Abstract

We report on a system for atomic beam deceleration and magneto-optical trapping of calcium atoms that uses the 1S01P1 transition, in which a single laser is used to trap and slow the atoms. The slower laser beam is focused near the magneto-optical trap’s center, which has a waist size much smaller than the atomic cloud such that its influence on the trapped atoms is greatly reduced. We also investigate the theoretical possibility of cooling by use of a two-photon (4s2)1S0(4s5s)1S0 transition. Excitation near resonance with the 1P1 level results in an equilibrium temperature seven times smaller than the Doppler limit of the 1S01P1 transition.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription