped fibers designed for wavelength division multiplexing systems and networks,” IEICE Trans. Electron. E83-C, 799–815 (2000).

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “+26 dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

1999

Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical fiber amplifiers for WDM optical networks,” Bell Syst. Tech. J. 4, 187–206 (1999).
[CrossRef]

1998

1997

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

M. Karasek, “Optimum design of Er3+–Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699–1705 (1997).
[CrossRef]

M. Ding and P. K. Cheo, “Effects of Yb:Er-codoping on suppressing self-pulsing in Er-doped fiber lasers,” IEEE Photon. Technol. Lett. 9, 324–326 (1997).
[CrossRef]

1996

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er-Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering effects on double energy transfer in heavily ytterbium-erbium-codoped silica fibers,” J. Opt. Soc. Am. B 13, 693–701 (1996).
[CrossRef]

F. Di Pasquale, “Modeling of highly-efficient grating-feedback and Fabry–Perot Er3+–Yb3+ codoped fiber laser,” IEEE J. Quantum Electron. 32, 326–332 (1996).
[CrossRef]

1995

M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, “Characterization of clusters in rare-earth-doped fibers by transmission measurements,” J. Lightwave Technol. 13, 120–126 (1995).
[CrossRef]

E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20, 2487–2489 (1995).
[CrossRef] [PubMed]

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE J. Quantum Electron. 7, 303–305 (1995).

1994

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 383–385 (1994).
[CrossRef]

M. J. F. Digonnet, M. K. Davis, and R. H. Pantell, “Rate equations for clusters in rare earth-doped fibers,” Opt. Fiber Technol.: Mater., Devices Syst. 1, 48–54 (1994).
[CrossRef]

1993

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photon. Technol. Lett. 5, 301–303 (1993).
[CrossRef]

1992

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Windhorn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, and J. E. Townsend, “+21 dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser,” IEEE Photon. Technol. Lett. 4, 553–555 (1992).
[CrossRef]

1991

1986

C. H. Henry, “Theory of spontaneous emission noise and its application to lasers and optical amplifiersJ. Lightwave Technol. 4, 288–297 (1986).
[CrossRef]

A. G. Murzin, E. G. Pivinskii, D. S. Prilezhaev, and V. A. Fromzel, “Experimental observation of bleaching of ytterbium-erbium glasses on pumping by a neodymium-glass laser,” Opt. Spectrosc. 61, 121–122 (1986).

1982

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14, 189–196 (1982).
[CrossRef]

Achtenhagen, M.

Alvarez-Chavez, J. A.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–205 (2001).
[CrossRef]

Barnes, W. L.

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photon. Technol. Lett. 5, 301–303 (1993).
[CrossRef]

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Windhorn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, and J. E. Townsend, “+21 dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser,” IEEE Photon. Technol. Lett. 4, 553–555 (1992).
[CrossRef]

Bayart, D.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “+26 dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Beeson, R. J.

Bettiati, M.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “+26 dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Boubal, F.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “+26 dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Bousselet, P.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “+26 dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Cannon, R. S.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Windhorn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, and J. E. Townsend, “+21 dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser,” IEEE Photon. Technol. Lett. 4, 553–555 (1992).
[CrossRef]

Caplen, J. E.

Cheo, P. K.

M. Ding and P. K. Cheo, “Effects of Yb:Er-codoping on suppressing self-pulsing in Er-doped fiber lasers,” IEEE Photon. Technol. Lett. 9, 324–326 (1997).
[CrossRef]

Clarkson, W. A.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–205 (2001).
[CrossRef]

Davis, M. K.

M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, “Characterization of clusters in rare-earth-doped fibers by transmission measurements,” J. Lightwave Technol. 13, 120–126 (1995).
[CrossRef]

M. J. F. Digonnet, M. K. Davis, and R. H. Pantell, “Rate equations for clusters in rare earth-doped fibers,” Opt. Fiber Technol.: Mater., Devices Syst. 1, 48–54 (1994).
[CrossRef]

Desthieux, B.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “+26 dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Di Pasquale, F.

F. Di Pasquale, “Modeling of highly-efficient grating-feedback and Fabry–Perot Er3+–Yb3+ codoped fiber laser,” IEEE J. Quantum Electron. 32, 326–332 (1996).
[CrossRef]

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE J. Quantum Electron. 7, 303–305 (1995).

DiGiovanni, D.

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er-Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

Digonnet, M. J. F.

M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, “Characterization of clusters in rare-earth-doped fibers by transmission measurements,” J. Lightwave Technol. 13, 120–126 (1995).
[CrossRef]

M. J. F. Digonnet, M. K. Davis, and R. H. Pantell, “Rate equations for clusters in rare earth-doped fibers,” Opt. Fiber Technol.: Mater., Devices Syst. 1, 48–54 (1994).
[CrossRef]

Ding, M.

M. Ding and P. K. Cheo, “Effects of Yb:Er-codoping on suppressing self-pulsing in Er-doped fiber lasers,” IEEE Photon. Technol. Lett. 9, 324–326 (1997).
[CrossRef]

Dong, L.

Dussardier, B.

Federighi, M.

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE J. Quantum Electron. 7, 303–305 (1995).

Fromzel, V. A.

A. G. Murzin, E. G. Pivinskii, D. S. Prilezhaev, and V. A. Fromzel, “Experimental observation of bleaching of ytterbium-erbium glasses on pumping by a neodymium-glass laser,” Opt. Spectrosc. 61, 121–122 (1986).

Gapontsev, V. P.

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14, 189–196 (1982).
[CrossRef]

Gasca, L.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “+26 dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Goix, M.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “+26 dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Grubb, S.

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er-Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

Grubb, S. G.

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photon. Technol. Lett. 5, 301–303 (1993).
[CrossRef]

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Windhorn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, and J. E. Townsend, “+21 dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser,” IEEE Photon. Technol. Lett. 4, 553–555 (1992).
[CrossRef]

Grudinin, A. B.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–205 (2001).
[CrossRef]

Hardy, A.

Hardy, A. A.

Henry, C. H.

C. H. Henry, “Theory of spontaneous emission noise and its application to lasers and optical amplifiersJ. Lightwave Technol. 4, 288–297 (1986).
[CrossRef]

Humer, W. F.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Windhorn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, and J. E. Townsend, “+21 dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser,” IEEE Photon. Technol. Lett. 4, 553–555 (1992).
[CrossRef]

Ishikawa, S.

M. Kakui and S. Ishikawa, “Long-wavelength-band optical amplifiers employing silica based erbium doped fibers designed for wavelength division multiplexing systems and networks,” IEICE Trans. Electron. E83-C, 799–815 (2000).

Isineev, A. A.

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14, 189–196 (1982).
[CrossRef]

Jaskorzynska, B.

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 383–385 (1994).
[CrossRef]

Jedrzejewski, K. P.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Windhorn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, and J. E. Townsend, “+21 dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser,” IEEE Photon. Technol. Lett. 4, 553–555 (1992).
[CrossRef]

Kakui, M.

M. Kakui and S. Ishikawa, “Long-wavelength-band optical amplifiers employing silica based erbium doped fibers designed for wavelength division multiplexing systems and networks,” IEICE Trans. Electron. E83-C, 799–815 (2000).

Karasek, M.

M. Karasek, “Optimum design of Er3+–Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699–1705 (1997).
[CrossRef]

Kravchenko, V. B.

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14, 189–196 (1982).
[CrossRef]

Laming, R. I.

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photon. Technol. Lett. 5, 301–303 (1993).
[CrossRef]

Leilabady, P. A.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Windhorn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, and J. E. Townsend, “+21 dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser,” IEEE Photon. Technol. Lett. 4, 553–555 (1992).
[CrossRef]

Leplingard, F.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “+26 dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Matitsin, S. M.

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14, 189–196 (1982).
[CrossRef]

Maurice, E.

Minelly, J. D.

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nils-son, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990–2001 (1998).
[CrossRef]

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photon. Technol. Lett. 5, 301–303 (1993).
[CrossRef]

Monnom, G.

Morkel, P. R.

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photon. Technol. Lett. 5, 301–303 (1993).
[CrossRef]

Murzin, A. G.

A. G. Murzin, E. G. Pivinskii, D. S. Prilezhaev, and V. A. Fromzel, “Experimental observation of bleaching of ytterbium-erbium glasses on pumping by a neodymium-glass laser,” Opt. Spectrosc. 61, 121–122 (1986).

Nilsson, J.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–205 (2001).
[CrossRef]

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 383–385 (1994).
[CrossRef]

Nils-son, J.

Nyman, B.

Offerhaus, H. L.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–205 (2001).
[CrossRef]

Oron, R.

A. A. Hardy and R. Oron, “Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers,” J. Lightwave Technol. 16, 1865–1873 (1998).
[CrossRef]

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

Ostrowsky, D. B.

Pan, F.

Pantell, R. H.

M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, “Characterization of clusters in rare-earth-doped fibers by transmission measurements,” J. Lightwave Technol. 13, 120–126 (1995).
[CrossRef]

M. J. F. Digonnet, M. K. Davis, and R. H. Pantell, “Rate equations for clusters in rare earth-doped fibers,” Opt. Fiber Technol.: Mater., Devices Syst. 1, 48–54 (1994).
[CrossRef]

Park, N.

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er-Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

Payne, D. N.

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minelly, J. Nils-son, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16, 1990–2001 (1998).
[CrossRef]

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photon. Technol. Lett. 5, 301–303 (1993).
[CrossRef]

Pedrazzani, R.

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er-Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

Pivinskii, E. G.

A. G. Murzin, E. G. Pivinskii, D. S. Prilezhaev, and V. A. Fromzel, “Experimental observation of bleaching of ytterbium-erbium glasses on pumping by a neodymium-glass laser,” Opt. Spectrosc. 61, 121–122 (1986).

Prilezhaev, D. S.

A. G. Murzin, E. G. Pivinskii, D. S. Prilezhaev, and V. A. Fromzel, “Experimental observation of bleaching of ytterbium-erbium glasses on pumping by a neodymium-glass laser,” Opt. Spectrosc. 61, 121–122 (1986).

Quimby, R. S.

Renaud, C. C.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–205 (2001).
[CrossRef]

Richardson, D. J.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–205 (2001).
[CrossRef]

Scheer, P.

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 383–385 (1994).
[CrossRef]

Srivastava, A. K.

Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical fiber amplifiers for WDM optical networks,” Bell Syst. Tech. J. 4, 187–206 (1999).
[CrossRef]

Sulhoff, J. W.

Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical fiber amplifiers for WDM optical networks,” Bell Syst. Tech. J. 4, 187–206 (1999).
[CrossRef]

Sun, Y.

Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical fiber amplifiers for WDM optical networks,” Bell Syst. Tech. J. 4, 187–206 (1999).
[CrossRef]

Sweeney, K. L.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Windhorn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, and J. E. Townsend, “+21 dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser,” IEEE Photon. Technol. Lett. 4, 553–555 (1992).
[CrossRef]

Tardy, A.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “+26 dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

Townsend, J. E.

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photon. Technol. Lett. 5, 301–303 (1993).
[CrossRef]

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Windhorn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, and J. E. Townsend, “+21 dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser,” IEEE Photon. Technol. Lett. 4, 553–555 (1992).
[CrossRef]

Turner, P. W.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–205 (2001).
[CrossRef]

Valley, G. C.

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol.: Mater., Devices Syst. 7, 21–44 (2001).
[CrossRef]

Vendetta, S. W.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Windhorn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, and J. E. Townsend, “+21 dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser,” IEEE Photon. Technol. Lett. 4, 553–555 (1992).
[CrossRef]

Vienne, G. G.

Walker, K.

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er-Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

Windhorn, T. H.

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Windhorn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, and J. E. Townsend, “+21 dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser,” IEEE Photon. Technol. Lett. 4, 553–555 (1992).
[CrossRef]

Wysocki, P.

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er-Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

Yahel, E.

Zhou, J.

Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical fiber amplifiers for WDM optical networks,” Bell Syst. Tech. J. 4, 187–206 (1999).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

Y. Sun, A. K. Srivastava, J. Zhou, and J. W. Sulhoff, “Optical fiber amplifiers for WDM optical networks,” Bell Syst. Tech. J. 4, 187–206 (1999).
[CrossRef]

Electron. Lett.

P. Bousselet, M. Bettiati, L. Gasca, M. Goix, F. Boubal, A. Tardy, F. Leplingard, B. Desthieux, and D. Bayart, “+26 dBm output power from an engineered cladding-pumped ytterbium-free EDFA for L-band WDM applications,” Electron. Lett. 36, 1397–1399 (2000).
[CrossRef]

IEEE J. Quantum Electron.

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33, 307–313 (1997).
[CrossRef]

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE J. Quantum Electron. 7, 303–305 (1995).

