Abstract

A rate-equations model that takes into account the energy transfer between Er3+ and Yb3+, as well as Er3+ clustering, is employed to analyze the power conversion efficiency (PCE) of high-power, gain-flattened, Er3+Yb3+-codoped fiber amplifiers (EYDFA). Numerical results for C-band EYDFA and L-band EYDFA show that the PCE strongly depends on the excess pump losses and on the pump-band amplified spontaneous emission (ASE). It is found that the L-band EYDFA is more efficient in the limit of strong injected signal powers and large cladding areas. It is also shown that the PCE significantly improves on increasing the Yb3+ concentration in the C-band EYDFA, whereas in the L-band EYDFA it mainly depends on the pump wavelength. The effect of Er3+ clusters on the PCE is discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription