Abstract

We report on a system for atomic beam deceleration and magneto-optical trapping of calcium atoms that uses the 1S01P1 transition, in which a single laser is used to trap and slow the atoms. The slower laser beam is focused near the magneto-optical trap’s center, which has a waist size much smaller than the atomic cloud such that its influence on the trapped atoms is greatly reduced. We also investigate the theoretical possibility of cooling by use of a two-photon (4s2)1S0(4s5s)1S0 transition. Excitation near resonance with the 1P1 level results in an equilibrium temperature seven times smaller than the Doppler limit of the 1S01P1 transition.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
    [CrossRef] [PubMed]
  2. C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
    [CrossRef]
  3. Th. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
    [CrossRef]
  4. T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
    [CrossRef] [PubMed]
  5. F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).
  6. T. Kurosu, G. Zinner, T. Trebst, and F. Riehle, “Method for quantum-limited detection of narrow-linewidth transitions in cold atomic ensembles,” Phys. Rev. A 58, R4275–R4278 (1998).
    [CrossRef]
  7. T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002–123005 (2001).
    [CrossRef] [PubMed]
  8. E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of Ca40 to near the photon recoil limit,” Phys. Rev. A 64, 031403–1–031403–4 (2001).
    [CrossRef]
  9. M. Machholm, P. S. Julienne, and K. A. Suominen, “Calculations of collisions between cold alkaline-earth-metal atoms in a weak laser field,” Phys. Rev. A 64, 033425–033443 (2001).
    [CrossRef]
  10. G. Woehl, G. D. Garcia, F. C. Cruz, D. Pereira, and A. Scalabrin, “Deceleration of a calcium atomic beam with a frequency-doubled diode laser,” Appl. Opt. 38, 2540–2544 (1999).
    [CrossRef]
  11. J. A. Neuman, P. Wang, and A. Gallagher, “Robust high-temperature sapphire cell for metal vapors,” Rev. Sci. Instrum. 66, 3021–3023 (1995).
    [CrossRef]
  12. H. J. Onisto, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled and stabilized allsolid-state Ti:sapphire lasers,” Opt. Eng. 41, 1122–1127 (2002).
    [CrossRef]
  13. R. J. Napolitano, S. C. Zílio, and V. S. Bagnato, “Adiabatic following conditions for the deceleration of atoms with the Zeeman tuning technique,” Opt. Commun. 80, 110–114 (1990).
    [CrossRef]
  14. S. G. Miranda, S. R. Muniz, G. D. Telles, L. G. Marcassa, K. Helmerson, and V. S. Bagnato, “ ‘Dark-spot’ atomic-beam slowing for on-axis loading of traps,” Phys. Rev. A 59, 882–885 (1999).
    [CrossRef]
  15. R. L. Cavasso Filho, D. A. Manoel, D. R. Ortega, A. Scalabrin, D. Pereira, and F. C. Cruz, “On-axis calcium magneto-optical trap loaded with a focused decelerating laser,” submitted to Phys. Rev. A.
  16. D. A. Manoel, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled diode laser in alternative extended cavity,” Opt. Commun. 201, 157–163 (2002).
    [CrossRef]
  17. N. Beverini, F. Giammanco, E. Maccioni, F. Strumia, and G. Vissani, “Measurement of the calcium 1P11D2 transition rate in a laser-cooled atomic beam,” J. Opt. Soc. Am. B 6, 2188–2193 (1989).
    [CrossRef]
  18. A. Derevianko, “Feasibility of cooling and trapping metastable alkaline-earth atoms,” Phys. Rev. Lett. 87, 023002–023005 (2001).
    [CrossRef]
  19. T. Kurosu and F. Shimizu, “Laser cooling and trapping of alkaline earth elements,” Jpn. J. Appl. Phys. 31, 908–912 (1992).
    [CrossRef]
  20. T. Loftus, J. R. Bochinski, R. Shivitz, and T. W. Mossberg, “Power dependent loss from an ytterbium magneto-optic trap,” Phys. Rev. A 61, 051401–051404 (2000).
    [CrossRef]
  21. R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Excited-state-population-dependent loss from a calcium magneto-optical trap,” submitted to J. Phys. B.
  22. R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Observing negligible collision trap losses: the case of alkaline-earth metals,” Phys. Rev. A (to be published).
  23. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
    [CrossRef]
  24. T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
    [CrossRef]
  25. F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
    [CrossRef] [PubMed]
  26. W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1996).
  27. R. Loudon, The Quantum Theory of Light (Clarendon, London, 1983).
  28. K. D. Bonin and T. J. McIlrath, “Two-photon electric-dipole selection rules,” J. Opt. Soc. Am. B 1, 52–55 (1984).
    [CrossRef]
  29. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, New York, 1999).
  30. J. H. Marquardt, F. C. Cruz, M. Stephens, C. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, and D. Mehuys, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE 2834, 34–40 (1996).
    [CrossRef]
  31. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B 6, 2084–2107 (1989).
    [CrossRef]
  32. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1980).
  33. U. Brinkmann, W. Hartig, H. Telle, and H. Walther, “Isotope selective photoionization of calcium using two-step laser excitation,” Appl. Phys. 5, 109–115 (1974).
    [CrossRef]