M. Karasek, “Optimum design of Er3+–Yb3+ codoped fibers for large-signal high-pump-power applications,” IEEE J. Quantum Electron. 33, 1699–1705 (1997).
[CrossRef]

F. Di Pasquale, “Modeling of highly-efficient grating-feedback and Fabry–Perot Er3+–Yb3+ codoped fiber laser,” IEEE J. Quantum Electron. 32, 326–332 (1996).
[CrossRef]

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37, 199–205 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Ding and P. K. Cheo, “Effects of Yb:Er-codoping on suppressing self-pulsing in Er-doped fiber lasers,” IEEE Photon. Technol. Lett. 9, 324–326 (1997).
[CrossRef]

N. Park, P. Wysocki, R. Pedrazzani, S. Grubb, D. DiGiovanni, and K. Walker, “High-power Er-Yb-doped fiber amplifier with multichannel gain flatness within 0.2 dB over 14 nm,” IEEE Photon. Technol. Lett. 8, 1148–1150 (1996).
[CrossRef]

J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and optimization of short Yb3+-sensitized Er3+-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 383–385 (1994).
[CrossRef]

J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb, and D. N. Payne, “Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers,” IEEE Photon. Technol. Lett. 5, 301–303 (1993).
[CrossRef]

S. G. Grubb, W. F. Humer, R. S. Cannon, T. H. Windhorn, S. W. Vendetta, K. L. Sweeney, P. A. Leilabady, W. L. Barnes, K. P. Jedrzejewski, and J. E. Townsend, “+21 dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser,” IEEE Photon. Technol. Lett. 4, 553–555 (1992).
[CrossRef]

IEICE Trans. Electron.

M. Kakui and S. Ishikawa, “Long-wavelength-band optical amplifiers employing silica based erbium doped fibers designed for wavelength division multiplexing systems and networks,” IEICE Trans. Electron. E83-C, 799–815 (2000).

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Fiber Technol.: Mater., Devices Syst.

M. J. F. Digonnet, M. K. Davis, and R. H. Pantell, “Rate equations for clusters in rare earth-doped fibers,” Opt. Fiber Technol.: Mater., Devices Syst. 1, 48–54 (1994).
[CrossRef]

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol.: Mater., Devices Syst. 7, 21–44 (2001).
[CrossRef]

Opt. Laser Technol.

V. P. Gapontsev, S. M. Matitsin, A. A. Isineev, and V. B. Kravchenko, “Erbium glass lasers and their applications,” Opt. Laser Technol. 14, 189–196 (1982).
[CrossRef]

Opt. Lett.

Opt. Spectrosc.

A. G. Murzin, E. G. Pivinskii, D. S. Prilezhaev, and V. A. Fromzel, “Experimental observation of bleaching of ytterbium-erbium glasses on pumping by a neodymium-glass laser,” Opt. Spectrosc. 61, 121–122 (1986).

Other

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

P. F. Wysocki, “Erbium-doped fiber amplifiers: advanced topics,” in Rare-Earth-Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, New York, 2001), pp. 583–680.

F. Di Pasquale, G. Grasso, F. Meli, G. Sacchi, and S. Turolla, “23 dBm output power Er/Yb codoped fiber amplifier for WDM signals in the 1575–1605 nm wavelength region,” in Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication Vol. 2 of Technical Digest Series (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 4–6.

F. Leplingard, P. Bousselet, M. Bettiati, L. Gasca, L. Lorey, A. Tardy, and D. Bayart, “High-power (+24 dBm) double-clad erbium-doped fiber amplifier for WDM applications in the C-band (1528 nm–1562 nm),” in Conference on Lasers and Electro-Optics, Europe, Conference Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2000), p. 386.

W. J. Miniscalco, “Optical and electronic properties of rare earth ions in glasses,” in Rare-Earth-Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, New York, 2001), pp. 17–112.

M. Achtenhagen, JDS Uniphase Corporation, Eatontown, N.J. 07724 (personal communication, 2001).

A. Bjarklev, Optical Fiber Amplifiers: Design and System Applications (Artech House, Norwood, Mass., 1993).

P. F. Wysocki, G. Nykolak, and D. S. Shenk, “Noise figure limitation in ytterbium-codoped erbium-doped fiber amplifiers pumped at 1064 nm,” in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 32–33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Energy level diagram for the Er3+Yb3+-codoped system: (a) a homogenous Er3+Yb3+ system, (b) a clustered Er3+ system. Note the different notations for the Er3+ populations in clustered and in unclustered systems.

Fig. 2
Fig. 2

(a) Dependence of the PCE and the gain-flatness FOM G¯/ΔGmax on the fiber length of the C-band and the L-band EYDFA, in backward pumping; (b) dependence of the shortest and the longest signal channel output power on the fiber length of the C-band and the L-band EYDFA, in backward pumping.