2002 (2)

H. J. Onisto, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled and stabilized allsolid-state Ti:sapphire lasers,” Opt. Eng. 41, 1122–1127 (2002).
[CrossRef]

D. A. Manoel, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled diode laser in alternative extended cavity,” Opt. Commun. 201, 157–163 (2002).
[CrossRef]

2001 (5)

A. Derevianko, “Feasibility of cooling and trapping metastable alkaline-earth atoms,” Phys. Rev. Lett. 87, 023002–023005 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002–123005 (2001).
[CrossRef] [PubMed]

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of Ca40 to near the photon recoil limit,” Phys. Rev. A 64, 031403–1–031403–4 (2001).
[CrossRef]

M. Machholm, P. S. Julienne, and K. A. Suominen, “Calculations of collisions between cold alkaline-earth-metal atoms in a weak laser field,” Phys. Rev. A 64, 033425–033443 (2001).
[CrossRef]

2000 (1)

T. Loftus, J. R. Bochinski, R. Shivitz, and T. W. Mossberg, “Power dependent loss from an ytterbium magneto-optic trap,” Phys. Rev. A 61, 051401–051404 (2000).
[CrossRef]

1999 (5)

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[CrossRef]

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

S. G. Miranda, S. R. Muniz, G. D. Telles, L. G. Marcassa, K. Helmerson, and V. S. Bagnato, “ ‘Dark-spot’ atomic-beam slowing for on-axis loading of traps,” Phys. Rev. A 59, 882–885 (1999).
[CrossRef]

G. Woehl, G. D. Garcia, F. C. Cruz, D. Pereira, and A. Scalabrin, “Deceleration of a calcium atomic beam with a frequency-doubled diode laser,” Appl. Opt. 38, 2540–2544 (1999).
[CrossRef]

1998 (1)

T. Kurosu, G. Zinner, T. Trebst, and F. Riehle, “Method for quantum-limited detection of narrow-linewidth transitions in cold atomic ensembles,” Phys. Rev. A 58, R4275–R4278 (1998).
[CrossRef]

1996 (2)

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

J. H. Marquardt, F. C. Cruz, M. Stephens, C. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, and D. Mehuys, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE 2834, 34–40 (1996).
[CrossRef]

1995 (1)

J. A. Neuman, P. Wang, and A. Gallagher, “Robust high-temperature sapphire cell for metal vapors,” Rev. Sci. Instrum. 66, 3021–3023 (1995).
[CrossRef]

1994 (1)

Th. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
[CrossRef]

1992 (1)

T. Kurosu and F. Shimizu, “Laser cooling and trapping of alkaline earth elements,” Jpn. J. Appl. Phys. 31, 908–912 (1992).
[CrossRef]

1990 (1)

R. J. Napolitano, S. C. Zílio, and V. S. Bagnato, “Adiabatic following conditions for the deceleration of atoms with the Zeeman tuning technique,” Opt. Commun. 80, 110–114 (1990).
[CrossRef]

1989 (3)

1987 (1)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

1984 (1)

1974 (1)

U. Brinkmann, W. Hartig, H. Telle, and H. Walther, “Isotope selective photoionization of calcium using two-step laser excitation,” Appl. Phys. 5, 109–115 (1974).
[CrossRef]

Bagnato, V. S.

S. G. Miranda, S. R. Muniz, G. D. Telles, L. G. Marcassa, K. Helmerson, and V. S. Bagnato, “ ‘Dark-spot’ atomic-beam slowing for on-axis loading of traps,” Phys. Rev. A 59, 882–885 (1999).
[CrossRef]

R. J. Napolitano, S. C. Zílio, and V. S. Bagnato, “Adiabatic following conditions for the deceleration of atoms with the Zeeman tuning technique,” Opt. Commun. 80, 110–114 (1990).
[CrossRef]

Bergquist, J. C.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

J. H. Marquardt, F. C. Cruz, M. Stephens, C. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, and D. Mehuys, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE 2834, 34–40 (1996).
[CrossRef]

F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
[CrossRef] [PubMed]

Beverini, N.

Binnewies, T.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002–123005 (2001).
[CrossRef] [PubMed]

Bochinski, J. R.

T. Loftus, J. R. Bochinski, R. Shivitz, and T. W. Mossberg, “Power dependent loss from an ytterbium magneto-optic trap,” Phys. Rev. A 61, 051401–051404 (2000).
[CrossRef]

Bondu, F.

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

Bonin, K. D.

Brinkmann, U.

U. Brinkmann, W. Hartig, H. Telle, and H. Walther, “Isotope selective photoionization of calcium using two-step laser excitation,” Appl. Phys. 5, 109–115 (1974).
[CrossRef]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Chu, S.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Cruz, F. C.

H. J. Onisto, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled and stabilized allsolid-state Ti:sapphire lasers,” Opt. Eng. 41, 1122–1127 (2002).
[CrossRef]

D. A. Manoel, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled diode laser in alternative extended cavity,” Opt. Commun. 201, 157–163 (2002).
[CrossRef]

G. Woehl, G. D. Garcia, F. C. Cruz, D. Pereira, and A. Scalabrin, “Deceleration of a calcium atomic beam with a frequency-doubled diode laser,” Appl. Opt. 38, 2540–2544 (1999).
[CrossRef]

J. H. Marquardt, F. C. Cruz, M. Stephens, C. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, and D. Mehuys, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE 2834, 34–40 (1996).
[CrossRef]

Curtis, E. A.

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of Ca40 to near the photon recoil limit,” Phys. Rev. A 64, 031403–1–031403–4 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Derevianko, A.

A. Derevianko, “Feasibility of cooling and trapping metastable alkaline-earth atoms,” Phys. Rev. Lett. 87, 023002–023005 (2001).
[CrossRef]

Diddams, S. A.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Diedrich, F.

F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
[CrossRef] [PubMed]

Drullinger, R. E.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Ertmer, W.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002–123005 (2001).
[CrossRef] [PubMed]

Filho, R. L. Cavasso

D. A. Manoel, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled diode laser in alternative extended cavity,” Opt. Commun. 201, 157–163 (2002).
[CrossRef]

H. J. Onisto, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled and stabilized allsolid-state Ti:sapphire lasers,” Opt. Eng. 41, 1122–1127 (2002).
[CrossRef]

Fox, R. W.

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

Gallagher, A.

J. A. Neuman, P. Wang, and A. Gallagher, “Robust high-temperature sapphire cell for metal vapors,” Rev. Sci. Instrum. 66, 3021–3023 (1995).
[CrossRef]

Garcia, G. D.

Giammanco, F.

Hartig, W.

U. Brinkmann, W. Hartig, H. Telle, and H. Walther, “Isotope selective photoionization of calcium using two-step laser excitation,” Appl. Phys. 5, 109–115 (1974).
[CrossRef]

Helmcke, J.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002–123005 (2001).
[CrossRef] [PubMed]

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

Th. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
[CrossRef]

Helmerson, K.

S. G. Miranda, S. R. Muniz, G. D. Telles, L. G. Marcassa, K. Helmerson, and V. S. Bagnato, “ ‘Dark-spot’ atomic-beam slowing for on-axis loading of traps,” Phys. Rev. A 59, 882–885 (1999).
[CrossRef]

Hollberg, L.

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of Ca40 to near the photon recoil limit,” Phys. Rev. A 64, 031403–1–031403–4 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

Hollberg, L. W.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, and D. Mehuys, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE 2834, 34–40 (1996).
[CrossRef]

Honda, K.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[CrossRef]

Ido, T.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Isoya, Y.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Itano, W. M.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
[CrossRef] [PubMed]

Julienne, P. S.

M. Machholm, P. S. Julienne, and K. A. Suominen, “Calculations of collisions between cold alkaline-earth-metal atoms in a weak laser field,” Phys. Rev. A 64, 033425–033443 (2001).
[CrossRef]

Katori, H.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Kisters, Th.