Fig. 3
Fig. 3

PCE as a function of the total input-signal power for three different pumping configurations in (a) gain-flattened, C-band EYDFA, (b) gain-flattened, L-band EYDFA.

Fig. 4
Fig. 4

PCE versus the cladding-to-core-area ratio (Aclad/Acore), for three different pumping configurations: (a) Gain-flattened C-band EYDFA, (b) gain-flattened L-band EYDFA [note the different scale on the x axis in (a) and (b)].

Fig. 5
Fig. 5

PCE versus the input pump power for two different cladding-to-core-area ratios (Aclad/Acore) in backward pumping.

Fig. 6
Fig. 6

PCE versus the pump wavelength in gain-flattened, L-band EYDFA for three different Yb3+ concentrations (NYb) in (a) forward pumping, (b) backward pumping.

Fig. 7
Fig. 7

PCE versus the pump wavelength in gain-flattened, C-band EYDFA, for three different Yb3+ concentrations (NYb) in (a) forward pumping, (b) backward pumping.

Fig. 8
Fig. 8

PCE versus the relative number of Er3+ in clusters (k) for two different Yb3+ concentrations (NYb) in backward pumping. The Er3+ concentration is NEr=4×1025 m-3. The PCE is normalized with respect to its maximum value without Er3+ clusters. Inset: the change in the PCE due to an increase in the Yb3+ concentration from NYb=2×1026 m-3 to NYb=6×1026 m-3.

Tables (1)

Tables Icon

Table 1 Parameters Used in the Numerical Calculations

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

N2(z, t)t=N3(z, t)τ32-N2(z, t)τ21-W21(z, t)N2(z, t)+W12(z, t)N1(z, t)-2C2N22(z, t),
N3(z, t)t=-N3(z, t)τ32+W13(z, t)N1(z, t)+R61N1(z, t)N6(z, t)-R35N3(z, t)N5(z, t)+C2N22(z, t),
N6(z, t)t=-N6(z, t)τ65+W56(z, t)N5(z, t)-W65(z, t)N6(z, t)-R61N1(z, t)N6(z, t)+R35N3(z, t)N5(z, t),
N¯2(z, t)t=N¯3(z, t)τ32-N¯2(z, t)τ21-W21(z, t)N¯2(z, t)+W12(z, t)N¯1(z, t)-2C¯2N¯22(z, t),
N¯3(z, t)t=-N¯3(z, t)τ32+W13(z, t)N¯1(z, t)+C¯2N¯22(z, t),
N1(z, t)+N2(z, t)+N3(z, t)=(1-k)NEr,
N¯1(z, t)+N¯2(z, t)+N¯3(z, t)=kNEr,
N5(z, t)+N6(z, t)=NYb,
Wij(z, t)=Γpσij(λp)[Pp+(z, t)+Pp-(z, t)]λphcAcore+(hcAcore)-1Γ(λ)σij(λ)[PYb+(z, t, λ)+PYb-(z, t, λ)]λdλ.
Wlm(z, t)=(hcAcore)-1Γ(λ)σlm(λ)[PEr+(z, t, λ)+PEr-(z, t, λ)]λdλ.
±dPEr±(z, t, λ)dz=(Γ(λ){[N2(z, t)+N¯2(z, t)]σ21(λ)-σ12(λ)[N1(z, t)+N¯1(z, t)]}-α(λ))PEr±(z, t, λ)+Γ(λ)P0(λ)σ21(λ)[N2(z, t)+N¯2(z, t)],
±dPYb±(z, t, λ)dz=(Γ(λ){[σ65(λ)+σ56(λ)]N6(z, t)-σ56(λ)NYb-σ13(λ)[N1(z, t)+N¯1(z, t)]}-α(λ))PYb±(z, t, λ)+Γ(λ)P0(λ)σ65(λ)N6(z, t),
±dPp±(z, t)dz=(Γp{[σ65(λp)+σ56(λp)]N6(z, t)-σ56(λp)NYb-σ13(λp)[N1(z, t)+N¯1(z, t)]}-α(λp))Pp±(z, t),
G(z, z, λ)expzzgEr(ξ, λ)dξ,
gEr(ξ, λ)=Γ(λ){[N2(ξ)+N¯2(ξ)]σ21(λ)-σ12(λ)×[N1(ξ)+N¯1(ξ)]}-α(λ).
ηcPstotal(L)-Pstotal(0)Pp(0)

Metrics