Th. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
[CrossRef]

Kurosu, T.

T. Kurosu, G. Zinner, T. Trebst, and F. Riehle, “Method for quantum-limited detection of narrow-linewidth transitions in cold atomic ensembles,” Phys. Rev. A 58, R4275–R4278 (1998).
[CrossRef]

T. Kurosu and F. Shimizu, “Laser cooling and trapping of alkaline earth elements,” Jpn. J. Appl. Phys. 31, 908–912 (1992).
[CrossRef]

Kuwamoto, T.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[CrossRef]

Kuwata-Gonokami, M.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Lee, W. D.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Lett, P. D.

Lipphardt, B.

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

Loftus, T.

T. Loftus, J. R. Bochinski, R. Shivitz, and T. W. Mossberg, “Power dependent loss from an ytterbium magneto-optic trap,” Phys. Rev. A 61, 051401–051404 (2000).
[CrossRef]

Maccioni, E.

Machholm, M.

M. Machholm, P. S. Julienne, and K. A. Suominen, “Calculations of collisions between cold alkaline-earth-metal atoms in a weak laser field,” Phys. Rev. A 64, 033425–033443 (2001).
[CrossRef]

Manoel, D. A.

D. A. Manoel, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled diode laser in alternative extended cavity,” Opt. Commun. 201, 157–163 (2002).
[CrossRef]

Marcassa, L. G.

S. G. Miranda, S. R. Muniz, G. D. Telles, L. G. Marcassa, K. Helmerson, and V. S. Bagnato, “ ‘Dark-spot’ atomic-beam slowing for on-axis loading of traps,” Phys. Rev. A 59, 882–885 (1999).
[CrossRef]

Marquardt, J. H.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, and D. Mehuys, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE 2834, 34–40 (1996).
[CrossRef]

McIlrath, T. J.

Mehlstaubler, T. E.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002–123005 (2001).
[CrossRef] [PubMed]

Mehuys, D.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, and D. Mehuys, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE 2834, 34–40 (1996).
[CrossRef]

Miranda, S. G.

S. G. Miranda, S. R. Muniz, G. D. Telles, L. G. Marcassa, K. Helmerson, and V. S. Bagnato, “ ‘Dark-spot’ atomic-beam slowing for on-axis loading of traps,” Phys. Rev. A 59, 882–885 (1999).
[CrossRef]

Mossberg, T. W.

T. Loftus, J. R. Bochinski, R. Shivitz, and T. W. Mossberg, “Power dependent loss from an ytterbium magneto-optic trap,” Phys. Rev. A 61, 051401–051404 (2000).
[CrossRef]

Muniz, S. R.

S. G. Miranda, S. R. Muniz, G. D. Telles, L. G. Marcassa, K. Helmerson, and V. S. Bagnato, “ ‘Dark-spot’ atomic-beam slowing for on-axis loading of traps,” Phys. Rev. A 59, 882–885 (1999).
[CrossRef]

Napolitano, R. J.

R. J. Napolitano, S. C. Zílio, and V. S. Bagnato, “Adiabatic following conditions for the deceleration of atoms with the Zeeman tuning technique,” Opt. Commun. 80, 110–114 (1990).
[CrossRef]

Neuman, J. A.

J. A. Neuman, P. Wang, and A. Gallagher, “Robust high-temperature sapphire cell for metal vapors,” Rev. Sci. Instrum. 66, 3021–3023 (1995).
[CrossRef]

Oates, C.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, and D. Mehuys, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE 2834, 34–40 (1996).
[CrossRef]

Oates, C. W.

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of Ca40 to near the photon recoil limit,” Phys. Rev. A 64, 031403–1–031403–4 (2001).
[CrossRef]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

Onisto, H. J.

H. J. Onisto, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled and stabilized allsolid-state Ti:sapphire lasers,” Opt. Eng. 41, 1122–1127 (2002).
[CrossRef]

Pereira, D.

H. J. Onisto, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled and stabilized allsolid-state Ti:sapphire lasers,” Opt. Eng. 41, 1122–1127 (2002).
[CrossRef]

D. A. Manoel, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled diode laser in alternative extended cavity,” Opt. Commun. 201, 157–163 (2002).
[CrossRef]

G. Woehl, G. D. Garcia, F. C. Cruz, D. Pereira, and A. Scalabrin, “Deceleration of a calcium atomic beam with a frequency-doubled diode laser,” Appl. Opt. 38, 2540–2544 (1999).
[CrossRef]

Phillips, W. D.

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Pritchard, D. E.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Rasel, E. M.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002–123005 (2001).
[CrossRef] [PubMed]

Riehle, F.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002–123005 (2001).
[CrossRef] [PubMed]

T. Kurosu, G. Zinner, T. Trebst, and F. Riehle, “Method for quantum-limited detection of narrow-linewidth transitions in cold atomic ensembles,” Phys. Rev. A 58, R4275–R4278 (1998).
[CrossRef]

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

Th. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
[CrossRef]

Rolston, S. L.

Scalabrin, A.

H. J. Onisto, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled and stabilized allsolid-state Ti:sapphire lasers,” Opt. Eng. 41, 1122–1127 (2002).
[CrossRef]

D. A. Manoel, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled diode laser in alternative extended cavity,” Opt. Commun. 201, 157–163 (2002).
[CrossRef]

G. Woehl, G. D. Garcia, F. C. Cruz, D. Pereira, and A. Scalabrin, “Deceleration of a calcium atomic beam with a frequency-doubled diode laser,” Appl. Opt. 38, 2540–2544 (1999).
[CrossRef]

Schnatz, H.

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

Shimizu, F.

T. Kurosu and F. Shimizu, “Laser cooling and trapping of alkaline earth elements,” Jpn. J. Appl. Phys. 31, 908–912 (1992).
[CrossRef]

Shivitz, R.

T. Loftus, J. R. Bochinski, R. Shivitz, and T. W. Mossberg, “Power dependent loss from an ytterbium magneto-optic trap,” Phys. Rev. A 61, 051401–051404 (2000).
[CrossRef]

Stephens, M.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, and D. Mehuys, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE 2834, 34–40 (1996).
[CrossRef]

Sterr, U.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002–123005 (2001).
[CrossRef] [PubMed]

Strumia, F.

Suominen, K. A.

M. Machholm, P. S. Julienne, and K. A. Suominen, “Calculations of collisions between cold alkaline-earth-metal atoms in a weak laser field,” Phys. Rev. A 64, 033425–033443 (2001).
[CrossRef]

Takahashi, Y.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[CrossRef]

Tanner, C. E.

Telle, H.

U. Brinkmann, W. Hartig, H. Telle, and H. Walther, “Isotope selective photoionization of calcium using two-step laser excitation,” Appl. Phys. 5, 109–115 (1974).
[CrossRef]

Telles, G. D.

S. G. Miranda, S. R. Muniz, G. D. Telles, L. G. Marcassa, K. Helmerson, and V. S. Bagnato, “ ‘Dark-spot’ atomic-beam slowing for on-axis loading of traps,” Phys. Rev. A 59, 882–885 (1999).
[CrossRef]

Trebst, T.

T. Kurosu, G. Zinner, T. Trebst, and F. Riehle, “Method for quantum-limited detection of narrow-linewidth transitions in cold atomic ensembles,” Phys. Rev. A 58, R4275–R4278 (1998).
[CrossRef]

Udem, T.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Vissani, G.

Vogel, K. R.

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

Walther, H.

U. Brinkmann, W. Hartig, H. Telle, and H. Walther, “Isotope selective photoionization of calcium using two-step laser excitation,” Appl. Phys. 5, 109–115 (1974).
[CrossRef]

Wang, P.

J. A. Neuman, P. Wang, and A. Gallagher, “Robust high-temperature sapphire cell for metal vapors,” Rev. Sci. Instrum. 66, 3021–3023 (1995).
[CrossRef]

Watts, R. N.

Welch, D. F.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, and D. Mehuys, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE 2834, 34–40 (1996).
[CrossRef]

Westbrook, C. I.

Wilpers, G.

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002–123005 (2001).
[CrossRef] [PubMed]

Wineland, D. J.

F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
[CrossRef] [PubMed]

Woehl, G.

Yabuzaki, T.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[CrossRef]

Zeiske, K.

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

Th. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
[CrossRef]

Zílio, S. C.

R. J. Napolitano, S. C. Zílio, and V. S. Bagnato, “Adiabatic following conditions for the deceleration of atoms with the Zeeman tuning technique,” Opt. Commun. 80, 110–114 (1990).
[CrossRef]

Zinner, G.

T. Kurosu, G. Zinner, T. Trebst, and F. Riehle, “Method for quantum-limited detection of narrow-linewidth transitions in cold atomic ensembles,” Phys. Rev. A 58, R4275–R4278 (1998).
[CrossRef]

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

Appl. Opt. (1)

Appl. Phys. (1)

U. Brinkmann, W. Hartig, H. Telle, and H. Walther, “Isotope selective photoionization of calcium using two-step laser excitation,” Appl. Phys. 5, 109–115 (1974).
[CrossRef]

Appl. Phys. B (1)

Th. Kisters, K. Zeiske, F. Riehle, and J. Helmcke, “High-resolution spectroscopy with laser-cooled and trapped calcium atoms,” Appl. Phys. B 59, 89–98 (1994).
[CrossRef]

Eur. Phys. J. D (1)

C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

T. Kurosu and F. Shimizu, “Laser cooling and trapping of alkaline earth elements,” Jpn. J. Appl. Phys. 31, 908–912 (1992).
[CrossRef]

Laser Phys. (1)

F. Riehle, H. Schnatz, G. Zinner, K. Zeiske, B. Lipphardt, and J. Helmcke, “Calcium optical frequency standard based on atom interferometry,” Laser Phys. 6, 237–243 (1996).

Opt. Commun. (2)

R. J. Napolitano, S. C. Zílio, and V. S. Bagnato, “Adiabatic following conditions for the deceleration of atoms with the Zeeman tuning technique,” Opt. Commun. 80, 110–114 (1990).
[CrossRef]

D. A. Manoel, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled diode laser in alternative extended cavity,” Opt. Commun. 201, 157–163 (2002).
[CrossRef]

Opt. Eng. (1)

H. J. Onisto, R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency doubled and stabilized allsolid-state Ti:sapphire lasers,” Opt. Eng. 41, 1122–1127 (2002).
[CrossRef]

Phys. Rev. A (6)

S. G. Miranda, S. R. Muniz, G. D. Telles, L. G. Marcassa, K. Helmerson, and V. S. Bagnato, “ ‘Dark-spot’ atomic-beam slowing for on-axis loading of traps,” Phys. Rev. A 59, 882–885 (1999).
[CrossRef]

T. Kurosu, G. Zinner, T. Trebst, and F. Riehle, “Method for quantum-limited detection of narrow-linewidth transitions in cold atomic ensembles,” Phys. Rev. A 58, R4275–R4278 (1998).
[CrossRef]

E. A. Curtis, C. W. Oates, and L. Hollberg, “Quenched narrow-line laser cooling of Ca40 to near the photon recoil limit,” Phys. Rev. A 64, 031403–1–031403–4 (2001).
[CrossRef]

M. Machholm, P. S. Julienne, and K. A. Suominen, “Calculations of collisions between cold alkaline-earth-metal atoms in a weak laser field,” Phys. Rev. A 64, 033425–033443 (2001).
[CrossRef]

T. Loftus, J. R. Bochinski, R. Shivitz, and T. W. Mossberg, “Power dependent loss from an ytterbium magneto-optic trap,” Phys. Rev. A 61, 051401–051404 (2000).
[CrossRef]

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[CrossRef]

Phys. Rev. Lett. (6)

F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, “Laser cooling to the zero-point energy of motion,” Phys. Rev. Lett. 62, 403–406 (1989).
[CrossRef] [PubMed]

A. Derevianko, “Feasibility of cooling and trapping metastable alkaline-earth atoms,” Phys. Rev. Lett. 87, 023002–023005 (2001).
[CrossRef]

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstaubler, E. M. Rasel, and W. Ertmer, “Doppler cooling and trapping on forbidden transitions,” Phys. Rev. Lett. 87, 123002–123005 (2001).
[CrossRef] [PubMed]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, “Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser,” Phys. Rev. Lett. 86, 4996–4999 (2001).
[CrossRef] [PubMed]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[CrossRef]

Proc. SPIE (1)

J. H. Marquardt, F. C. Cruz, M. Stephens, C. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, and D. Mehuys, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” in Application of Tunable Diode and Other Infrared Sources for Atmospheric Studies and Industrial Process Monitoring, A. Fried, ed., Proc. SPIE 2834, 34–40 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

J. A. Neuman, P. Wang, and A. Gallagher, “Robust high-temperature sapphire cell for metal vapors,” Rev. Sci. Instrum. 66, 3021–3023 (1995).
[CrossRef]

Other (7)

R. L. Cavasso Filho, D. A. Manoel, D. R. Ortega, A. Scalabrin, D. Pereira, and F. C. Cruz, “On-axis calcium magneto-optical trap loaded with a focused decelerating laser,” submitted to Phys. Rev. A.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1980).

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, New York, 1999).

W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1996).

R. Loudon, The Quantum Theory of Light (Clarendon, London, 1983).

R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Excited-state-population-dependent loss from a calcium magneto-optical trap,” submitted to J. Phys. B.

R. L. Cavasso Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Observing negligible collision trap losses: the case of alkaline-earth metals,” Phys. Rev. A (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simplified energy-level diagram of 40Ca, showing the relevant levels, wavelengths, and relaxation rates.

Fig. 2
Fig. 2

Number of trapped atoms as a function of laser detuning for a total laser power of 52 (1) mW, a vertical field gradient of 63 G/cm, and an oven temperature of 480 (1) °C.

Fig. 3
Fig. 3

Number of trapped atoms as a function of the slower laser power.

Fig. 4
Fig. 4

Number of atoms as a function of the power on each MOT laser beam.

Fig. 5
Fig. 5

Normalized fluorescence of trapped atoms as a function of time after sudden switch-off of the Zeeman slower laser beam for (a) an effective trapping laser intensity of 3.4 IS and three red detunings of 28 MHz (open squares), 56 MHz (filled circles), and 84 MHz (open triangles) and (b) a red detuning of 84 (5) MHz and three laser intensities of 11.9 IS (open squares), ■ 8.8 IS (filled circles), and 3.4 IS (open triangles).

Fig. 6
Fig. 6

(a) Transition rates for one- and two-photon processes as a function of blue laser detuning δ normalized by the radiative linewidth of the 1P1 level with δ2=γe/2. (b) Ratio of the transition rates Γge and Γgr as a function of the two-photon detuning |δ2| normalized by relaxation rate γe.

Fig. 7
Fig. 7

Doppler temperature for calcium atoms as a function of saturation parameter S2 for several values of blue laser saturation parameter S1, with δ2=-γe/2 and δ=-γ/2. Dashed–double-dotted curve, minimum temperature achieved, 123 μK.

Fig. 8
Fig. 8

Temperature as a function of (a) blue detuning δ for δ2=-γe/2 and (b) two-photon detuning δ2 for δ=-γ/2, both for two laser intensities.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

f=12Ieff/IS1+Ieff/IS+4δ2/γ2,
dNdt=R-ND(γP+εγS)-NpγC,
L=γP+εγSγP+γS γPDf+pγC
τ=2 γP+γSγP+εγS γPD-11+ISIeffγ2+4δ2γ2.
Γge=re|H2|rr|H1|gδ-i(γ/2)+e|H1|rr|H2|gδ-i(γ/2)2×γe2[δ22+(γe/2)2],
Γge|Ω1|2|Ω2|2δ2+(γ/2)2γeδ22+(γe/2)2,
Γge=4S1S21+S1+(2δ/γ)2γe1+S1S2+(2δ2/γe)2,
Γgr=S11+S1+(2δ/γ)2γ2,
t=Γeg-1+γe-1+γ˙-1.
dpdt=4(k1+k2)S1S2γe[1+S1+(2δ/γ)2][1+S1S2+(2δ2/γe)2]+4S1S2(1+γe/γ)×1-8 [1+S1S2+(2δ2/γe)2](δk1v/γ2)+[1+S1+(2δ/γ)2][δ2(k1+k2)v/γe2][1+S1+(2δ/γ)2][1+S1S2+(2δ2/γe)2]+4S1S2(1+γe/γ)
α2=-64(k1+k2)S1S2γe{[1+2S1+(2δ/γ)2][1+4S1S2+(2δ2/γe)2]+4S1S2(1+γe/γ)}2×δγk1γ [1+4S1S2+(2δ2/γe)2]+δ2γek1+k2γe [1+2S1+(2δ/γ)2].
dEdtCool=-α2v2.
D2=42(k12+k22)(2S1)(2S2)γe[1+2S1+(2δ/γ)2][1+4S1S2+(2δ2/γe)2].
dEdtHeat=D2M.
kBT=γ2(k12+k22)2(k1+k2)|δ|γk1[1+(2δ/γ)2]+|δ2|γeγγe(k1+k2)[1+(2δ2/γe)2]-1,
αeff=α1+α2,
Deff=D1+D2,

Metrics